• 沒有找到結果。

函數的極限

在文檔中 6A1C limite (頁 25-43)

1 2 3 4

5a. Γ向左平移1單位 5b. Γ 水平方向伸縮 12

5c. Γ 向右平移1單位再將水

平方向伸縮 1

2

或水平方向伸縮 12 倍再向右平 移 1

2單位

5d. Γ 向上平移2單位 5e. Γ 鉛直方向伸縮3倍 5f. Γ 鉛直方向伸縮3, 再往

上平移4單位

5g. Γ 鉛直方向伸縮3, 再往 上平移1單位;向右平移1單位再 將水平方向伸縮 1

2 倍 6. f (x) = x2+ 2x − 1 7a. f (x) = x2− 2

7b. f (x) = x2 + 2hx + 2x + h2+ 2h − 1

7c. f (x) = 2x + h + 2 8. 3x+2x+3;−x+13x+4

9. 9x2+ 12x + 5; 3x2+ 5 10. 3x2− 1; (3x − 1)2 11. x; x

12. √

x2 + x + 1 13. x

14. 1 : 3 : 5 : 7 : · · · ; t = 10 15a. 0; 0

15b. −2; −1 15c. −2; 0

15d. a = 1; b = 0 16. g(x) = x + 32

17. 滿 足 f (g(x)) =

x, g(f (x)) = x , 自證之 18. g(x) = 3x−8x−3

17.3 函數的極限

函數圖形的切線: 若函數 f (x) 圖形為 Γ , 函數在 P 點的切線為一群割線 P Q,Q 點延著曲線 Γ 逐漸趨近P, 割線P Q 會趨近於一直線L , 稱直線L 為函數過P 點的切線,此時切線斜率

26. 高中數學講義 函數的極限 為直線L 的斜率。

Γ

切線 L P

Q 割線P Q Q

函數極限的定義: 若實數函數 f (x)x = a 附近有定義且當 x 趨近於 a,f (x) 趨近於定數 L 。 稱函數f (x)x = a的極限是 L ,lim

x→af (x) = L 表示。 與 x = a點有無定義無關。

函數極限的意義:

ε 為任意給定正數, 存在 δ > 0 只要 |x − a| < δ 必滿足 |f(x) − L| < ε

|f(x) − L| 值會隨著 |x − a| 變小而逐漸愈來愈接近0

L

a y = f (x)

函數 f (x) 在無窮遠處的極限與極限值無窮大:

數列的極限: lim

n→∞an= L 表an− L 值隨著 n愈大而愈接近0。 而函數極限: lim

x→af (x) = L 表 f (x) − L值隨著 |x − a| 愈小而愈接近0

函數在無窮遠的極限:lim

x→∞f (x) = L 表 f (x) − L 值隨著x變大而愈接近0, 稱無窮遠處的 極限值為 L;否則f (x)在無窮遠處無極限值。

函數在x = a 點極限為無窮大 :lim

x→af (x) = ∞表 f (x) 值隨著 |x − a| 愈小而變的非常大,f (x)x = a處為無窮大。

左極限與右極限:

x→alimf (x) = L: 限制 x < a 所得到的極限值稱為左極限(xa的左側趨近a的極限值)

x→alim+f (x) = M: 限制 x > a所得到的極限值稱為右極限 (xa的右側趨近a的極限值)

極限與左極限、 右極限的關係:

當函數在a點的左極限與右極限均存在且相等時 L = M , 則稱函數在a點的極限值為L。 即

x→alimf (x) = L ⇔ lim

x→af (x) = L = lim

x→a+f (x)

