• 沒有找到結果。

結論

在文檔中 中 華 大 學 (頁 80-84)

對於構裝體可靠度評估,銲錫接點破壞是關鍵的一環,經由銲錫接點的物理量 可看出等效模型、球柵陣列非等效模型及非等效模型之間的差異性,並改變填膠類 型參數來了解填膠的 Tg 效應對各模型的影響,最後配合次模型可得知錫球疲勞壽 命並跟文獻實驗做比對,但因非等效模型中,凸塊的次模型不收斂,並無法得到凸 塊的疲勞壽命,本文利用銲錫凸塊的各物理量來推測銲錫凸塊的疲勞壽命。

1. 經由球柵陣列及銲錫凸塊的相對翹曲量及面內相對位移和相對剪位移得知等效 模型和球柵陣列非等效模型相差太大,原因可能為錫球建立等效層並未加入塑 變及潛變行為,導致機械性值相差太大所造成。

2. 分析結果顯示當模型為球柵陣列非等效銲錫凸塊等效時,填膠的 Tg 點是否落 在分析溫度範圍之內,所得到的物理量並沒有相差太大,得知此模型是否有使 用Tg 效應的填膠材料,不會影響錫球的物理量。

3. 非等效模型不考慮 Tg 效應的填膠材料,球柵陣列的相對物理量與等效銲錫凸塊 值不會相差太大,如不使用Tg 效應的填膠材料,並且只考慮球柵陣列錫球可靠 度時,可使用等效銲錫凸塊模型來分析,以減少建立模型的困難度及大幅減少 運算時間。

4. 等效與非等效銲錫凸塊糢型經由次模型分析,得到非等效模型球柵陣列層錫球 疲勞壽命在10×10 位置為 10400 cycles 比等效銲錫凸塊糢型球柵陣列錫球 4980 cycles 來的大,且跟文獻中實驗較吻合,但於 9×9 位置上錫球壽命最大是值得 進一步探討。

5. 非等效模型及三維條狀模型中皆使用有 Tg 效應的填膠,利用相對位移量、應變 範圍值及非彈性應變值,也不能完全正確預測凸塊壽命,是否能與球柵陣列使 用相同的疲勞壽命公式,是值得探討。但應可利用各凸塊應變範圍值比例看出 凸塊各凸塊間的破壞程度。

參考文獻

[1] L. Yuan, ”Accurate Predictions of Flip Chip BGA Warpage,” Electronic Components and Technology Conference, pp. 549-553. 2003.

[2] L. Yuan, X.John, V. Tarun, W. Vincent ”Reliability Study of High-Pin-Count Flip-Chip BGA,” Electronic Components and Technology Conference, 2001.

[3] 李政忠,「等效次模型對覆晶球柵陣列構裝體可靠度分析之探討」,碩士論文,

中華大學機械與航太工程研究所,2007。

[4] J. H. L. Pang, C. W. Seetoh, Z. P. Wang, “CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis,” Journal of Electronic Packaging, Vol. 29, pp. 997-1002, 2001.

[5] B. Z. Hong, “Finite Element Modeling of Thermal Fatigue and Damage of Solder joint in a Ceramic Ball Grid Array Package,” Journal of Electronic Materials, Vol.

26, No. 7, pp. 814-820, 1997.

[6] B. Vandevelde, M. Gonzalez, E. Beyne, G. Q. Zhang and J. Caers, “Optimal Choice of FEM Damage Volumes for Estimation of the Solder Joint Reliability for Electronic Package Assemblies,” IEEE 53rd Electronic Components and Technology Conference, pp. 589-596, 2003.

[7] I. Guven, V. Kradinov, E. Madenci and J. L. Tor, “Solder Joint Life Prediction Model Based on the Strain Energy Density Criterion, ” Electronic Components and Technology Conference, pp. 214-220, 2003.

[8] L. Chen, Q. Zhang, G. Wang, X. Xie and Z. Cheng, “The Effect of Underfill and Its Material Models on Thermomechanical Behavior of a Flip Chip Package,” IEEE Transaction Advanced Packaging, Vol. 24, pp. 17-24, 2001.

[9] ANSYS users manual 5.1, 1994.

[10] 賴俊諺,「有限元素次結構覆晶球柵陣列構裝體錫球潛變行為分析」,碩士論 文,中華大學機械與航太工程研究所,2006。

[11] J. H Lau, Y.-H. Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies,” McGraw-Hill, New York, 1997.

[12] M. Ikemizu, Y. Fukuzawa, J. Nakano, T. Yokoi, K. Miyajima, H. Funakura and E.

Hosomi, “CSP Solder Ball Reliability,” IEEE Electronics Manufacturing Technology Symposium, pp. 447-451, 1997.

[13] K. H. Teo, “Reliability Assessment of Flip Chip on Board Connections,” IEEE 48

th

Electronics Packaging Technology Conference, pp. 269-273, 1998.

[14] L. L. Mercado, V. Sarihan, Y. Guo and A. Mawer, “Impact of Solder Pad Size on Solder Joint Reliability in Flip Chip PBGA Packages,” IEEE Transactions Advanced Packaging, Vol. 23, pp. 415-420, 2000.

