• 沒有找到結果。

結論

在文檔中 中 華 大 學 (頁 56-110)

本文所研究的分析種類是利用 ANSYS 有限元素軟體模擬分析,探討 FC-PBGA 在溫度循環負載下,分析錫球的應力-應變行為,再分別代入三 種疲勞壽命預測模型,並且將分析結果作以下結論:

1. 對 FC-PBGA 的分析結果中,可以發現錫球在第三週次中最大等效潛變 應變範圍發生在離對稱軸之第6 顆錫球左上角位置 (Node 1454),因此 預測此位置為錫球在熱衝擊測試中最先破壞的位置。

2. 以 CFD-FSI 熱傳/結構分析方法在熱衝擊第三週次溫度循環中高溫停留 開始的第ㄧ秒 (t=1301 秒),構裝體附近的流體開始有-22.51 到 125℃之 溫度梯度變化;在熱衝擊第三週次溫度循環中低溫停留開始的第ㄧ秒 (t=1621 秒),構裝體附近的流體從一開始全是-55℃的狀態,到第一秒有 -55 到 92.64℃之溫度梯度變化。

3. 構裝體在熱衝擊第三週次溫度循環中高溫停留開始的第ㄧ秒 (t=1301 秒),以 CFD-FSI 熱傳/結構分析方法此時的構裝體溫度從-27.01 到 36.5℃,構裝體內的溫差約達 63.51℃;以非等溫熱傳/結構分析方法此 時的構裝體溫度幾乎已達穩定,只有基板部分有溫度變化,溫度從 112.14 到 125℃,溫差約在 12.86℃,但比較接近真實測試情況的 CFD-FSI 熱傳/結構分析方法結果得知此時的構裝體溫差還是很大。低溫停留開 始的第ㄧ秒之構裝體也有相同的趨勢。

4. 構裝體在熱衝擊第三週次溫度循環中高溫停留結束 (t=1600 秒),以非等 溫熱傳/結構分析方法此時構裝體內的溫度已達穩定的 125℃,而 CFD-FSI 熱傳/結構分析方法此時構裝體內的最高溫度只達 106.75℃,溫 差還有2.06℃。低溫停留結束之構裝體也有相同的趨勢。

5. 以 CFD-FSI 熱傳/結構分析方法分析,構裝體錫球最可能先破壞位置的 溫度曲線於第二和第三週次高溫停留結束和低溫停留結束的溫度就趨 於穩定,高溫停留結束為104℃左右,低溫停留結束為-34℃左右,在高 溫停留期和低溫停留期初始的溫度變化劇烈,後來呈緩慢地升溫或降溫 到停留結束,且錫球三個週次的溫度曲線都於熱衝擊測試溫度曲線內。

6. 使用 CFD-FSI 熱傳/結構分析方法在溫度循環測試中均未進塑性區,所 以錫球無塑性應變。

7. 在 TST 測試分析中,錫球的遲滯曲線在第二週次溫度循環後有逐漸穩 定收斂的趨勢。

8. 不管以黏彈性或線彈性底膠材料性質從事分析,對於錫球幾乎沒影響,

但對於銲錫凸塊就會產生影響。

9. 用同一種分析方式以不同疲勞壽命預測作計算 (Case1~Case3),從疲勞 壽命結果可看出以 Shi 預測模型最大,Coffin-Mason 預測模型其次,

Creep-Fatigue 預測模型最小,但 (Case13~Case15 和 Case16~Case18) 有 不同趨勢,Coffin-Mason 預測模型最大,Shi 預測模型其次,Creep-Fatigue 預測模型最小。

10. 由表 4-1~表 4-4 不同的參考變數對疲勞壽命之結果得知,以不同的熱傳 /結構分析方法和底膠材料性質對錫球疲勞壽命影響不大,以不同的錫 球應變率之應力-應變曲線和錫球潛變模式對錫球疲勞壽命影響較大。

11. 本研究利用 ANSYS 有限元素軟體把流-熱-機分析作整合,以往相關之 研究通常是以不同軟體去模擬分析,先以流體分析軟體作流分析再把結 果資料代入熱-機分析軟體作分析,期間由於經過不同軟體分析可能會 有資料轉檔或資料處理等誤差,而本研究避免這方面之誤差。

12. 針對 ANSYS 輸出結果,以 Borland C++ Builder 6 程式撰寫疲勞壽命預 測理論從事計算,利用程式作計算減少人為計算上之誤差。

參 考 文 獻

[1] ANSYS Introduction to ANSYS for Release 7.0, 2003.