NOTE: 極限值 L 未必 = f (a)(∵ f (a) 可能無定義, 但仍有極限值 L ,x = a 點有

無定義無關。)

f (x) =

x − 1 , x < 0

x + 1 , x ≥ 0 ⇒ lim

x→0f (x) = −1, lim

x→0+f (x) = 1 x = 0 時f (x) 無極限值。

函數極限夾擠原理: 若三函數f (x), g(x), h(x)恆有f (x) ≤ g(x) ≤ h(x) ,且lim

x→af (x) = lim

x→ah(x) = L 則 lim

x→ag(x) = L

x→0lim sin x

x = 1, lim

x→∞

sin x x = 0

面積 △OAB <扇形 OAB < △OBC ⇒ sin θ2 < θ2 < tan θ

2 ⇒ cos θ < sin θθ < 1 y

O B x

A C θ

3: 利用夾擠定理求極限值

函數極限的運算性質:

若兩實函數f (x), g(x) 在x = a 時有極限,lim

x→af (x) = L, lim

x→ag(x) = M 則 1. lim

x→a[cf (x)] = c lim

x→af (x) = cL 2. lim

x→a[f (x) + g(x)] = lim

x→af (x) + lim

x→ag(x) = L + M 3. lim

x→a[f (x) − g(x)] = lim

x→af (x) − lim

x→ag(x) = L − M 4. lim

x→a(f (x) × g(x) = lim

x→af (x) × lim

x→ag(x) = L × M 5. lim

x→a

f (x)

g(x) = lim

x→af (x)

x→alimg(x) = LM ,其中 M 6= 0 6. lim

x→a

pf(x) =k q limk

x→af (x) = √k

L , (L > 0)

若f (x), g(x) 的某一點極限均不存在, 其和 f (x) + g(x)或積 f (x)g(x) 的極限未必不存在 f (x) = |x|

x , g(x) = −|x|

x 在x = 0,均無極限值;lim

x→0(f (x)+g(x)) = 0, lim

x→0[f (x)g(x)] = 1

28. 高中數學講義 函數的極限

2. 水平漸近線:lim

x→∞f (x) = b 或 lim

x→−∞f (x) = b , 任一式成立, 則直線 y = b 為函數曲線 y = f (x) 的水平漸近線。

3. 一般的漸近直線:lim

x→∞[f (x) − (mx + b)] = 0 或 lim

x→−∞[f (x) − (mx + b)] = 0 , 任一式成立, 則直線 y = mx + b 為函數曲線 y = f (x) 的漸近線。

多項式函數與有理函數的極限性質: 函數 f (x)x = a 的極限值就是函數值 f (a)

f (x) = anxn+ · · · + a2x2+ a1x + a0,g(x) = bmxm+ · · · + b1x + b0 為兩實係數多項式函數 1. lim

x→af (x) = f (a) 2. 若 g(a) 6= 0 , 則 lim

x→a

f (x)

g(x) = f (a) g(a) 3. 若 g(a) = 0, f (a) 6= 0 ,則 lim

x→a

f (x)

g(x) 不存在。

4. 若f (a) = g(a) = 0 , 求 lim

x→a

f (x)

g(x) 先將分子、 分母的共同因式(x − a)約去後,再依照函 數極限性質23求極限。

極限不定型的化簡方法: (∞ − ∞)ε × ∞,

∞,ε ε 類型

1. 分式極限: 分子、 分母同除以最高 ()次項。(nk, an) 2. 擴分同乘以有理化因子

3. 運用夾擠定理

函數 f (x)a 點連續的定義: 若函數 f (x)x = a 點連續 ⇔ lim

x→af (x) = L = f (a), 即函數在 x = a極限值 L 存在且為函數值 f (a)

f (x) 為一實函數,|f(x) − a| 值會隨著 |x − a| 變小而逐漸變小而愈接近0, 則稱 f (x) 在 x = a點連續。 即 lim

x→af (x) = L 存在且等於 f (a)

連續函數的定義: 若函數 f (x) 在定義域中的每一個點都連續, 則稱函數 f 為連續函數。

函數 f (x) 在開區間 (a, b) 連續: 對任意c ∈ (a, b), f(x) 在x = c 都連續。

函數 f (x) 在閉區間 [a, b] 連續: 對任意 c ∈ (a, b), f(x) 在 x = c 都連續且對端點滿足

x→alim+f (x) = f (a), lim

x→bf (x) = f (b) 。 連續函數的三要件: (1) x = a, f (a) 有定義 (2)lim

x→af (x) 存在 (3) lim

x→af (x) = f (a) 連續函數的圖形: y = f (x)在 x = a點連續, 是指其圖形在點 (a, f (a)) 不會斷掉。

連續函數的充要條件: f (x)x = a連續⇔ lim

x→af (x) = f (a)

f (x)x = a 有極限值 L6= f(a) 則函數 f (x)x = a 點不連續。(圖形在a點移除;

