• 沒有找到結果。

CONCLUSIONS

在文檔中 Equation of State (頁 43-46)

FIG. 20. Cross-sectional plots ofρ, u, v, and p for the same run shown in Fig. 19 x = y.

plot, we observe sharp resolution of the primary shock waves and good behavior of the slip lines. The cross-sectional plots ofρ, u, v, and p for the same run along the line x = y provide an example of the basic structure of the solutions quantitatively. A detailed study of the algorithm to more general unstable interface problems such as the Kelvin–Helmholtz and Rayleigh–Taylor instabilities will be reported elsewhere in the future.

REFERENCES

1. R. Abgrall, How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys. 125, 150 (1996).

2. M. Arora and P. L. Roe, On postshock oscillations due to shock capturing schemes in unsteady flows, J. Comput. Phys. 130, 25 (1997).

3. D. S. Balsara, Riemann solver for relativistic hydrodynamics, J. Comput. Phys. 114, 284 (1994).

4. M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82, 64 (1989).

5. M. J. Berger and R. J. LeVeque, Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM J. Numer. Anal. 35, 2298 (1998).

6. E. L. Carstensen and L. L. Foldy, Propagation of sound through a liquid containing bubbles, J. Acoust. Soc.

Am. 19, 481 (1947).

7. Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher, A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys. 124, 449 (1996).

8. J. D. Cheeke, Single-bubble sonoluminescence: Bubble, bubble, toil and trouble, Can. J. Phys. 75, 77 (1997).

9. J. F. Clark, S. Karni, J. J. Quirk, P. L. Roe, L. G. Simmonds, and E. F. Toro, Numerical computation of two-dimensional unsteady detonation waves in high energy solids, J. Comput. Phys. 106, 215 (1993).

10. P. Colella, Glimm’s method for gas dynamics, SIAM J. Sci. Stat. Comput. 3, 76 (1982).

11. P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys. 87, 171 (1990).

12. P. Colella, R. E. Ferguson, and H. M. Glaz, Multifluid algorithms for Eulerian finite difference methods, preprint, 1994.

13. P. Colella and H. M. Glaz, Efficient solution algorithms for the Riemann problem for real gases, J. Comput.

Phys. 59, 264 (1985).

14. C. H. Cooke and T.-J. Chen, On shock capturing for pure wave with general equation of state, Comm. Pure Appl. Numer. Meth. 8, 219 (1992).

15. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves (Wiley-Interscience, New York, 1948).

16. A. Crespo, Sound and shock waves in liquids containing bubbles, Phys. Fluids 12, 2274 (1969).

17. W. S. Don and C. B. Quillen, Numerical simulation of shock-cylinder interactions: I. resolution, J. Comput.

Phys. 122, 244 (1995).

18. B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjogreen, On Godunov type methods near low densities, J. Comput.

Phys. 92, 273 (1991).

19. R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys. 152, 457 (1999).

20. R. P. Fedkiw, X.-D. Liu, and S. Osher, A General Technique for Eliminating Spurious Oscillations in Conser-vative Schemes for Multiphase and Multispecies Euler Equations, CAM Report 97-27 (UCLA, 1997).

21. E. Fermi, Thermodynamics (Dover, New York, 1956).

22. P. Glaister, An approximate linearised Riemann solver for the Euler equations for real gases, J. Comput. Phys.

74, 382 (1988).

23. E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Science, Vol. 118 (Springer-Verlag, Berlin/New York, 1996).

24. J. Grove, The interaction of shock waves with fluid interfaces, Adv. Appl. Math. 10, 201 (1989).

25. J. Grove and R. Menikoff, The anomalous reflection of a shock wave at a material interface, J. Fluid. Mech.

219, 313 (1990).

26. H. Hattori, The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion–

nonisothermal case, J. Differential Equations 65, 158 (1986).

27. T. Hiroe, H. Matsuo, and K. Fujiwara, Numerical simulation of cylindrical converging shocks in solids, J. Appl. Phys. 72, 2605 (1992).

28. R. Jeanloz, Shock wave equation of state and finite strain theory, J. Geophys. Res. 94(B5), 5873 (1989).

29. S. Karni, Multicomponent flow calculations by a consistent primitive algorithm, J. Comput. Phys. 112, 31 (1994).

30. S. Karni, Hybrid multifluid algorithms, SIAM J. Sci. Comput. 17, 1019 (1996).

31. D. Kincaid and W. Cheney, Numerical Analysis (Brooks/Cole, 1990).

32. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959).