[2] 方智凱, “利用等溫及非等溫分析評估覆晶式球柵陣列構裝體在熱循 環及熱衝擊下錫球之疲勞壽命”, 2004 中華大學機械與航太工程研究 所碩士論文.

[3] F. Feustel, S. Wiese and E. Meusel, “Time-Dependent Material Modeling for Finite Element Analyses of Flip Chip,” in IEEE 50th Electronic Components and Technology Conference, vol. 21-24, May 2000, pp.

1548-1553.

[4] J. H. L. Pang, T. H. Low, B. S. Xiong and F. X. Che, “Design For Reliability (DFR) Methodology For Electronic Packaging Assemblies,”

IEEE Electronics Packaging Technology Conference, vol. 10-12, December 2003, pp. 470-478.

[5] Y.-H. Pao, S. Badgley, R. Govila, L. Baumgartner, R. Allor and T. Cooper,

“Measurements of Mechanical Behavior of High Lead Lead-Tin Solder Joints Subject to Thermal Cycling,” ASME Journal of Electronic Packaging, vol. 114, 1992, pp. 135-45.

[6] J. H. Lau, Y.-H. Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies,” McGraw-Hill, New York, 1997.

[7] M. Ikemizu, Y. Fukuzawa, J. Nakano, T. Yokoi, K. Miyajima, H.

Funakura and E. Hosomi, “CSP Solder Ball Reliability,” IEEE Electronics Manufacturing Technology Symposium, vol. 13-15, October 1997, pp. 447-451.

[8] Z. Johnson, K. Ramakrishna, B. Joiner and M. Eyman, “Thermal Sub-modeling of the Wirebonded Plastic Ball Grid Array Package,”

IEEE Semiconductor Thermal Measurement and Management Symposium, vol. 28-30, January 1997, pp. 1-9.

[9] K. H. Teo, “Reliability Assessment of Flip Chip on Board Connections,”

IEEE Electronics Packaging Technology Conference, vol. 8-10, December 1998, pp. 269-273.

[10] J. H. L. Pang and T.-I. Tan, “Thermo-Mechanical Analysis of solder Joint Fatigue and Creep in a Flip Chip On Board Package Subjected to Temperature Cycling Loading,” in IEEE 48th Electronic Components and Technology Conference, vol. 25-28, May 1998, pp. 878-883.

[11] B. Z. Hong, and T. D. Yuan, “Integrated Flow-Thermomechanical Analysis of Solder Joints Fatigue in a Low Air Flow C4/CBGA Package,” Journal of Microcircuits and Electronic Packaging, vol. 21, Second Quarter 1998, pp. 137-144.

[12] S. Baba, Q. Wu, E. Hayashi and M. Watanabe, “Flip-Chip BGA Applied High-Density Organic Substrate,” in IEEE49th Electronic Components and Technology Conference, vol. 1-4, June 1999, pp. 243-249.

[13] Z. Qian, M. Lu, W. Ren and S. Liu, “Fatigue Life Prediction of Flip-Chips in Terms of Nonlinear Behaviors of Solder and Underfill,” in IEEE49th Electronic Components and Technology Conference, vol. 1-4, June 1999, pp. 141-148.

[14] J. H. Okura, K. Darbha, S. Shetty, A. Dasgupta and J. F. J. M. Caers, ” Guidelines to Select Underfills For Flip Chip on Board Assemblies,” in IEEE 49th Electronic Components and Technology Conference, vol. 1-4,

June 1999, pp. 589-594.