30. 高中數學講義 函數的極限

−6−5−4−3−2−1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1 1 2 3 4 5 6

x y

IIIIII

f \x −3 −2 −1 1 3

a點極限 有 有, 但 有,= 沒有,左右極限 沒有

= f (3) 6= f(−2) f(−1) 存在但不相等 (發散)a點連續 是 不是, 是 不是, 不是,

IIIIII 圖形特徵 平滑 移除 尖點 跳離 ±∞

有漸近線

4: 不連續函數的圖形:I移除、II 跳離、III 發散類型 (removable,jump,infinite)

例: f (x) = x sin 1x 在x = 0 的極限值為0,f (0)不存在,故在x = 0處不連續。

: 高斯函數 f (x) = [x] 在整數點 x = a, f (a) = a, 但 lim

x→af (x) = a − 1 6= lim

x→a+f (x) = a ,f (x)在整數點 x = a均不連續。(圖形在a點跳離分開;II)

例: f (x) = tan x 在x = kπ +π

2, k ∈ Z 極限值不存在 (發散),函數f (x)x = kπ +π 2, k ∈ Z處,均不連續。(圖形在a點發散;III)

連續函數的一些性質:

設函數f (x)g(x)均在x = a連續, 則下列函數在x = a連續 1. f (x) + g(x)

2. f (x) − g(x) 3. f (x)g(x) 4. f (x)

g(x) , 若g(a) 6= 0

5. pf(x) ,k 其中 f(x)a附近恆不為負,k 為一正整數。

多項式函數 f (x) : 在定義域內多項式函數為連續函數。 lim

x→af (x) = f (a) 連續函數的一些觀念:

1. 函數在有定義的點不一定連續: f (x) =

x + 1 , x ≥ 0

x − 1 , x < 0 在x = 0, 不連續。

2. 函數在有定義且有極限值的點不一定連續: f (x) =

|x − 1| , x 6= 1 1 , x = 1

x = 1, 有極限值但不連續。

3. 若 |f(x)| 連續, f (x) 不一定連續: f (x) =

−1 , x ≤ 2

1 , x > 2 在 x = 2, |f(x)| 連續,f (x) 不連續。

4. 分段定義函數不一定有不連續點: f (x) =

x2 , 0 ≤ x < 1

3x − 2 , 1 ≤ x ≤ 2 ,在x = 1, f (x) 為連續

5. 連續函數與不連續函數的乘積不一定不連續: f (x) = x, g(x) =

1 , x ≥ 0

−1 , x < 0 , 其中 f 為連續, gx = 0 不連續,f × g 為連續函數。

6. 兩不連續函數的乘積或和不一定不連續: f (x) =

x , x ≤ 0

1 , x > 0 ,g(x) =

−1 , x ≤ 0 x , x > 0 , 其中 f × gx = 0,為連續。

合成函數的極限:lim

x→af (x) = L , 若 g(x)L 連續, 則合成函數的極限 lim

x→ag(f (x)) = g(L)

lim

x→af [g(x)]存在, lim

x→af (x) 未必存在: f (x) =

1 , x ≥ 0

−1 , x < 0 , g(x) = x2, x ∈ R ;在 x = 0

合成函數連續:f (x)x = a連續,g(x)x = f (a) 連續,g(f (x))x = a為連續。

連續函數的中間值定理:f (x)是定義在 [a, b] 的連續函數, 且滿足 f (a) 6= f(b), 則對於 f (a) 與 f (b)之間的任意實數 M ,在區間[a, b] 內至少存在一點 c , 使得 f (c) = M

f (x)

a f (b)

b f (a)

a M

c

連續函數的勘根定理:

f (x) 是一定義在[a, b] 的連續函數,且滿足 f (a)f (b) < 0, 則至少存在有一根介於ab之間 的實數c, 使得 f (c) = 0

32. 高中數學講義 函數的極限

y = f (x)

y = 0 f (c) = 0

f (b) < 0 f (a) > 0

a b

y = f (x)

y = 0 f (c) = 0

f (b) > 0

f (a) < 0

b a

例題

範例 1: 求下列函數在 x = a點的極限值?

