• 沒有找到結果。

硬蜱的宿主動物以及和是否寄生人類的關係

N/A
N/A
Protected

Academic year: 2021

Share "硬蜱的宿主動物以及和是否寄生人類的關係"

Copied!
88
0
0

加載中.... (立即查看全文)

全文

(1)國立臺灣師範大學理學院生命科學系 碩士論文 Department of Life Science College of Science. National Taiwan Normal University Master’s Thesis. 硬蜱的宿主動物以及和是否寄生人類的關係 Host associations of the hard tick (Ixodidae) and its affiliation with humans. 林彥瑜 LIN, Yen-Yu. 指導教授:郭奇芊 博士 Advisor: KUO, Chi-Chien, Ph.D.. 中華民國 109 年 8 月 August 2020.

(2) 致謝 能在此寫這篇致謝文,心中百感交錯真的難以言喻。想當初升大學時父母希望我能 跟著老爸的腳步成為資訊工程師,但對我最後選擇嘉義大學生物資源系仍表示認同,且 支持我一路念到碩士畢業,感謝他們在背後默默付出,若不是有他們在我也無法走到今 天這一步。另外最感謝的莫過於我的指導教授—郭奇芊老師,剛進入師大生科系時沒有 老師願意收留我,最後是郭老師答應讓我成為他的第一個學生。不但處處為我設想且提 供不少實用的意見,當我無心於課業時容忍我在實驗室拖磨許久,當我趕著要畢業時也 跟我一起熬夜趕工,在論文指導上更是用心良苦提供許多知識與建議,每每與朋友聊及 指導論文的事,朋友們都稱羨不已,能遇到這麼好的指導教授真的是我的榮幸。也十分 感謝在我們實驗室斜對面的李佩珍老師,除了口試時提供許多統計分析的建議,平常也 受惠於李老師許多,只要老師有時間,哪怕是生態學或統計學,任何問題老師都樂於替 學生們解答,且每次都深入精闢,常跟老師說我只要占用您一點時間,結果問完剛好上 滿兩堂課,真的對老師不好意思但又十分感謝。還有口試委員之一的王錫杰老師,除了 提醒我研究也別忘記實務面,應想想如何應用於台灣,也分享許多在台灣長年的觀察與 研究經驗,讓我學習收穫滿滿。 在碩士班的生活最讓我懷念的除了無數熬夜研讀文獻的日子,大概就是能有一群嘻 笑玩鬧的好夥伴。最感謝我長達十年的好兄弟宸睿,雖然早我一步畢業,但我永遠懷念 與你一起在師大度過的日子。還有從碩一的球友到現在變成最要好朋友之一的玉米,一 起打球的時光最快樂了。另外,蝴蝶家的智偉大大、歆芸法師、將尼、瓦拉、光耀,午 夜的決戰超嗨,每次都打到心態崩潰,現在回想起來都覺得好笑。當然不只玩樂,跟你 們再加上育琦、小灰大家一起去太魯閣出差的日子,雖然辛苦但充滿樂趣。再加上草魚 家的阿薇、秋秋家的譯禎,我們總是能在每年暑假打入一大群孩子中,我一直覺得我們 是暑期昆蟲營的最佳團隊呢,每年的營隊總是少不了成堆的笑料、無窮的回味。在師大 求學的日子裡,能有你們陪伴在身邊真的太好了。謝謝你們,這些回憶都將成為我畢生 的寶藏。. I.

(3) 中文摘要 硬蜱(Ixodidae)能傳播許多疾病,對人類健康有相當程度的威脅。多數種類硬蜱會經歷 需要寄生於宿主身上,吸食宿主血液才能蛻化為下一個生活史階段或產卵的幼蟲、若蟲 和成蟲階段,也因此適當的宿主動物,尤其是陸生脊椎動物的存在,為硬蜱族群存活不 可或缺的一環。本研究參考 The Hard Ticks of the World 以及 1,450 篇相關文獻,收集了 全世界 705 種硬蜱共 6,016 種硬蜱和陸生脊椎動物宿主(以科為階層)的寄生關係。結果 發現多數硬蜱種類(466 種)的宿主數量介於 1-10 科,但記錄到最多宿主的微小扇頭蜱 (Rhipicephalus microplus),宿主數量可達 65 科;同樣地,247 科宿主中,多數宿主(158 科宿主)被少於 10 種硬蜱寄生,但亦有 16 科的宿主寄生有超過 100 種硬蜱,其中哺乳 綱動物佔了 15 科(包括人類自人科分出自成一類群),鳥綱僅占 1 科。各個硬蜱屬亦以 利用哺乳綱動物宿主的頻度最高,其次多為鳥綱,爬行綱動物宿主則被 Amblyomma 屬 硬蜱利用最多次。會叮咬人類的硬蜱,其宿主數量顯著高於不會叮咬人類的硬蜱,且和 哺乳綱動物的宿主數量最相關。最後藉由網路分析,發現人類和 23 科哺乳綱,10 科鳥 綱以及 1 科爬行綱動物有較多共同的寄生硬蜱種類,鳥綱中的雉科、鶇科亦與哺乳綱動 物有許多相同硬蜱。本研究受限於宿主的多寡,會受到硬蜱種類被研究程度所影響,以 及宿主只區分到科而非種的層級,但是本研究首次大規模收集全世界硬蜱的宿主資料, 尤其得知人類和哪些動物宿主寄生有相同種類的硬蜱,能夠幫助推估人類和哪些特定動 物宿主之間,較可能互相傳播蜱媒疾病。. 關鍵字:硬蜱、宿主、脊椎動物、寄生關係、網路分析。. II.

(4) Abstracts Hard ticks (Ixodidae) can transmit many diseases to humans. The life cycle of most tick species includes larva, nymph and adult stages that require blood meals from hosts to molt or lay eggs. Therefore, suitable hosts, particularly terrestrial vertebrates, are indispensable for the survival of hard ticks. In this study, I scrutinized 1,450 scientific references in addition to the book “The Hard Ticks of the World” and recorded 6,016 unique tick-host (family level) associations of 705 species of hard ticks. I found that the number of hosts of most tick species was limited to one to 10 host families, but one species with the most hosts, Rhipicephalus microplus, can be observed on as many as 65 families. Similarly, most vertebrate hosts (158 out of a total of 247 families) were infested with fewer than 10 tick species; however, there were 16 families that hosted more than one hundred species of ticks, including 15 mammalian and one avian families (human being Homo sapiens was herein separated from other members of Hominidae). Mammals were also parasitized by different genera of ticks with the highest frequency, followed mostly by birds. Reptiles were more frequently infested with Amblyomma ticks. Tick species that infested humans parasitized more host families, especially mammalian hosts, compared to those that did not infest humans. Lastly, network analyses revealed that humans hosted the same tick species with 23 mammalian, 10 avian, and one reptilian families. Additionally, among birds, pheasants and thrushes more frequently shared tick species with mammals. In this study, the number of host families could by determined by differential sampling efforts for different tick species; besides, hosts were identified to family instead of species level. Nevertheless, this is the first study to document hosts of all hard tick species. More importantly, the information on shared tick species among humans and certain groups of vertebrates could help predict which animals might transmit tick-borne pathogens to humans. Keywords: Hard ticks, Hosts, Vertebrates, Parasitism, Network analysis.. III.

(5) 目錄 致謝…………………………………………………………………………………………. I 中文摘要…………………………………………………………………………………… II Abstracts…………………………………………………………………………………… III 目錄…………………………………………………………………………………………IV 一、前言……………………………………………………………………………………1 二、研究材料與方法………………………………………………………………………5 三、結果……………………………………………………………………………………6 四、討論……………………………………………………………………………………10 參考文獻……………………………………………………………………………………13 圖……………………………………………………………………………………………19 附錄一………………………………………………………………………………………31. IV.