[15] L. L. Mercado, V. Sarihan, Y. Guo and A. Mawer, “Impact of Solder Pad Size on Solder Joint Reliability in Flip Chip PBGA Packages,” IEEE Transactions Advanced Packaging, vol. 23, Aug. 2000, pp. 415-420.

[16] E. T. Ong, A. A. O. Tay and J. H. Wu, “Effect of Delamination on the Thermal Fatigue of Solder Joints in Flip Chips,” ITHERM Thermal and Thermomechanical Phenomena in Electronic Systems, Vol. 2, May 2000 pp. 200-207.

[17] J. H. L. Pang, C.W. Seetoh, Z. P. Wang, “CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis,” ASME Journal of Electronic Packaging, vol. 122, Sep. 2000, pp.255-261.

[18] B. Stone, J. M. Czarnowski and J. R. Guajardo, “High Performance Flip Chip PBGA Development,” in IEEE 51st Electronic Components and Technology Conference, vol. 29, June 2001, pp. 997-1002.

[19] L. Chen, Q. Zhang, G. Wang, X. Xie and Z. Cheng, “The Effect of Underfill and Its Material Models on Thermomechanical Behaviors of a Flip Chip Package,” IEEE Transaction Advanced Packaging, vol. 24, Feb.

2001, pp. 17-24.

[20] J. H. L. Pang, D. Y. R. Chong and T. H. Low, “Thermal Cycling Analysis of Flip-Chip Solder Joint Reliability,” IEEE Transactions Components and Packaging Technology, Vol. 24, Issue 4, December 2001, pp. 705-712.

[21] L. L. Mercado, T.-Y. Lee and J. Cook, “Integrated Transient Thermal and Mechanical Analysis of Molded PBGA Package During Thermal Shock,”

IEEE Transactions Advanced Packaging, vol. 24, Feb. 2001, pp. 66-75.

[22] B. Joiner and T. Montes, ”Thermal Performance of Flip Chip Ball Grid

Array Packages,” IEEE Semiconductor Thermal Measurement and Management, vol. 12-14, March 2002, pp. 50-56.

[23] Z. Liji, W. Li, X. Xiaoming, and W. Kemps, “An Investigation on Thermal Reliability of Underfill PBGA solder Joint,” IEEE Transactions Electronics Packaging Manufacturing, vol. 25, Oct. 2002, pp. 284-288.

[24] J. H. L. Pang and T. H. Low, “Modeling Thermal Cycling And Thermal Shock Tests For FCOB,” ITHERM Thermal and Thermomechanical Phenomena in Electronic Systems, vol. 30, June 2002, pp. 987-992.

[25] S. Sahasrabudhe, E. Monroe, S. Tandon and M. Patel, “Understanding the Effect of Dwell Time on Fatigue Life of Packages Using Thermal Shock and Intrinsic Material Behavior,” in IEEE 53rd Electronic Components and Technology Conference, May 2003, pp.898-904.

[26] B. Cheng, L. Wang, Q. Zhang, X. Gao, X. Xie and W. Kempe, “Reliability and new failure modes of encapsulated flip chip on board under thermal shock testing,” ICEPT Electronic Packaging Technology Proceedings, vol.

28-30, Oct. 2003, pp.416-421.

[27] S. Moreau, T. Lequeu and R. Jerisian, “Comparative Study of Thermal Cycling and Thermal Shocks Tests on Electronic Components Reliability,”

Microelectronics Reliability, vol. 44, 2004, pp. 1343-1347.

[28] J. H. L. Pang, A. Yeo, T. H. Low and F. X. Che, “Lead-Free 96.5Sn-3.5Ag Flip Chip Solder Joint Reliability Analysis,” ITHERM Thermal and Thermomechanical Phenomena in Electronic Systems, vol. 2, June 2004, pp. 160-164.