1. f (x) = x + 1, 在x = 1 的極限值? 2

2. f (x) = x2− 1, 在x = 1 的極限值? 0

3. f (x) = x2− 1

x − 1 在x = 1 的極限值? 2

演練 1a :f (x) = x2− x + 2,x = 2 的極限值? 4

演練 1b :f (x) = x

2− 4

x − 2, g(x) = x + 2 , 計算 lim

x→1f (x) 、 lim

x→2f (x) 與 lim

x→2g(x) (解:)lim

x→1f (x) = 3,lim

x→2f (x) = 4,lim

x→2g(x) = 4

範例 2: 函數 f (x) 圖形如圖:下列極限值若存在, 求出其值?

y

2 4 t 4

2

1. lim

t→0f (t) −1

2. lim

t→0+f (t) -2

3. lim

t→0f (t) 不存在

4. lim

t→2f (t) 2

5. lim

t→2+f (t) 0

6. lim

t→2f (t) 不存在

7. lim

t→4f (t) 3

8. 函數值f (0) = −1

9. 函數值f (2) = 1

10. 函數值f (4) = 3

演練 2a : 函數 f (x) 圖形如圖: 下列極限值若存在,求出其值? y

0 2 4 x

4 2

1. lim

x→3f (x) 4

2. lim

x→3+f (x) 2

3. lim

x→3f (x) 不存在

4. lim

x→0f (x) 3

5. lim

xt→0+f (x) 3

6. lim

x→0f (x) 3

7. 函數值f (3) = 3

8. 函數值f (0) = 3

範例 3: 設函數 f (x) = x

|x| , 討論 f (x)x = 0 的極限值是否存在?

x→0limf (x) = −1 6= lim

x→1+f (x) = 1 演練 3a :lim

x→0

3x2x ?

3 2

演練 3b :lim

x→0sin(π

x) 不存在

演練 3c :lim

x→0

1 x2

不存在

演練 3d :lim

x→1

x − 1

|x − 1| = ? 不存在

利用函數極限的運算性質求極限: 範例 4: 求下列各極限:

1. lim

x→0

√1 + x − 1 x

1 2

2. lim

x→1

x3 − 1 x − 1

3

3. lim

x→2

x + 1 x − 2

不存在

4. lim

x→1(x2− 3x + 1) −1

5. lim

x→−21

(2x + 3)3 8

6. lim

x→0(1 + x

x − 1+ 3x − 1

x2+ 3x − 4) −34 利用夾擠定理求 lim

x→0

sin x x

1

34. 高中數學講義 函數的極限

演練 4f :lim

36. 高中數學講義 函數的極限

範例 8: 設函數 f (x) = x2− x + 2 , 先求出 lim

38. 高中數學講義 函數的極限 演練 9a :f (x) = 4x3− 6x2+ 3x − 2 ,問在12 之間是否有方程式f (x) = 0的根?(勘根定理)

yes;f (1)f (1) < 0

演練 9b :f (x) = x3− x2+ x 問是否存在正數, 使得f (x) 函數值為 10 ?(中間值定理) (解:)let g(x) = f (x) − 10 ,then g(2)g(3) < 0 , ∃ 2 < c < 3 ,such that f(c) = 10 演練 9c : 若0 < x < 2 是否可滿足 x2+ cos(xπ) = 4 ?(中間值定理)

(解:)let f (x) = x2+ cos(xπ) − 4 is continuous,then f(0) < 0, f(2) > 0 , ∃ 0 < c < 2 ,such that f (c) = 0