(6) 一、 前言 蜱(Ticks)屬節肢動物門(Arthropoda)、蛛形綱(Arachnida)、蜱蟎亞綱(Acari)、寄蟎總 目(Parasitiformes)、真蜱目(Ixodida)、蜱總科(Ixodoidea),其下又分成硬蜱科(Ixodidae)、 軟 蜱 科 (Argasidae) 以 及 Nuttalliellidae 一 個 獨 立 物 種 。 牠 們 於 世 界 各 地 廣 泛 分 佈 (Magnarelli, 2009),但因為變態過程需要一定的濕度,且低溫會抑制卵到幼蟲的發育, 因 此 在 溫 暖 濕 潤 的 地 區 發 育 較 好(Nuttall, 1905) 。 蜱 廣 泛 分 佈 於 各 個 宿 主 類群 中 (Guglielmone et al., 2014),在鳥綱(Clifford, 1965)、哺乳綱(Colbo, 1976)、爬行綱以及兩 棲綱(Dantas-Torres, 2008)等脊椎動物身上都可以發現。目前硬蜱科包括 14 個屬 707 種, 扣除 2 種僅有化石記錄,現生物種共 705 種,其中已知至少 271 種會叮咬人類 (Guglielmone et al., 2014)。 硬蜱的生活史可分為卵、幼蜱、若蜱、成蜱四個階段。溫帶地區的雌蜱會在秋天產 卵,幼蜱孵化後會先越冬,當春天來臨時,這些幼蜱便會開始等待(questing)宿主經過, 硬蜱無法飛行或跳躍,因此牠們會爬到草葉或枝椏的頂端,張開第一對足,同時偵測可 能是宿主發出的氣味、二氧化碳、溫度等訊號並等待宿主經過,當宿主經過時會攀附上 去,並尋找宿主身上皮膚較薄的區域開始吸血進食(Waladde et al., 1982)。溫帶地區的幼 蜱於春、夏季吸飽血液後會脫離第一任宿主,並在秋季蛻變為若蜱,然後進行第二次越 冬,隔年同樣於春、夏季找尋宿主並吸血後離開第二任宿主,待蛻變為成蜱後進行第三 次越冬。在春、夏季寄生到宿主並進行交配後脫離第三任宿主並尋找適合的地方產卵 (Sonenshine et al., 2014)。三階段宿主種類可能都不同,也可能都相同,而人類可以是其 中任一階段的宿主。不同硬蜱的生活史可能有些不同,但大致都包含下圖中各階段:. 1.

(7) 生活史也可根據宿主多寡分為三種:單宿主生活史(one-host life cycle)在同一宿主上從幼 蜱一直成長到成蜱,並在準備產卵時才離開宿主;雙宿主生活史(two-host life cycle)在第 一任宿主身上度過幼蜱和若蜱時期,成蜱在第二任宿主身上交配後再離開宿主準備產 卵;而三宿主生活史(three-host life cycle)在生活史各階段都會另外尋找新宿主,約 97% 的硬蜱種類屬於這類型(Sonenshine et al., 2014)。由於硬蜱主要以等待的方式找尋宿主, 因此多數硬蜱的生命力相當強韌,可以長達 18 週不進食,且可以忍受–2°C 到–7°C 的 低溫環境達兩週(Rosendale et al., 2017)。處於滯育狀態時,硬蜱的新陳代謝會減緩以度 過沒有宿主供應血液的時期(Rosendale et al., 2019),同時發現硬蜱可以在接近真空的環 境存活半小時以上,顯示對缺氧環境的忍受力相當高(Ishigaki et al., 2012)。 由硬蜱攜帶病原並透過硬蜱叮咬而傳播的疾病稱為蜱傳疾病(tick-borne disease),蜱 傳疾病依據病原體的種類分為以下幾種(Sonenshine et al., 2014):細菌性,如伯氏疏螺旋 體(Borrelia burgdorferi)引發的萊姆病(Lyme disease),立克次體(Rickettsia spp.)引發的落 磯山斑點熱(Rocky Mountain spotted fever);病毒性,如黃病毒科(Flaviviridae)的 TBEV 病毒引起的蜱傳腦膜炎(tick-borne meningoencephalitis)、呼腸孤病毒科(Reoviridae)的 CTFV 病毒引起的科羅拉多蜱熱(Colorado tick fever);原生生物,如 Babesia microti 和 Babesia equi 引起的巴貝西蟲病(babesiosis);毒素,較常見的如蜱癱瘓(tick paralysis)是 由硬蜱吸取宿主血液時注入傷口的唾液所引起的,這些唾液主要功能是防止傷口血液凝 固,但在美國的 Dermacentor andersoni 和 Dermacentor variabilis 以及澳洲的 Ixodes holocyclus,牠們的唾液可能對人類造成傷害(Gothe et al., 1979)。雖然硬蜱透過叮咬傳播 2.

(8) 蜱傳疾病,但也不是被叮咬就一定會被傳染,是否被感染需要看病原在硬蜱和宿主族群 中的感染率(Fritzen et al., 2011; Johnson et al., 2018)以及硬蜱叮咬的時間長短(Falco et al., 1996; Sood et al., 1997; Dolan et al., 2017)。多數剛出生的幼蜱沒有帶病原,但可能在之 後吸食受感染的宿主後帶有病原,若之後又叮咬人類,人類就有可能因此感染蜱傳疾病 (Parola et al., 2001)。但有些立克次體病原與克里米亞—剛果出血熱病毒(CCHF virus)能 夠垂直傳染,即病毒會穿透過卵巢附在卵中(transovarial transmission),使幼蟲一出生就 帶有病原(Hoogstraal, 1979; Moore et al., 2018)。 過去不少研究指出,硬蜱可以隨著宿主動物的遷移而擴散,其中候鳥最有可能協助 硬蜱進行長距離移動(Parola et al., 2001; Sonenshine et al., 2014; Roselli et al., 2020)。例如 在歐亞非大陸間遷徙的候鳥身上找到許多硬蜱(Hoogstraal et al., 1961; 1964),包括在埃 及港口邊捕捉的候鳥身上發現一種在歐洲普遍出現的硬蜱 Ixodes arboricola (Clifford et al., 1965)。另外也從候鳥及其身上的硬蜱檢測出病原體(Hoogstraal et al., 1963),顯示出 不僅硬蜱會隨著候鳥跨洲移動,蜱傳疾病也會。當硬蜱移入新的區域後,可能需要尋找 不同的宿主。Ixodes minor 原本生活在北美東岸,但在加州的加利福尼亞田鼠(Microtus californicus)身上發現,推測 I. minor 可能隨著鳥類遷移進入加州,並以加州田鼠作為新 宿主(Poulsen et al., 2015)。 近年來氣候及環境的變化,導致硬蜱的活動範圍正持續改變中(Sparagano et al., 2015; Bouchard et al., 2019),若某種硬蜱因人為或自然因素擴散至新的地區,該硬蜱可 能會成為該地區既有疾病的新興載體,例如長角血蜱(Haemaphysalis longicornis)是一種 廣泛分佈於中亞、東亞、澳洲、紐西蘭等地的物種,於 2017 年第一次於美國紐澤西州 被記錄到,且不僅成功越冬並建立了穩固的族群,目前已有 12 州發現長角血蜱,因其 活動範圍與美洲特有疾病落磯山斑點熱(RMSF)的好發區域高度重疊,一項研究就嘗試 將其作為 RMSF 的載體,結果顯示長角血蜱作為一個外來物種不僅可以攜帶 RMSF 的 立克次體(Rickettsia rickettsii),且具有傳播力,雖然該研究是在實驗室環境下操作,且 自然環境中尚未發現長角血蜱攜帶 RMSF 的病原體,但這顯示長角血蜱是 RMSF 的潛 在傳播者,而其他硬蜱也可能發生類似情形(Stanley et al., 2020)。 3.