[29] X. Q. Shi, Z. P. Wang, W. Zhou, H. L. J. Pane and Q. J. Yang, “A New Creep Constitutive Model for Eutectic Solder Alloy,” Journal of Electronic

Packaging, vol. 124, June 2002, pp. 85-90.

[30] X. Q. Shi, W. Zhou, H. L. J. Pang, Z. P. Wang and Y.P. Wang, “Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy,” Journal of Electronic Packaging, vol. 121, Sept. 1999, pp.

179-185.

[31] Y.-H. Pao, R. Govila and S. Badgley, “Thermal Fatigue Fracture of 90Pb/10Sn Solder Joints,” ASME/JSME Electronic Packaging Conference, 1992, pp. 291-300.

[32] X. Q. Shi, H. L. J. Pang, W. Zhou and Z. P. Wang, “A Modified Energy-Based Low Cycle Fatigue Model for Eutectic Solder Alloy,”

Scripta Materialia, vol. 41, 1999, pp. 289-296.

[33] L. F. Coffin, “Fatigue at High Temperature,” Fatigue and Elevated Temperatures, ASTM STP 520, ASTM, 1973, pp. 5-34.

[34] S. S. Manson, “Thermal Stress and Low Cycle Fatigue,” New York:

McGraw-Hill, 1996.

[35] J. H. L. Pang, Y. T. Kowk and C. W. S. Toh, “Temperature Cycling Fatigue Analysis of Fine Pitch Solder Joints,” ASME Advance in Electronic Packaging, Vol. 2, 1997, pp. 1495-1500.

表1-1 標準型式和討論型式之分析參考變數

型式 Case 熱傳/結構分析方法 Strain Rate Creep Equation Underfill Material Fatigue Life Model 標準型式 Case 1 CFD-FSI 10-4 Double Power Law Model Viscoelastic Shi

Case 2 CFD-FSI 10-4 Double Power Law Model Viscoelastic Coffin-Mason Case 3 CFD-FSI 10-4 Double Power Law Model Viscoelastic Creep-Fatigue Case 4 Anisothermal 10-4 Double Power Law Model Viscoelastic Shi Case 5 Anisothermal 10-4 Double Power Law Model Viscoelastic Coffin-Mason Case 6 Anisothermal 10-4 Double Power Law Model Viscoelastic Creep-Fatigue Case 7 Isothermal 10-4 Double Power Law Model Viscoelastic Shi Case 8 Isothermal 10-4 Double Power Law Model Viscoelastic Coffin-Mason Case 9 Isothermal 10-4 Double Power Law Model Viscoelastic Creep-Fatigue Case 10 CFD-FSI 10-5 Double Power Law Model Viscoelastic Shi Case 11 CFD-FSI 10-5 Double Power Law Model Viscoelastic Coffin-Mason Case 12 CFD-FSI 10-5 Double Power Law Model Viscoelastic Creep-Fatigue Case 13 CFD-FSI 10-4 Hyperbolic Sine Law Model Viscoelastic Shi Case 14 CFD-FSI 10-4 Hyperbolic Sine Law Model Viscoelastic Coffin-Mason

Case 15 CFD-FSI 10-4 Hyperbolic Sine Law Model Viscoelastic Creep-Fatigue

Case 16 CFD-FSI 10-4 Norton’s Model Viscoelastic Shi

Case 17 CFD-FSI 10-4 Norton’s Model Viscoelastic Coffin-Mason Case 18 CFD-FSI 10-4 Norton’s Model Viscoelastic Creep-Fatigue Case 19 CFD-FSI 10-4 Double Power Law Model Elastic Shi

Case 20 CFD-FSI 10-4 Double Power Law Model Elastic Coffin-Mason 討論型式

Case 21 CFD-FSI 10-4 Double Power Law Model Elastic Creep-Fatigue

47

表3-1 FC-PBGA 各組成元件之熱傳和流體性質 [2]

Material Density

(Kg/m3 )

Specific Heat (J/Kg-℃)

Thermal Conduction (W/m-℃)