演練 9d : 利用中間值定理, 說明在所指定區間內, 方程式必有實數根 1. f (x) = x3+ 3x − 1 = 0 ,I = (0, 1)

(解:)by f (0) = −1 < 0, f(1) = 3 > 0 , ∃ 0 < x < 1 ,such that f(x) = 0 2. x2 =√

x + 1 ,I = (1, 2) (解:)let g(x) = x2 −√

x + 1 ,then g(1) = 1 −√

2 < 0, g(2) = 4 −√

3 > 0 , ∃ 1 < x < 2 ,such that g(x) = 0

3. cos x = x ,I = (0, 1)

(解:)let g(x) = cos x − x ,then g(0) = 1 > 0, g(1) = cos 1 − 1 < 0 , ∃ 0 < x < 1 ,such that g(x) = 0

演練 9e : 若函數 f (x) 在其定義域內滿足 f (c) = c , 稱 x = c 為函數的一個固定點。 若函數 f (x) = 1 − x2 , 利用中間值定理”, 證明: 函數在區間[0, 1] 內有固定點。

(解:)∵ f (x) continuous, x ∈ [0, 1], 0 ≤ f(x) ≤ 1 ; ∴ 滿足 ∃ 0 < x < 1 ,such that f (x) = x

範例 10: 近年試題

1. 假設兩地之間的通話費, 第一個半分鐘是 5, 之後每半分鐘是2, 不滿半分鐘以半分鐘 計算,t 分鐘的通話費 C(t) 公式如下 (單位: 元): C(t) = 5 − 2[1 − 2t] , 其中 [x]表示 小於或等於 x 的最大整數, 例如: [3.5] = 3, [−3.1] = −4, [−5] = −5 等。 是問下列哪些選 項正確? (1)10分鐘的通話費是43(2)t ≥ 0 時,[1 − 2t] = −[2t − 1] 恆成立 (3)

t→10.5lim C(t) = 45 (4) lim

t→11.2C(t) = 49 1,4

2. 令 f (x) = x3− x2− 2x + 1 ,a, b, c 為方程式 f (x) = 0 的三個實根, 且 a < b < c, 請選出正確選項? (1) 極限 lim

x→1

f (x)

x − 1 存在 (2) a, b, c 至少有一個在01之間 (3) a, a2, a3, · · · , an, · · · 為收斂數列 (4) b, b2, b3, · · · , bn, · · · 為收斂數列 (5) c, c2, c3, · · · , cn, · · ·

為收斂數列 2,4

習題II:1-3 函數的極限 1. 函數 g(x)圖形如圖: 下列極限值若存在,求出其值? y

0 x

y=©

1 2 3 4 5

1 3 4

(a) lim

x→2g(x) (b) lim

x→2+g(x) (c) lim

x→2g(x) (d) lim

x→5g(x)

(e) lim

xt→5+g(x) (f) lim

x→5g(x) (g) 函數值 g(2) = (h) 函數值 g(5) =

2. 函數 f (x) 圖形如圖: 根據圖形回答下列問題:

−3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1 1 2 3 4

x

(a) 求函數 f (x) 在點x = −1 時的極限?

(b) 求函數 f (x) 在點x = 0 時的極限與函數值? (c) 求函數 f (x) 在點x = 2 時的極限與函數值? (d) 求函數 f (x) 在點x = 5 時的極限?

3. 已知函數 f (x), g(x)的部分圖形如下: 試求下列極限值?

1 x y

y=ƒ 1

0 x

y

1 y=©

1

(a) lim

x→2[f (x) + g(x)] = (b) lim

x→1[f (x) + g(x)] = (c) limf (x)g(x) =

(d) lim

x→−1

f (x) g(x) (e) lim

x→2x2f (x) (f) limp3 + f(x)

40. 高中數學講義 函數的極限

21. 設函數f (x) =

42. 高中數學講義 函數的極限

. . . .教用版附答案. . . .

在文檔中 6A1C limite (頁 25-43)

相關文件