(9) 蜱傳疾病需要透過硬蜱叮咬宿主進行傳播,而叮咬宿主這個動作就形成了連結,從 而形成疾病可能的傳播路徑,分析硬蜱和宿主的連結將有助於針對特定蜱傳疾病的潛在 宿主進行預防。網路分析(network analysis)是一種如何以圖表現離散物件之間關係的研 究,因其容易顯示出物件之間的關聯性而廣受各領域研究者應用,包括電力工程科學、 網際網路科學、社會學、經濟學、醫學,甚至研究文獻之間的互相引用也可以形成一個 有趣的網路(Newman, 2003)。 以往關於硬蜱的研究,包括在某地理區或國家內的概況(Graves et al., 2017; Silatsa et al., 2019)、硬蜱身上攜帶的致病原(Lee et al., 2003; Zanzani et al., 2019)、硬蜱本身的基 因組(Russo et al., 2019)、硬蜱與宿主之間的互動關係(Wang et al., 2001; Garrison et al., 2019)等。自網路分析被廣泛應用後,也開始使用在蜱傳疾病相關研究,一項研究以西 古北區的硬蜱、宿主與病原之間的交互作用進行網路分析,並探討宿主及硬蜱在網路中 扮演的角色,與對病原傳播及循環的影響(Estrada-Peña et al., 2015)。另一項研究針對立 克次體病毒引發的疾病動態及流行趨勢進行比較,引用兩個公開資料庫,建立宿主網路 與傳媒網路,並利用網路中心指數找出具高度中心性的宿主或傳媒以作為疾病防治參考 (Morand et al., 2020)。多宿主網路可能是研究寄生蟲動態的適合素材,一項研究調查了 東南亞囓齒動物宿主中影響寄生蟲共享的因素,以及其可能影響的潛在傳播途徑,並比 較單一宿主網路與多宿主網路的差異,研究認為系統發育影響寄生蟲共享的模式,並從 潛在傳播網路的模擬得出,基於寄生蟲共享的多宿主網路,可以為生態群落中各宿主之 間的潛在傳播途徑提供新見解(Pilosof et al., 2015)。 在應用網路分析的硬蜱研究中,網路節點可以是宿主或硬蜱,節點之間可以透過各 種因子連結起來而產生關聯。Sonenshine & Mather (1994)認為硬蜱、宿主與病原體三者 形成三角關係,且之間的關係具有生態意義,若沒有這些關係的相關知識將無法理解蜱 傳疾病的流行病學。Nuttall (1999)也以萊姆病和蜱傳腦炎為例,說明硬蜱-宿主-病原 體的三角關係。硬蜱-宿主關係即是此三角關係的其中一環,因此得知硬蜱與宿主之間 如何互動,對蜱傳疾病研究相當重要。很多因子會影響硬蜱-宿主關係,包括硬蜱是否 有偏好的宿主、是否為機會主義者以及屬於幾宿主生活史等;宿主方面包括宿主的活動 4.

(10) 模式、棲地利用、是否具社會行為和體型大小等;有些因子則牽涉雙方,例如硬蜱與宿 主的活動模式是否具時空一致性等(Fourie & Kok, 1992)。這些都會影響各種硬蜱與其宿 主的關係,以及某硬蜱是否能跟新宿主建立關係,進而影響到硬蜱的族群大小。若能找 到硬蜱-宿主關係的脆弱點加以控制,便能做到比以往化學藥物控制更有效的硬蜱管理 方法,這不僅對公衛領域有益,對畜牧業也有莫大幫助,顯示瞭解硬蜱-宿主關係的重 要性(Dryden, 2009)。 本研究因此收集相關科學文獻,相較於大多數前人研究均著重於某塊特定區域,本 研究彙整全世界所有硬蜱種類的已知陸域脊椎動物宿主,再根據這些資料回答,包括不 同屬的硬蜱是否偏好不同類群的宿主,會叮咬人類的硬蜱,其宿主種類是否較不會叮咬 人類硬蜱的宿主種類廣泛,亦即是否會叮咬人類的硬蜱多屬於廣宿主者,以及會叮咬人 類的硬蜱是否和某些脊椎動物類群(哺乳綱動物 vs.兩棲綱、爬行綱)關聯較高,還有哪 些種類的硬蜱會共用相同的宿主類群和哪些宿主類群寄生有相類似種類的硬蜱。. 二、 研究材料與方法 本研究根據 The Hard Ticks of the World (Guglielmone et al., 2014)記錄所有硬蜱的種 類和寄生的脊椎動物宿主類群,是否曾在人類身上發現過則參考 Hard Ticks Parasitizing Humans (Guglielmone et al., 2018)中的記錄,不過兩書中有些宿主類群只記錄到目(order) 的階層,而非本研究設定的科(family)階層,同時為了避免遺漏兩書出版之後硬蜱的宿 主 記 錄 , 因 此 再 配 合 利 用 資 料 庫 (PubMed: https://pubmed.ncbi.nlm.nih.gov/; Google Scholar)及書中參考文獻逐一找尋每種硬蜱宿主的相關資訊。輸入硬蜱物種學名並補充 tick 單字作為條件,以過濾掉相同種小名的其他節肢動物,再將其他如生理、分子生物 領域的文章篩選掉,剩下的文章先從標題及摘要判斷是否提及該物種寄生了哪些宿主, 找到適合的文章後再詳加細讀,另外如果有找到提供宿主目錄的文章會再參考內容,逐 步建立宿主名錄。硬蜱以種的層級做探討,而宿主則記錄到科的層級。The Hard Ticks of the World (Guglielmone et al., 2014)共紀錄硬蜱 14 屬 707 種,包括 Ixodes 屬 244 種,. 5.

(11) Haemaphysalis 屬 167 種,Amblyomma 屬 130 種,Rhipicephalus 屬 84 種,Dermacentor 屬 35 種,Hyalomma 屬 27 種,Anomalohimalaya 屬 3 種,Bothriocroton 屬 7 種,Cosmiomma 屬 1 種,Margaropus 屬 3 種,Nosomma 屬 2 種,Rhipicentor 屬 2 種。另外 Compluriscutula 屬 1 種以及 Cornupalpatum 屬 1 種皆只有化石記錄,因此不納入分析。 資料的彙整以 Excel 軟體進行,並用 R 進行統計分析,使用 igraph 工具繪製宿主與 硬蜱的網路圖。另外使用 SPSS 統計軟體進行邏輯迴歸分析(logistic regression),首先將 所有硬蜱以 1 表示會咬人,0 表示不咬人,把這些 0 與 1 當作應變數(dependent variable), 同時計算每種硬蜱在各個脊椎動物宿主綱(哺乳綱、鳥綱、爬行綱、兩棲綱)使用了幾科 宿主,分別把四個綱的宿主數量總和以及每個綱各自的值當作自變數(independent variable),分別檢測四個宿主綱合在一起(單因子邏輯迴歸分析)以及分開時(複因子邏輯 迴歸分析)的顯著性,最後再以 R 軟體繪製邏輯迴歸曲線。. 三、 結果 1. 整體硬蜱和動物宿主關係 705 種硬蜱宿主資料,除了 The Hard Ticks of the World 外,另外查閱相關文獻 1,450 篇(附錄一),總共記錄到 6,016 種硬蜱和宿主(以科為階層)的寄生關係。 多數硬蜱種類(466 種)有 1-10 科宿主,其次為 11-20 科和 21-30 科宿主,分別有 148 種和 67 種硬蜱(圖一),超過 40 科宿主的硬蜱僅有微小扇頭蜱(Rhipicephalus microplus) 這一種,宿主共計有 65 科。 同樣地,多數宿主(158 科宿主)被少於 10 種硬蜱寄生,其次為 11-20 種(37 科)、21-30 種(17 科)、31-40 種(12 科),但亦有 16 科的宿主寄生有超過 100 種硬蜱(圖二 a),包括 牛科(372 種)、鼠科(322 種)、犬科(299 種)、豬科(255 種)、貓科(252 種)、鹿科(235 種)、 馬科(227 種)、鼩鼱科(190 種)、兔科(179 種)、人科(178 種)、倉鼠科(177 種)、松鼠科(175 種)、蝟科(143 種)、鼬科(123 種)、雉科(106 種)以及人類自成一類群(271 種)。若將宿主 進一步區分為鳥綱(105 科)、哺乳綱(107 科)、爬行綱(30 科)和兩棲綱(5 科),則以哺乳. 6.