33. R. L¨ofstedt, B. P. Barber, and S. J. Putterman, Toward a hydrodynamic theory of sonoluminescence, Phys.

Fluids A 5, 2911 (1993).

34. R. J. LeVeque, High resolution finite volume methods on arbitrary grids via wave propagation, J. Comput.

Phys. 78, 36 (1988).

35. R. J. LeVeque, Hyperbolic conservation laws and numerical methods, in Von Karman Institute for Fluid Dynamics, 1990. Lecture series on computational fluid dynamics 1990–1993.

36. R. J. LeVeque, Numerical Methods for Conservation Laws, second ed. (Birkh¨auser, Basel, 1992).

37. R. J. LeVeque, Simplified multi-dimensional flux limiter methods, in Numerical Methods for Fluid Dynamics, edited by M. J. Baines and K. W. Morton (Oxford University Press, Oxford, 1993), p. 175.

38. R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer.

Anal. 33, 627 (1996).

39. R. J. LeVeque, Wave propagation algorithms for multi-dimensional hyperbolic systems, J. Comput. Phys.

131, 327 (1997).

40. R. J. LeVeque and K.-M. Shyue, One-dimensional front tracking based on high resolution wave propagation methods, SIAM J. Sci. Comput. 16, 348 (1995).

41. R. J. LeVeque and K.-M. Shyue, Two-dimensional front tracking based on high resolution wave propagation methods, J. Comput. Phys. 123, 354 (1996).

42. R. J. LeVeque and R. Walder, Grid alignment effects and rotated methods for computing complex flows in astrophysics, in Notes on Numerical Fluid Mechanics, edited by J. B. Vos, A. Rizzi, and I. L. Ryhming (Vieweg, Wiesbaden, 1992), Vol. 35.

43. R. L. LeVeque, CLAWPACK: A software package for solving multi-dimensional conservation laws, in Proc.

5th Intl. Conf. Hyperbolic Problems (World Scientific, Singapore, 1996), p. 188.

44. D. R. Lide, Handbook of Chemistry and Physics, 76th edition (CRC Press, Boca Raton, FL, 1996).

45. H. W. Liepmann and A. Roshko, Elements of Gas Dynamics (Wiley, New York, 1956).

46. X.-D. Liu, R. P. Fedkiw, and S. Osher, A Quasi-Conservative Approach to the Multiphase Euler Equations without Spurious Pressure Oscillations, CAM Report 98-11 (UCLA, 1998).

47. S. P. Marsh, LASL Shock Hugoniot Data (University of California Press, Berkeley, 1980).

48. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, The equation of state of solids from shock wave studies, in High Velocity Impact Phenomena, edited by R. Kinslow (Academic Press, San Diego, 1970).

49. R. Menikoff and B. Plohr, The Riemann problem for fluid flow of real materials, Rev. Mod. Phys. 61, 75 (1989).

50. G. H. Miller and E. G. Puckett, A high order Godunov method for multiple condensed phases, J. Comput.

Phys. 128, 134 (1996).

51. F. D. Murnaghan, Finite Deformation of an Elastic Solid (Wiley, New York, 1951).

52. H. Nagoya, T. Obara, and K. Takayama, Underwater shock wave propagation and focusing in inhomogeneous media, in Proceedings of 19th Intl. Symp. on Shock Waves, Marseille edited by R. Brun and L. Z. Dumitrescu (Springer-Verlag, Berlin, 1995), p. 439.

53. R. I. Nigmatulin, Dynamics of Multiphase Media (Hemisphere, New York, 1991).

54. E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow (Elsevier, New York, 1987).

55. B. J. Plohr, Shockless acceleration of thin plates modeled by a tracked random choice method, AIAA Journal 26, 470 (1988).

56. J. J. Quirk, A contribution to the great Riemann solver debate, Intl. J. Numer. Meth. Fl. 18, 555 (1994).

57. J. J. Quirk and S. Karni, On the dynamics of a shock-bubble interaction, J. Fluid Mech. 318, 129 (1996).

在文檔中 Equation of State (頁 43-46)

相關文件