Die Silicon 2235 700 120

Underfill Epoxy 1500 1500 0.55

Solder Bump and Solder Ball

63Sn/37Pb 8420 176 51.8

Organic Substrate BT 1500 1800 53.7( X , Z ) 0.27( Y )

Solder Pad Copper 8954 384 398

PCB FR-4 1800 150 14

Air Air 1.1614 1005 0.0261

Liquid Galden 1770 962 0.07

48

Material Elastic Modulus

×103 (MPa)

CTE

×10-6 (1/℃)

Shear Modulus

×103 (MPa) Poisson Ratio Temperature (℃) -40 25 75 125 -40 25 75 125 -40 25 75 125 -

Die

(Silicon) 130.23 129.62 129.14 128.66 2.66 2.81 2.93 3.05 Isotropic 0.28 Underfill

(Epoxy) 6.9 6.9 6.9 6.9 29 29 29 29 Isotropic 0.3

Solder Bump and Solder Ball

(63Sn/37Pb)

Stress-Strain Curve 25 25 25 25 Isotropic 0.35

15.67

(X,Z) 14.9

(X,Z) 14.31

(X,Z) 13.71

(X,Z) 12.82

(X,Z) 12.82

(X,Z) 12.82

(X,Z) 12.82

(X,Z) 8.06

(XZ) 8.06

(XZ) 8.06

(XZ) 8.06

(XZ) 0.11 (XZ) Organic Substrate

(BT) 6.84 (Y)

6.5 (Y)

6.24 (Y)

5.98 (Y)

57 (Y)

57 (Y)

57 (Y)

57 (Y)

2.82 (XY,YZ)

2.82 (XY,YZ)

2.82 (XY,YZ)

2.82 (XY,YZ)

0.39 (XY,YZ) Solder Pad

(Copper) 131.62 128.75 126.54 124.33 16.6 16.86 17.07 17.27 Isotropic 0.35 19.15

(X,Z)

17.69 (X,Z)

16.56 (X,Z)

15.43 (X,Z)

17.6 (X,Z)

17.6 (X,Z)

17.6 (X,Z)

17.6 (X,Z)

8.71 (XZ)

7.62 (XZ)

6.79 (XZ)

5.95 (XZ)

0.11 (XZ) PCB

(FR-4) 8.33

(Y) 7.71

(Y) 7.23

(Y) 6.75

(Y) 64.1

(Y) 64.1

(Y) 64.1

(Y) 64.1

(Y) 3.8

(XY,YZ) 3.32

(XY,YZ) 2.96

(XY,YZ) 2.59

(XY,YZ) 0.39 (XY,YZ) 表 3-2 FC-PBGA 各組成元件之機械性質 [29]

49

表 3-3 Double Power Law Model 參數 [3]

Par. C1 C2 C3 C4 C5 C6 σ T

ε

&

Unit s-1 - K s-1 - K MPa K s-1

Value 0.4 2 5400 21 7 9500 - - -

表 3-4 Hyperbolic Sine Law Model 參數 [4]

Par. C1 C2 C3 C4 Unit s-1 - MPa-1 K Value 131.9 3.11 0.118 6360

50

表 3-5 Viscoelastic Underfill Model 參數 [3]

0

H R (K)

E

0

(MPa)

E

C

1

τ

1

C

2

τ

2

C

3

τ

3

15644 5630 1300 0.264 0.198 0.200 451 0.536 30435

51

表4-1 不同的熱傳/結構分析方法下疲勞壽命結果比較

Case 1 Case 4 Case 7

熱傳/結構分析方法 CFD-FSI 非等溫 等溫

Lifetime 3580 3218 3097 Factor 1 0.9 0.87

表 4-2 不同的錫球應變率之應力-應變曲線下疲勞壽命結果比較

Case 1 Case 10

應變率 10-4 10-5

Lifetime 3580 5033 Factor 1 1.41

52

表4-3 不同的錫球潛變模式下疲勞壽命結果比較

Case 1 Case 13 Case 16 潛變模式 Double Power

Law Model

Hyperbolic Sine

Law Model Norton’s Model

Lifetime 3580 2229 1418 Factor 1 0.62 0.4

表4-4 不同的底膠材料性質下疲勞壽命結果比較

Case 1 Case 19

底膠材料 黏彈性 線彈性

Lifetime 3580 3215 Factor 1 0.9

53

型式 Case 熱傳/結構分析方法 Strain Rate Creep Equation Underfill Material Fatigue Life Model Lifetime 標準型式 Case 1 CFD-FSI 10-4 Double Power Law Model Viscoelastic Shi 3580