(12) 綱動物宿主寄生有較多種類硬蜱,超過 40 種硬蜱寄生的 24 科宿主中,有 22 科為哺乳 綱動物,其餘 2 科屬於鳥綱(圖二 b-f)。. 2. 不同硬蜱屬和動物宿主關係 各個硬蜱屬均以利用哺乳綱動物宿主的頻度最高,其次為鳥綱動物宿主(除了種類 數較少的五屬硬蜱),爬行綱動物宿主則被 Amblyomma 屬硬蜱利用最多次(圖三 a)。若 以百分比顯示,則以 Hyalomma 屬有最高比例的鳥綱動物宿主,Bothriocroton 屬有最高 比例的爬行綱動物宿主,Amblyomma 屬有最高比例的兩棲綱動物宿主(圖三 b)。 將一硬蜱屬中每種硬蜱的宿主分綱計算,得到每種硬蜱在各綱擁有的宿主數量,再 以綱為分類依據,統計出硬蜱宿主的出現頻度,例如某 Ixodes 種類硬蜱利用 3 科鳥綱宿 主、5 科哺乳綱宿主、1 科爬行綱宿主、0 科兩棲綱宿主,則鳥綱、哺乳綱、爬行綱分 別在 3 科、5 科、1 科宿主種類各貢獻 Ixodes 一次頻度。Ixodes 硬蜱主要以哺乳綱與鳥 綱為主要宿主並利用少許爬行綱,鳥綱雖然出現頻度較哺乳綱低,但相較其他五個屬, Ixodes 對鳥綱的利用分布較平均,20 科以下大多有出現(圖四 a)。Haemaphysalis 同樣以 哺乳綱與鳥綱為主要宿主,但所包含的硬蜱種類最多僅寄生到 6 科鳥類,且該屬硬蜱未 曾發現寄生在兩棲綱的記錄(圖四 b)。Amblyomma 的組成結構較特別,有多種硬蜱利用 爬行綱宿主,其中最多的 A. rotundatum 利用 12 科爬行綱宿主,本屬也出現最多利用兩 棲綱宿主科數,但還是以哺乳綱為主(圖四 c)。Rhipicephalus 屬硬蜱出現哺乳綱與鳥綱 的最高利用科數,分別是 41 科與 21 科,皆源自 R. microplus (圖四 d)。在 Dermacentor 屬中,利用 1 科宿主中有一半是利用爬行綱宿主,其他宿主利用次數則出現得較平均, 各科宿主數的出現頻度都不超過 5 (圖四 e)。Hyalomma 是另一個沒有記錄到寄生兩棲綱 的硬蜱屬,哺乳綱宿主集中在 6-12 科之間,而 H. turanicum 在鳥綱出現全屬最高的 20 科宿主(圖四 f)。. 3. 是否會叮咬人類的硬蜱和動物宿主關係 共記錄到 271 種硬蜱會叮咬人類。相較於不會叮咬人類的硬蜱,會叮咬人類的硬 7.

(13) 蜱,有顯著較多的所有脊椎動物宿主科數(simple logistic regression, B = 0.20 ± 0.02 (±SE), Wald χ2 = 156.5, P < 0.001;不包括人類)。另一方面,複因子邏輯迴歸分析顯示會叮咬人 類的硬蜱,有顯著較多的哺乳綱動物宿主科數(B = 0.27 ± 0.02, Wald χ2 = 142.3, P < 0.001;不包括人類),及爬行綱動物宿主科數(B = 0.23 ± 0.09, Wald χ2 = 6.1, P = 0.014), 但沒有顯著較多的鳥綱動物宿主科數(B = 0.03 ± 0.03, Wald χ2 = 0.9, P = 0.330),以及兩 棲綱動物宿主科數(B = 1.05 ± 0.97, Wald χ2 = 1.2, P = 0.278)(圖五)。雖然預測不會叮咬人 類的成功率(亦即根據宿主科數預測某種硬蜱不會叮咬人類,實際觀察也的確發現該種 硬蜱不會叮咬人類),在各個脊椎動物類群均相當高(所有脊椎動物:88.5%;哺乳綱: 88.7%;鳥綱:94.2%;爬行綱:95.9%;兩棲綱:99.5%),但是成功預測會叮咬人類的 比率,在各個類群間卻有相當大的差異,以所有脊椎動物(60.1%)和哺乳綱(58.3%)較高, 鳥綱、爬行綱、兩棲綱的預測成功率則相當低(分別為 19.2%、10.0%、4.4%) (圖六)。 相較於不會叮咬人類硬蜱的宿主數量多介於 1-10 科(4.7 ± 5.5; mean±SE),會叮咬人 類硬蜱的宿主數量多介於 11-20 科(14.8 ± 8.2) (圖七 a-b),會叮咬人的硬蜱中有 63.8%的 種類有利用 10 種以上宿主,但不會叮咬人的硬蜱則只有 11.8%的種類利用 10 種以上宿 主;比例上,當一硬蜱的宿主數量高於 11 科,則有>70%的機會該硬蜱會叮咬人類(圖 七 c)。進一步比較各屬硬蜱叮咬人類的頻度和比例,最多種類的 Ixodes、Haemaphysalis、 Amblyomma、Rhipicephalus 這四個屬,會叮咬人的硬蜱種類數相近(50 種左右) (圖八 a), 但比例上,最多硬蜱種類的五個屬,會叮咬人的硬蜱種類比例,隨著硬蜱種類數增加而 減少,其中 Rhipicephalus、Dermacentor、Hyalomma 屬會叮咬人的硬蜱種類比例超過 50%(圖八 b)。. 4. 硬蜱種類-動物宿主網路分析 利用網路分析找出哪些類群的動物宿主,較常寄生有相同的硬蜱種類(圖九)。人類 和鳥綱與哺乳綱宿主有較多共用硬蜱,鳥綱包括鴉科、鵐科、伯勞科、鶲科、鶇科、椋 鳥科、雉科、鷹科、杜鵑科、鳩鴿科;哺乳綱包括鼠科、倉鼠科、松鼠科、豪豬科、河 狸科、兔科、鼩鼱科、蝟科、駱駝科、牛科、豬科、鹿科、馬科、犬科、貓科、鼬科、 8.

(14) 靈貓科、浣熊科、獴科、鬣狗科、蝙蝠科、猴科、人科;爬行綱則有蜥蜴科。另外,鼠 科、倉鼠科、松鼠科、兔科、鼩鼱科、蝟科、鹿科、牛科、豬科、馬科、犬科、貓科、 鼬科等宿主之間經常共用同一些硬蜱,形成哺乳綱內密集的網路,與鳥綱許多科也有共 用硬蜱。鴉科、鶇科、雉科、鵐科、鶯科、雀科、鶲科、椋鳥科之間則是鳥綱中彼此共 用硬蜱較多的幾個科,其中雉科、鶇科是與哺乳綱動物共用硬蜱最頻繁的科,爬行綱與 兩棲綱則是只有蜥蜴科和陸龜科與哺乳綱之間有較頻繁的共用。 相對地,利用網路分析找出哪些種類的硬蜱,較常寄生相同的宿主類群(圖十)。發 現 Ixodes、Haemaphysalis、Amblyomma 同屬成員間有較密集的網路(屬內網路密集度算 法:同屬硬蜱之間連線數除以該屬所有硬蜱連線總數,Ixodes = 0.452;Haemaphysalis = 0.175;Amblyomma = 0.227;Rhipicephalus = 0.038;Dermacentor = 0.032;Hyalomma = 0.125),Ixodes 屬中 I. angustus, I. arboricola, I. berlesei, I. boliviensis, I. brunneus, I. canisuga, I. columnae, I. cookei, I. cordifer, I. crenulatus, I. daveyi, I. dentatus, I. eldaricus, I. loricatus, I. minor, I. pacificus, I. redikorzevi, I. ricinus, I. scapularis, I. texanus, I. turdus 這 些硬蜱之間有較多共用宿主;Haemaphysalis 屬中 H. caucasica, H. concinna, H. erinacei, H. lagrangei, H. longicornis, H. minuta, H. parva, H. spinigera, H. turturis 這些硬蜱之間有 較多共用宿主;Amblyomma 屬中 A. cajennense, A. coelebs, A. dissimile, A. nuttalli, A. rotundatum, A. testudinarium 這些硬蜱之間有較多共用宿主。I. columnae, I. cookei, I. cordifer, I. crenulatus, I. granulatus, I. hexagonus, I. holocyclus, I. kingi, I. muris, I. myrmecobii, I. ovatus, I. pacificus, I. pavlovskyi, H. bispinosa, H. caucasica, H. concinna, H. hylobatis, H. inermis, H. japonica, H. lagrangei, H. longicornis, H. minuta, H. parva, H. spinigera, H. turturis, A. aureolatum, A. cajennense, A. coelebs, A. gemma, A. inornatum, A. longirostre, A. nuttalli, A. parvum, A. testudinarium, R. microplus, D. andersoni, D. marginatus, D. silvarum, H. aegyptium 這些橫跨六個屬的硬蜱之間有較多共用宿主。其中 比較特別的是 R. microplus 和相當多別屬硬蜱具有共同宿主,但與同屬硬蜱則相對較少 寄生相同宿主。. 9.