[15] S. Baba, Q. Wu, E. Hayashi and M. Watanabe, “Flip-Chip BGA Applied High-Density Organic Substrate,” IEEE 49th Electronic Components and Technology Conference, pp. 243-249, 1999.

[16] Z. Liji, W. Li, X. Xiaoming, and W. Kemps, “An Investigation on Thermal Reliability of Underfill PBGA solder Joint,” IEEE Transactions Electronics Packaging Manufacturing, Vol. 25, pp. 284-288, 2002.

[17] B. Joiner and T. Montes, “ Thermal Performance of Flip Chip Ball Grid Array Packages,” IEEE Semiconductor Thermal Measurement and Management, pp.

50-56, 2002.

[18] B. Cheng, L. Wang, Q. Zhang, X. Gao, X. Xie and W. Kempe, “Reliability and New Failure Modes of Encapsulated Flip Chip on Board Under Thermal Shock Testing,” ICEPT Electronic Packaging Technology Proceedings, pp. 416-421, 2003.

[19] Tong Hong Wang, Yi-Shao Lai, Jenq-Dah Wu, “Effect of Underfill Thermomechanical Properties on Thermal Cycling Fatigue Reliability of Flip-Chip Ball Grid Array,” Journal of Electronic Packaging, Vol. 126, pp. 560-564, 2004.

[20] Rainer Dudek, Margareta Nylen, Andreas Schubert, Bemd Michel, Herbert Reichl,

“An Efficient Approach to Predict Solder Fatigue Life and its Application to SM- and Area Array Components,” IEEE 47

th

Electronic Components and Technology Conference, 1997.

[21] J. H. L, Pang and T.-I. Tan, “Thermo-Mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip On Board Package Subjected to Temperature Cycling Loading,” IEEE 48th Electronic Components and Technology Conference, pp.

878-883, 1998.

[22] Z. Qian, M. Lu, W. Ren and S. Liu, “Fatigue Life Prediction of Flip-Chips in Terms of Nonlinear Behavior of Solder and Underfill,” IEEE 49th Electronic Components and Technology Conference, pp. 141-148, 1999.

[23] J. H. L. Pang, C. W. Seetoh, Z. P. Wang, “CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis,” Journal of Electronic Packaging, Vol. 29, pp. 997-1002, 2001.

[24] J. H. L. Pang, D. Y. R Chong and T. H. Low, “Thermal Cycling Analysis of Flip Chip Solder Joint Reliability,” IEEE Transactions Components and Packaging Technology, Vol. 24, Issue 4, pp. 705-712, 2001.

[25] S. Sahasrabudhe, E. Monroe, S. Tandon and M. Patel, “Understanding the Effect of Dwell Time on Fatigue Life of Packges Using Thermal Shock and Intrinsic Material Behavior,” IEEE 53rd Electronic Components and Technology Conference, pp.898-904, 2003.

[26] S. Moreau, T. Lequeu and R. Jerisian, “Comparative Study of Thermal Cycling and Thermal Shocks Tests on Electronic Components Reliability,” Microelectronics Reliability, Vol. 44, pp. 1343-1347, 2004.

[27] Z. Xiaowu, W.E.H., L. Charles, C. Tai-Chong, M. Yiyi, T. Poi-Siong, D. Pinjala, S.

Srinivasamurthy, “Thermo-mechanical finite element analysis in a multichip build up substrate based package design”, Microelectronics Reliability, pp.611-619, 2004.

[28] CW. Chong, Z. Xiaowu, TC. Chai, “Board level Sodler Joint Life Prediction of Fine Pitch Large IC,” Electronics Packaging Technology Conference, pp.302-306, 2006.

[29] T. Ho-Yi, H. Jeff, C. Steve, H.C.S, “High Performance Moding FCBGA Package Development,” IEEE Electronic Packaging Technology, 2007.

[30] B. Anurag, K. Teck-Gyu and L. Yuan, “Reliability of High-end Flip-Chip Package with Large 45nm Ultra Low-k Die, ”Electronic Components and Technology Conference, PP.1357-1361, 2008.

[31] M. Rathin, YC. Mui, H. Zhang “Effect of integrated heat spreader on thermal performance and bump joint reliability for flip chip package,” IEEE Thermal and Thermomechanical Phenomena in Electronic Systems, pp.786-792,2008.

[32] R. M. Jones, “Mechanics of Composite Materials,” McGraw-Hill, 1975.

[33] K. Darbha, J. H. Okura, S. Shetty and A. Dasgupta, “Thermomechanical Durability Analysis of Flip Chip Solder Interconnects : Part 1-Without Underfill,” Transaction of ASME Journal of Electronic Packaging, Vol. 121, pp. 231-236, 1999.

[34] L. F. Coffin, Jr., “Fatigue at High Temperature,” Fatigue and Elevated Temperatures, ASTM STP 520, pp. 5-34, 1973.

在文檔中 中 華 大 學 (頁 80-84)

相關文件