Case 2 CFD-FSI 10-4 Double Power Law Model Viscoelastic Coffin-Mason 1962 Case 3 CFD-FSI 10-4 Double Power Law Model Viscoelastic Creep-Fatigue 181 Case 4 Anisothermal 10-4 Double Power Law Model Viscoelastic Shi 3218 Case 5 Anisothermal 10-4 Double Power Law Model Viscoelastic Coffin-Mason 1131 Case 6 Anisothermal 10-4 Double Power Law Model Viscoelastic Creep-Fatigue 153 Case 7 Isothermal 10-4 Double Power Law Model Viscoelastic Shi 3097 Case 8 Isothermal 10-4 Double Power Law Model Viscoelastic Coffin-Mason 1131 Case 9 Isothermal 10-4 Double Power Law Model Viscoelastic Creep-Fatigue 158 Case 10 CFD-FSI 10-5 Double Power Law Model Viscoelastic Shi 5033 Case 11 CFD-FSI 10-5 Double Power Law Model Viscoelastic Coffin-Mason 3746 Case 12 CFD-FSI 10-5 Double Power Law Model Viscoelastic Creep-Fatigue 253 Case 13 CFD-FSI 10-4 Hyperbolic Sine Law Model Viscoelastic Shi 2229 Case 14 CFD-FSI 10-4 Hyperbolic Sine Law Model Viscoelastic Coffin-Mason 2939

Case 15 CFD-FSI 10-4 Hyperbolic Sine Law Model Viscoelastic Creep-Fatigue 223

Case 16 CFD-FSI 10-4 Norton’s Model Viscoelastic Shi 1418

Case 17 CFD-FSI 10-4 Norton’s Model Viscoelastic Coffin-Mason 1514 Case 18 CFD-FSI 10-4 Norton’s Model Viscoelastic Creep-Fatigue 159 Case 19 CFD-FSI 10-4 Double Power Law Model Elastic Shi 3215 Case 20 CFD-FSI 10-4 Double Power Law Model Elastic Coffin-Mason 1990 討論型式

Case 21 CFD-FSI 10-4 Double Power Law Model Elastic Creep-Fatigue 183 表 4-5 疲勞壽命預測結果

54

圖1-1 TST 之 Liquid-to-Liquid 型式測試示意圖

Liquid 125℃

Liquid

-55℃

0 400 800 1200 1600 2000

Time (Sec)

-80 -40 0 40 80 120 160

T e m p er at u re (

O

C)

圖1-2 TST 測試分析溫度曲線圖 A

B C

D E F

圖1-3 熱傳/結構分析方法程序

圖3-1 二維 FC-PBGA 剖面結構示意圖 X

Y

Z

58

圖 3-2 FC-PBGA 銲錫凸塊配置圖

59

圖3-3 FC-PBGA 之對角線剖面分析方式

60

圖3-4 FC-PBGA 有限元素網格化之基本模型

X

Y

Z

61

圖3-5 CFD-FSI 熱傳/結構分析方法流程

62

圖3-6 CFD-FSI 熱傳分析之有限元素模型及尺寸示意圖 a

b

4b

40a

63

1

2

3

4

密 疏

X

Y

Z

64

圖 3-8 非等溫熱傳/結構分析方法流程

65

均勻溫度 (與測試曲線一致)

前處理

求解處理

後處理

負載

結果

計算錫球

疲勞壽命 結構分析

圖3-9 等溫熱傳/結構分析方法流程

66

0 0.002 0.004 0.006 0.008

Strain (mm/mm)