(15) 四、討論 本研究詳盡收集了世界上各種類硬蜱的宿主資料,藉以分析硬蜱和宿主之間的關 係,包括人類宿主,是否存在一些特殊的現象。結果發現多數種類硬蜱寄生的宿主少於 10 科,同樣地,多數宿主被少於 10 種硬蜱寄生,但是亦有少數例外,例如在牛身上常 見的微小扇頭蜱(R. microplus)。另外也發現會寄生人類的硬蜱種類,有較廣泛的宿主種 類,且這些硬蜱,多以哺乳綱動物為宿主,其次為鳥綱,少數為爬行綱和兩棲綱。 由於本研究採用收集已經發表資料的方式,因此在資料上會受到許多的限制,例如 若該硬蜱物種出現的區域範圍較大,或是分布在有較多研究的北美洲和歐洲(例如歐洲 的 Ixodes ricinus 與美國的 Ixodes scapularis),則記錄到的宿主種類可能因此較為多樣。 另外若是家禽家畜上常見,或是在獸醫醫學上重要的種類,可能也會因為較被重視,因 而記錄到較多種類的宿主。較易捕捉採集的動物種類也會比不易被捕捉的動物(例如嚙 齒目動物 vs.翼手目動物)更容易被記錄成為宿主。最後,由於本研究的宿主記錄到科而 非種的階層,因此如果一科內包含較多的物種,則該科被記錄為宿主的機會可能也會較 高。不過即便如此,本研究首次整理分析了全世界硬蜱和宿主關係的特性,尤其是人類 和哪些宿主類群較常寄生有共同的硬蜱種類,預期這些共有的硬蜱,可能較容易將這些 宿主類群的蜱媒病原傳播給人類。 本研究記錄的宿主層級也可能造成一些問題,例如一種硬蜱的宿主在屬或種的層級 可能很多,但這些宿主可能屬於同一科,而另一種硬蜱則是雖然宿主在屬或種的層級不 多,但卻分散在不同科,若是如此,前者的宿主數就會比後者的宿主數來得少。不過, 即使將宿主區分到屬的階層,亦會出現同樣的問題(有較少的屬階層宿主不代表有較少 的種階層宿主),若是將宿主區分到種的階層,則除了資料將十分龐大之外,有些宿主 種類只記錄到屬的階層,或是有些物種的分類曾經更動(例如一物種拆散成數物種),使 得資料分析變得更加困難。另外,本研究只計算是否曾經利用過某科宿主,但沒有記錄 利用的頻度(例如某種硬蜱寄生某科宿主的比例或數量),也因此即使發現幾個類群的宿 主會共用一些硬蜱種類,不同的硬蜱可能實際上偏好的宿主並不相同,例如微小扇頭蜱. 10.

(16) 雖然可在 65 科宿主上發現,但還是以牛為主要寄生對象。 大多數硬蜱較少甚至不使用鳥綱、爬行綱、兩棲綱動物,但哺乳綱動物被各屬各種 硬蜱普遍利用,且種數經常高於其他三個綱。其中,Amblyomma 和 Bothriocroton 是使 用爬行綱較頻繁的兩個屬,而 Amblyomma 和 Dermacentor 則是使用兩棲綱最頻繁的兩 個屬。Amblyomma 四綱宿主都有利用,比其他屬硬蜱利用更多的宿主,其分布範圍遍 布全世界,甚至連安地斯山脈這樣的高寒氣候都有發現其蹤跡,能夠適應各種環境可能 也使牠們較能接受各種宿主。Bothriocroton 較特別,只出現在澳新界(Australasian),澳 新界被認為與其他生物地理區較隔離,因此演化出許多特有生物,例如 B. glebopalma 只在爬行綱動物身上被發現,可能因為獨特的演化方向 Bothriocroton 才會有較特別的 宿主偏好。多數硬蜱屬對鳥綱的利用比例不如哺乳綱來得高,這可能與硬蜱的寄生方式 有關,硬蜱主要以在枝葉末端等待宿主經過的方式寄生宿主,因此在地面活動的物種較 有利於寄生,不過亦無法排除這樣的現象,可能是由於過去對於硬蜱的研究,多著重在 和人類相關的哺乳綱動物上,而這也指出需要多加研究哺乳綱動物以外的類群,以得知 各種硬蜱在自然界利用宿主的真實情況。 宿主網路分析結果發現,許多哺乳綱動物宿主之間寄生有相同種類硬蜱,其次為哺 乳綱和鳥綱之間。鳥綱動物與哺乳綱動物的生活環境與硬蜱相似,大多數鳥綱與哺乳綱 沒有鱗甲保護也不會長時間生活在水中,較適合硬蜱寄生。鳥綱宿主大多屬於平地鳥或 山地鳥,雖然宿主種類也包括水鳥,但與其他宿主沒有太多的共用硬蜱(因此在圖中沒 有被標註)。鳥綱中最常被寄生的雉科與鶇科,都是數量相當多的常見鳥種,且經常在 地上行走,體型偏中大型,行動不如小型鳥靈敏,因此這些在地上活動的中大型鳥綱動 物可能較容易被硬蜱寄生。哺乳綱中,牛科、鹿科、豬科都是常見的大型哺乳動物,適 合做為成年硬蜱的寄生對象,而鼠科、倉鼠科、鼩鼱科則是族群數量龐大的常見小型哺 乳動物,再加上貼著地面活動,對幼蜱與若蜱而言應是很好的寄生對象。與人類有較多 共用硬蜱的宿主大部分都與人的生活圈相當親近,例如牛、豬、馬、羊是常見家畜,雞 是常見家禽,貓、狗是人類最常養的寵物,老鼠生活在人們的房子中、城市下水道,這 讓牠們身上的硬蜱有較多機會接觸人類,可能因此將容易將疾病傳給人類。 11.

(17) 可在 65 科宿主上發現的微小扇頭蜱是一種廣布全世界的物種,起源於亞洲地區, 透過牛隻貿易入侵美國、中南美洲、非洲和部分澳洲地區(Madder et al., 2011; Adakal et al., 2013; Miraballes & Riet-Correa, 2018; Adinci et al., 2018)。雖然主要以牛科動物為宿 主,但在鹿科、馬科、犬科等哺乳動物上均有記錄,不過相較於經常在牛科動物身上發 現,其他哺乳動物的記錄則相對少見。微小扇頭蜱可能是一種適應力極強的硬蜱,當傳 播到新地區時,會優先以牛科動物為宿主,若該地區存有其他類群宿主,也能夠加以利 用,以利族群的建立。 本研究除了顯示哪些類群的宿主可能由於寄生有相同的硬蜱,因此較易造成蜱媒疾 病在這些宿主之間傳播外,也能協助推估外來種硬蜱進入一個新的地區之後(例如入侵 美國的長角血蜱),包括野生動物輸入或走私可能同時將附著的硬蜱帶到新的環境,可 能會寄生利用的當地動物宿主,未來若能配合各種硬蜱可能傳播的病原,或是哪些宿主 可能是蜱媒病原的儲主等資料,將能夠更進一步幫助推估病原在不同硬蜱和宿主間傳播 的狀況。. 12.

(18) 參考文獻 Adakal, H., Biguezoton, A., Zoungrana, S., Courtin, F., De Clercq, E. M., Madder, M. (2013) Alarming spread of the Asian cattle tick Rhipicephalus microplus in West Africa-another three countries are affected: Burkina Faso, Mali and Togo. Experimental & Applied Acarology, 61: 383-386. Adinci, K. J., Akpo, Y., Adoligbe, C., Adehan, S. B., Yessinou, R. E., Sodé, A. I., Mensah, G. A., Youssao, A., Sinsin, B., Farougou, S. (2018) Preliminary study on the tick population of Benin wildlife at the moment of its invasion by the Rhipicephalus microplus tick (Canestrini, 1888). Veterinary World, 11: 845-851. Bouchard, C., Dibernardo, A., Koffi, J., Wood, H., Leighton, P. A., Lindsay, L. R. (2019) Increased risk of tick-borne diseases with climate and environmental changes. Canada Communicable Disease Report, 45: 83-89. Clifford, C. M., Hoogstraal, H. (1965) The occurrence of Ixodes arboricola Schulze and Schlottke (Ixodoidea: Ixodidae) in Africa on northward migrating birds. Journal of Medical Entomology, 2: 37-40. Colbo, M., MacLeod, J. (1976) Ecological studies of ixodid ticks (Acari, Ixodidae) in Zambia. II. Ticks found on small mammals and birds. Bulletin of Entomological Research, 66: 489-500. Dantas-Torres, F., Oliveira-Filho, E. F., Soares, F. A. M., Souza, B. O. F., Valença, R. B. P., Sá, F. B. (2008) Ticks infesting amphibians and reptiles in Pernambuco, northeastern Brazil. Revista Brasileira de Parasitologia Veterinária, 17: 218-221. Dolan, M. C., Breuner, N. E., Hojgaard, A., Boegler, K. A., Hoxmeier, J. C., Replogle, A. J., Eisen, L. (2017) Transmission of the lyme disease spirochete Borrelia mayonii in relation to duration of attachment by nymphal Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology, 54: 1360-1364.. 13.

(19) Dryden, M. W. (2009) Flea and tick control in the 21st century: challenges and opportunities. Veterinary Dermatology, 20: 435-440. Estrada-Peña, A., Fuente, J. de la, Ostfeld, R. S., Cabezas-Cruz, A. (2015) Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Scientific Reports, 5: 10361. Falco, R. C., Fish, D., Piesman, J. (1996) Duration of tick bites in a Lyme disease-endemic area. American Journal of Epidemiology, 143: 187-192. Fourie, L. J., Kok, O. B. (1992) The role of host behaviour in tick-host interactions: a domestic host-paralysis tick model. Experimental & Applied Acarology, 13: 213-225. Fritzen, C. M., Huang, J., Westby, K., Freye, J. D., Dunlap, B., Yabsley, M. J., Schardein, M., Dunn, J. R., Jones, T. F., Moncayo, A. C. (2011) Infection prevalences of common tick-borne pathogens in adult lone star ticks (Amblyomma americanum) and American dog ticks (Dermacentor variabilis) in Kentucky. The American Journal of Tropical Medicine and Hygiene, 85: 718-723. Garrison, A. R., Smith, D. R., Golden, J. W. (2019) Animal models for Crimean-Congo hemorrhagic fever human disease. Viruses, 11: 590. Gothe, R., Kunze, K., Hoogstraal, H. (1979) The mechanisms of pathogenicity in the tick paralysis. Journal of Medical Entomology, 16: 357-369. Graves, S. R., Stenos, J. (2017) Tick-borne infectious diseases in Australia. The Medical Journal of Australia, 206: 320-324. Guglielmone, A. A., Robbins, R. G., Apanaskevich, D. A., Petney, T. N., Estrada-Peña, A., Horak, I. G. (2014) The Hard Ticks of the World. Springer, Netherlands. Guglielmone, A. A., Robbins, R. G. (2018) Hard Ticks Parasitizing Humans. Springer, Switzerland. Hoogstraal, H., Kaiser, M. N. (1961) Ticks from European-Asiatic birds migrating through Egypt into Africa. Science, 133: 277-278. 14.

(20) Hoogstraal, H., Kaiser, M. N., Traylor, M. A., Gaber, S., Guindy, E. (1961) Ticks (Ixodoidea) on birds migrating from Africa to Europe and Asia. Bulletin of the World Health Organization, 24: 197-212. Hoogstraal, H., Kaiser, M. N., Traylor, M. A., Guindy, E., Gaber, S. (1963) Ticks (Ixodidae) on birds migrating from Europe and Asia to Africa, 1959-61. Bulletin of the World Health Organization, 28: 235-262. Hoogstraal, H., Traylor, M. A., Gaber, S., Malakatis, G., Guindy, E., Helmy, I. (1964) Ticks (Ixodidae) on migrating birds in Egypt, spring and fall 1962. Bulletin of the World Health Organization, 30: 355-367. Hoogstraal, H. (1979) The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. Journal of Medical Entomology, 15: 307-417. Ishigaki, Y., Nakamura, Y., Oikawa, Y., Yano, Y., Kuwabata, S., Nakagawa, H., Tomosugi, N., Takegami, T. (2012) Observation of live ticks (Haemaphysalis flava) by scanning electron microscopy under high vacuum pressure. Public Library of Science ONE, 7: e32676. Johnson, T. L., Graham, C. B., Maes, S. E., Hojgaard, A., Fleshman, A., Boegler, K. A., Delory, M. J., Slater, K. S., Karpathy, S. E., Bjork, J. K., Neitzel, D. F., Schiffman, E. K., Eisen, R. J. (2018) Prevalence and distribution of seven human pathogens in host-seeking Ixodes scapularis (Acari: Ixodidae) nymphs in Minnesota, USA. Ticks and Tick-Borne Diseases, 9: 1499-1507. Lee, J. H., Park, H. S., Jung, K. D., Jang, W. J., Koh, S. E., Kang, S. S., Lee, I. Y., Lee, W. J., Kim, B. J., Kook, Y. H., Park, K. H., Lee, S. H. (2003) Identification of the spotted fever group rickettsiae detected from Haemaphysalis longicornis in Korea. Microbiology and Immunology, 47: 301-304. Madder, M., Thys, E., Achi, L., Touré, A., De Deken, R. (2011) Rhipicephalus (Boophilus) microplus: a most successful invasive tick species in West-Africa. Experimental & 15.

(21) Applied Acarology, 53: 139-145. Magnarelli, L. A. (2009) Global importance of ticks and associated infectious disease agents. Clinical Microbiology Newsletter, 31: 33-37. Miraballes, C., Riet-Correa, F. (2018) A review of the history of research and control of Rhipicephalus (Boophilus) microplus, babesiosis and anaplasmosis in Uruguay. Experimental & Applied Acarology, 75: 383-398. Moore, T. C., Pulscher, L. A., Caddell, L., Michael E. von Fricken, Anderson, B. D., Gonchigoo, B., Gray, G. C. (2018) Evidence for transovarial transmission of tick-borne rickettsiae circulating in northern Mongolia. Public Library of Science Neglected Tropical Diseases, 12: e0006696. Morand, S., Chaisiri, K., Kritiyakan, A., Kumlert, R. (2020) Disease ecology of rickettsial species: A data science approach. Tropical Medicine and Infectious Disease, 5: 64. Newman, M. E. J. (2003) The structure and function of complex networks. Society for Industrial and Applied Mathematics Review, 45: 167-256. Nuttall, G. H. F. (1905) Ticks and tick-transmitted diseases. Transactions of the Epidemiological Society of London, 24: 12-32. Nuttall, P. A. (1999) Pathogen-tick-host interactions: Borrelia burgdorferi and TBE virus. Zentralblatt fur Bakteriologie, 289: 492-505. Parola, P., Raoult, D. (2001) Ticks and tick-borne bacterial diseases in humans: an emerging infectious threat. Clinical Infectious Diseases, 32: 897-928. Pilosof, S., Morand, S., Krasnov, B. R., Nunn, C. L. (2015) Potential parasite transmission in multi-host networks based on parasite sharing. Public Library of Science ONE, 10: e0117909. Poulsen, A., Conroy, C., Foley, P., Ott-Conn, C., Roy, A., Brown, R., Foley, J. (2015) Ectoparasites of Microtus californicus and possible emergence of an exotic Ixodes species tick in California. Journal of Medical Entomology, 52: 1060-1066. 16.

(22) Roselli, M. A., Cady, S. M., Lao, S., Noden, B. H., Loss, S. R. (2020) Variation in tick load among bird body parts: implications for studying the role of birds in the ecology and epidemiology of tick-borne diseases. Journal of Medical Entomology, 57: 845-851. Rosendale, A. J., Dunlevy, M. E., Fieler, A. M., Farrow, D. W., Davies, B., Benoit, J. B. (2017) Dehydration and starvation yield energetic consequences that affect survival of the American dog tick. Journal of Insect Physiology, 101: 39-46. Rosendale, A. J., Dunlevy, M. E., McCue, M. D., Benoit, J. B. (2019) Progressive behavioural, physiological and transcriptomic shifts over the course of prolonged starvation in ticks. Molecular Ecology, 28: 49-65. Russo, A. G., Kelly, A. G., Enosi Tuipulotu, D., Tanaka, M. M., White, P. A. (2019) Novel insights into endogenous RNA viral elements in Ixodes scapularis and other arbovirus vector genomes. Virus Evolution, 5: vez010. Silatsa, B. A., Simo, G., Githaka, N., Mwaura, S., Kamga, R. M., Oumarou, F., Keambou, C., Bishop, R. P., Djikeng, A., Kuiate, J. R., Njiokou, F., Pelle, R. (2019) A comprehensive survey of the prevalence and spatial distribution of ticks infesting cattle in different agro-ecological zones of Cameroon. Parasites & Vectors, 12: 489. Sonenshine, D. E., Mather, T. N. (1994) Ecological dynamics of tick-borne zoonoses. Oxford University Press, New York. Sonenshine, D. E., Roe, R. M. (2014) Biology of ticks. Oxford University Press, New York. Sood, S. K., Salzman, M. B., Johnson, B. J. B., Happ, C. M., Feig, K., Carmody, L., Rubin, L. G., Hilton, E., Piesman, J. (1997) Duration of tick attachment as a predictor of the risk of Lyme disease in an area in which Lyme disease is endemic. The Journal of Infectious Diseases, 175: 996-999. Sparagano, O., George, D., Giangaspero, A., Špitalská, E. (2015) Arthropods and associated arthropod-borne diseases transmitted by migrating birds. The case of ticks and 17.