0 10 20 30 40 50

St re s s ( M Pa )

TST Stress-Strain Cu rve -40OC

20 OC 100 OC 125 OC

0 0.002 0.004 0.006 0.008

Strain (mm/mm)

0 10 20 30 40 50

St re ss ( M Pa )

T CT Stress -Stra in Cu rve -40OC

20 OC 100 OC 125 OC

(a) (b)

圖 3-10 (a)應變率 10-4 (TST) 錫球應力-應變曲線;(b)應變率 10-5 (TCT) 錫球應力-應變曲線

67

圖 4-1 FC-PBGA 最大等效潛變發生之錫球位置 Critical node 1454

68

(a)

(b)

圖4-2 熱衝擊第三週次溫度循環之高溫開始第一秒(t=1301 秒)溫度分佈 (a)CFD-FSI 熱傳分析方法流體的整體溫度分佈

(b)CFD-FSI 熱傳分析方法流體的局部溫度分佈

0 400 800 1200 1600 2000

Time (Sec) -80

-40 0 40 80 120 160

Temperature (OC)

0 400 800 1200 1600 2000

Time (Sec) -80

-40 0 40 80 120 160

Temperature (OC)

(a)

(b)

圖4-3 FC-PBGA 在熱衝擊第三週次溫度循環中溫度分佈 (a)CFD-FSI 熱傳分析方法高溫開始第一秒 (t=1301 秒) (b)非等溫熱傳分析方法高溫開始第一秒 (t=1301 秒)

0 400 800 1200 1600 2000

Time (Sec) -80

-40 0 40 80 120 160

Temperature (OC)

0 400 800 1200 1600 2000

Time (Sec) -80

-40 0 40 80 120 160

Temperature (OC)

(a)

(b)

圖4-4 FC-PBGA 在熱衝擊第三週次溫度循環中溫度分佈 (a)CFD-FSI 熱傳分析方法高溫結束 (t=1600 秒) (b)非等溫熱傳分析方法高溫結束 (t=1600 秒)

0 400 800 1200 1600 2000

Time (Sec) -80

-40 0 40 80 120 160

Temperature (OC)

0 400 800 1200 1600 2000

Time (Sec) -80

-40 0 40 80 120 160

Temperature (OC)

(a)

(b)

圖4-5 熱衝擊第三週次溫度循環之低溫開始第一秒(t=1621 秒)溫度分佈 (a)CFD-FSI 熱傳分析方法流體的整體溫度分佈

(b)CFD-FSI 熱傳分析方法流體的局部溫度分佈

0 400 800 1200 1600 2000

Time (Sec) -80

-40 0 40 80 120 160

Temperature (OC)

0 400 800 1200 1600 2000

Time (Sec) -80

-40 0 40 80 120 160

Temperature (OC)

(a)

(b)

圖4-6 FC-PBGA 在熱衝擊第三週次溫度循環中溫度分佈 (a)CFD-FSI 熱傳分析方法低溫開始第一秒 (t=1621 秒) (b)非等溫熱傳分析方法低溫開始第一秒 (t=1621 秒)

0 400 800 1200 1600 2000

Time (Sec) -80

-40 0 40 80 120 160

Temperature (OC)

0 400 800 1200 1600 2000

Time (Sec) -80

-40 0 40 80 120 160

Temperature (OC)

(a)

(b)

圖4-7 FC-PBGA 在熱衝擊第三週次溫度循環中溫度分佈 (a)CFD-FSI 熱傳分析方法低溫結束 (t=1920 秒) (b)非等溫熱傳分析方法低溫結束 (t=1920 秒)

0 400 800 1200 1600 2000

Time (Sec) -80

-40 0 40 80 120 160

Temperature (OC)

0 400 800 1200 1600 2000

Time (Sec) -80

-40 0 40 80 120 160

Temperature (OC)

在文檔中 中 華 大 學 (頁 56-110)

相關文件