(23) tick-borne pathogens. Veterinary Parasitology, 213: 61-66. Stanley, H. M., Ford, S. L., Snellgrove, A. N., Hartzer, K., Smith, E. B., Krapiunaya, I., Levin, M. L. (2020) The ability of the invasive Asian Longhorned Tick Haemaphysalis longicornis (Acari: Ixodidae) to acquire and transmit Rickettsia rickettsii (Rickettsiales: Rickettsiaceae), the agent of Rocky Mountain spotted fever, under laboratory conditions. Journal of Medical Entomology, 57: 1635-1639. Waladde, S. M., Rice, M. J. (1982) Physiology of ticks: the sensory basis of tick feeding behaviour. Pergamon Press, Oxford. pp. 71-118. Wang, H., Hails, R. S., Cui, W. W., Nuttall, P. A. (2001) Feeding aggregation of the tick Rhipicephalus appendiculatus (Ixodidae): benefits and costs in the contest with host responses. Parasitology, 123: 447-453. Zanzani, S. A., Rimoldi, S. G., Manfredi, M., Grande, R., Gazzonis, A. L., Merli, S., Olivieri, E., Giacomet, V., Antinori, S., Cislaghi, G., Bestetti, G., Nan, K., Sala, V., Gismondo, M. R., Atzori, C., De Faveri, E. (2019) Lyme borreliosis incidence in Lombardy, Italy (2000-2015): spatiotemporal analysis and environmental risk factors. Ticks and Tick-borne Diseases, 10: 101257.. 18.

(24) 圖. 圖一、各種類硬蜱寄生脊椎動物宿主科數頻度。. 19.

(25) 圖二、脊椎動物宿主被不同數量的硬蜱種類寄生的頻度:(a)所有脊椎動物宿主;(b)各 綱動物在各硬蜱種數所占比例;(c)鳥綱;(d)哺乳綱;(e)爬行綱;(f)兩棲綱。 20.

(26) 圖三、各屬硬蜱寄生各綱宿主(a)次數;(b)百分比。. 21.

(27) 22.

(28) 23.

(29) 圖四、各屬硬蜱寄生脊椎動物各綱宿主數量頻度:(a) Ixodes ; (b) Haemaphysalis ; (c) Amblyomma ; (d) Rhipicephalus ; (e) Dermacentor ; (f) Hyalomma。 24.

(30) 圖五、邏輯迴歸曲線,X 軸:硬蜱寄生的宿主數,Y 軸:0 和 1 分別代表該硬蜱不咬人 和咬人,曲線由邏輯迴歸算出的預測值(predicted value)繪製。 25.

(31) 圖六、硬蜱是否叮咬人類的機率分布,X 軸:將硬蜱依叮咬人類可能性由小到大排序, Y 軸:預測該硬蜱叮咬人類的機率;水藍色表示會叮咬人,深藍色表示不會叮咬人;靠 左下的水藍色點表示預測其不咬人但實際上會咬人的硬蜱,靠右上的深藍色點表示預測 其會咬人但實際上不咬人的硬蜱。. 26.

(32) 圖七、(a)咬人硬蜱;(b)不咬人硬蜱種類宿主數量頻度分布;(c)咬人與不咬人硬蜱在各 宿主數量所占百分比。 27.

(33) 圖八、各屬硬蜱是否叮咬人類(a)物種數;(b)百分比。. 28.

(34) 圖九、寄生有相同硬蜱種類的宿主網路分析圖,點大小代表被硬蜱種類寄生數量(最大: > 100 種硬蜱,中等:50-100 種,最小:< 50 種),點顏色代表該宿主所屬脊椎動物綱(水 藍色:鳥綱;綠色:哺乳綱;橘色:爬行綱;粉紅色:兩棲綱)。連線代表兩宿主間共 有硬蜱種數超過 10 種,大型與中型的點標示出該宿主科名,其他小型點若有較密集的 連線亦會標示出宿主科名。. 29.

(35) 圖十、寄生相同宿主科的硬蜱網路分析圖,點大小代表硬蜱寄生宿主科數(最大:> 30 科宿主,中等:20-30 科,最小:< 20 科),點顏色代表該硬蜱的屬(紅色:Ixodes;橘色: Haemaphysalis;黃色:Amblyomma;綠色:Rhipicephalus;藍色:Dermacentor;紫色: Hyalomma;粉紅色:其他較小的屬),連線代表兩硬蜱間共有宿主科數超過 10 科,大 型與中型的點標示出該硬蜱種名,其他小型點若有較密集的連線亦會標示出硬蜱種名。. 30.

(36) 附錄一 1.. Abdallah, M.O., Niu, Q., Yang, J., Hassanm M.A., Yu, P., Guan, G., Chen, Z., Liu, G., Luo, J., Yin, H. (2017) Identification of 12 piroplasms infecting ten tick species in China using reverse line blot hybridization. Journal of Parasitology, 103: 221–227.. 2.. Acosta, I.C.L., Martins, T.F., Marcili, A., Soares, H.S., Krawczak, F.S., Vieira, F.T., Labruna, M.B. (2016) Ticks (Acari: Ixodidae, Argasidae) from humans, domestic and wild animals in the State of Espirito Santo, Brazil, with notes on rickettsial infection. Veterinary Parasitology: Regional Studies and Reports, 3-4: 66–69.. 3.. Ai, C., Hu, R., Hyland, K.E., Wen, Y., Zhang, Y., Qiu, Q., Li, D., Liu, X., Shi, Z., Zhao, J., Cheng, D. (1990) Epidemiological and aetiological evidence for transmission of Lyme disease by adult Ixodes persulcatus in an endemic area of China. International Journal of Epidemiology, 19: 1061–1065.. 4.. Aibek, S., Kenenbaeva, A.M. (2015) Spatial distribution of ixodids in the Ak-Talaa District (Inner Tian-Shan Mountains). Studies of Kyrgyzstan Wildlife, 2: 89–92.. 5.. Ajithkumar, K.G., Ravindran, R., Ghosh, S. (2012) Dermacentor auratus Supino, 1897 (Acarina, Ixodidae) reported from Wayanad, Kerala. Indian Journal of Medical Research, 135: 435–436.. 6.. Akimov, I.A., Nebogatkin, I.V. (2013) Ticks of the genus Rhipicephalus (Acari: Ixodidae) and their distribution in Ukraine. Vestnik Zoologii, 47: e28–e34.. 7.. Akimov, I.A., Nebogatkin, I.V. (2016) Ixodid ticks (Acari, Ixodidae) in urban landscapes. A review. Vestnik Zoologii, 50: 155–162.. 8.. Akramova, F.D., Umrkulova, S.K., Azimov, D.A., Golonov, V.I. (2016) Ixodid ticks in north-eastern Uzbekistan: fauna, distribution patterns and ecology. Russian Journal of Parasitology, 37: 291–295.. 9.. Aktas, M. (2014) A survey of ixodid tick species and molecular identification of tick-borne pathogens. Veterinary Parasitology, 200: 276–283.. 10.. Alfredsson, M., Olafsson, E., Eydal, M., Unnsteinsdottir, E.R., Hansford, K., Wint, W., Alexander, N., Medlock, J.M. (2017) Surveillance of Ixodes ricinus ticks (Acari: Ixodidae) in Iceland. Parasites and Vectors, 10: 11 pp.. 11.. Allan, B.F., Keesing, F., Ostfeld, R.S. (2003) Effect of forest fragmentation on Lyme disease risk. Conservation Biology, 17: 267–272.. 12.. Allan, S.A. (2001) Ticks (Class Arachnida: Order Acarina). In: Samuel, W.S., Pybus, M.J., Kocan, A.A. (Editors), Parasitic Diseases of Wild Animals, 2nd edition. Iowa State University Press, Ames, pp. 72–106.. 13.. Alldredge, M.W., Simons, T.R., Pollock, K.H. (2007) A field evaluation of distance measurement error in auditory avian point count surveys. Journal of Wildlife Management, 71: 2759–2766.. 14.. Allenov, A.V., Zvereva, T.V., Nikitin, Y.A., Tatrova, E.V., Mamedalieva, I.V., Solodkaya, N.S. (2015) Comparative analysis of quantity and frequency of intercommunication between ixodid ticks and humans in southern Primorsky Region. Pacific Medical Journal (Vladivostok), 3: 58–61.. 15.. Amerson, A.B. (1968) Tick distribution in the Central Pacific as influenced by sea bird movement. Journal of Medical Entomology, 5: 332–339.. 16.. Amin, O.M. (1973) Preliminary survey of vertebrate ectoparasites in southeastern Wisconsin. Journal of Medical Entomology, 10: 110–111.. 17.. Amin, O.M. (1976) Lice, mites, and ticks of southeastern Wisconsin mammals. Great Lakes Entomologist, 9: 195–198.. 18.. Anastos, G. (1947) Hosts of certain New York ticks. Psyche, 54: 178-180.. 19.. Anastos, G., Smith, C.N. (1957) The male, nymph, and larva of Ixodes brunneus Koch (Acarina: Ixodidae). Journal of Parasitology, 43: 535–541.. 20.. Anderson, J., Duray, P., Magnarelli, L. (1987) Prevalence of Borrelia burgdorferi in white-footed mice and Ixodes dammini at Fort McCoy, Wisconsin. Journal of Clinical Microbiology, 25: 1495–1497.. 21.. Anderson, J.F., Duray, P.H., Magnarelli, L.A. (1990) Borrelia burgdorferi and Ixodes dammini prevalent in the greater Philadelphia area. Journal of Infectious Diseases, 161: 811–812.. 22.. Anderson, J.F., Flavell, R.A., Magnarelli, L.A., Barthold, S.W., Kantor, F.S., Wallich, R., Persing, D.H., Mathiesen, D., Fikrig, E. (1996) Novel Borrelia burgdorferi isolates from Ixodes scapularis and Ixodes dentatus ticks feeding on humans. Journal of Clinical Microbiology, 34: 524–529.. 23.. Anderson, J.F., Magnarelli, L.A. (1984) Avian and mammalian hosts for spirochete-infected ticks and insects in a Lyme disease focus in Connecticut. Yale Journal of Biology and Medicine, 57: 627–641.. 24.. Anderson, J.F., Magnarelli, L.A. (1984) Avian and mammalian hosts for spirochete-infected ticks and insects in a Lyme disease focus in Connecticut. Yale Journal of Biology and Medicine, 57: 627–641.. 25.. Anderson, J.F., Magnarelli, L.A., Burgdorfer, W. (1983) Spirochetes in Ixodes dammini and mammals from Connecticut. American Journal of Tropical Medicine and Hygiene, 32: 818–824.. 26.. Anderson, J.F., Magnarelli, L.A., Burgdorfer, W., Casper, E.A., Philip, R.N. (1981) Importation into the United States from Africa of Rhipicephalus simus on a boutonneuse fever patient. American Journal of Tropical Medicine and Hygiene, 30: 897–899.. 27.. Anderson, J.F., Magnarelli, L.A., LeFebvre, R.B., Andreadis, T.G., McAninch, J.B., Perng, G.-C., Johnson, R.C. (1989) Antigenically variable Borrelia burgdorferi isolated from cottontail rabbit and Ixodes dentatus in rural and urban areas. Journal of Clinical Microbiology, 27: 13–20.. 31.

(37) 28.. Anderson, J.F., Magnarelli, L.A., Stafford, K.C. (1990) III Bird-feeding ticks transstadially transmit Borrelia burgdorferi that infect Syrian hamsters. Journal of Wildlife Diseases, 26: 1–10.. 29.. Andersson, M.O., Marga, G., Banu, T., Dobler, G., Chitimia-Dobler, L. (2018) Tick-borne pathogens in tick species infesting humans in Sibiu County, central Romania. Parasitology Research, 117: 1591-1597.. 30.. Andersson, M.O., Radbea, G., Frangoulidis, D., Tomaso, H., Rubel, F., Nava, S., Chitimia-Dobler, L. (2018) New records and host associations of the tick Ixodes apronophorus and the first detection of Ehrlichia sp. HF in Romania. Parasitology Research, 117: 1285-1289.. 31.. Andersson, M.O., Zaghdoudi-Allan, N., Tamba, P., Stefanache, M., Chitimia, L. (2014) Co-infection with “Candidatus Neoehrlichia mikurensis” and Borrelia afzelii in an Ixodes ricinus tick that has bitten a human in Romania. Ticks and Tick-borne Diseases, 5: 706–708.. 32.. Ando, S., Matsumura, K., Ito, T. (2014) A Japanese case of a human bitten by a tick identified as Ixodes pavlovskyi. Japanese Journal of Dermatology, 124: 1923–1926.. 33.. Aoki, C. (1993) Five human cases of ixodid tick-bite in Oita Prefecture, Japan. Medical Entomology and Zoology, 44: 405–406.. 34.. Apanaskevich, D.A. (2003) Host-parasite relationships of the genus Hyalomma Koch, 1844 (Acari, Ixodidae) and their connection with microevolutionary process. Parazitologiia, 38: 515–523.. 35.. Apanaskevich, D.A. (2013) First description of the nymph and larva of Dermacentor raskemensis (Acari: Ixodidae), parasites of pikas and other small mammals in Central Asia. Journal of Medical Entomology, 50: 959–964.. 36.. Apanaskevich, D.A. (2016) First description of the nymph and larva of Dermacentor compactus (Acari: Ixodidae), parasites of squirrels in Southeast Asia. Systematic Parasitology, 93: 355–365.. 37.. Apanaskevich, D.A., Apanaskevich, M.A. (2016) Description of two new species of Dermacentor Koch, 1844 (Acari: Ixodidae) from Oriental Asia. Systematic Parasitology, 93: 159–171.. 38.. Apanaskevich, D.A., Bandaranayaka, K.O., Apanaskevich, M.A., Rajakaruna, R.S. (2016) Redescription of Amblyomma integrum adults and immature stages. Medical and Veterinary Entomology, 30: 330–341.. 39.. Apanaskevich, D.A., Bermudez, S.E. (2013) Description of a new Dermacentor (Acari: Ixodidae) species, a parasite of wild mammals in Central America. Journal of Medical Entomology, 50: 1190–1201.. 40.. Apanaskevich, D.A., Duan, W., Apanaskevich, M.A., Filippova, N.A., Chen, J. (2014) Redescription of Dermacentor everestianus Hirst (Acari: Ixodidae), a parasite of mammals in mountains of China and Nepal with synonymization of D. abaensis Teng and D. birulai Olenev. Journal of Parasitology, 100: 268–278.. 41.. Apanaskevich, D.A., Filippova, N.A., Horak, I.G. (2010) The genus Hyalomma Koch, 1844. X. Redescription of all parasitic stages of H. (Euhyalomma) scupense Schulze, 1919 (= H. detritum Schulze) (Acari: Ixodidae) and notes on its biology. Folia Parasitologica, 57: 69–78.. 42.. Apanaskevich, D.A., Horak, I.G. (2005) The genus Hyalomma Koch, 1844. II. Taxonomic status of H. (Euhyalomma) anatolicum Koch, 1844 and H. (E.) excavatum Koch, 1844 (Acari, Ixodidae) with redescriptions of all stages. Acarina, 13: 181–197.. 43.. Apanaskevich, D.A., Horak, I.G. (2006) The genus Hyalomma Koch, 1844. I. Reinstatement of Hyalomma (Euhyalomma) glabrum Delpy 1949 (Acari: Ixodidae) as a valid species with a redescription of adults, the first description of its immature stages and notes on its biology. Onderstepoort Journal of Veterinary Research, 73: 1–12.. 44.. Apanaskevich, D.A., Horak, I.G. (2007) The genus Hyalomma Koch, 1844. III. Redescription of the adults and larva of H. (Euhyalomma) impressum Koch, 1844 (Acari: Ixodidae) with a first description of its nymph and notes on its biology. Folia Parasitologica, 54: 51–58.. 45.. Apanaskevich, D.A., Horak, I.G. (2008) The genus Hyalomma Koch, 1844. V. Re-evaluation of the taxonomic rank of taxa comprising the H. (Euhyalomma) marginatum Koch complex of species (Acari: Ixodidae) with redescription of all parasitic stages and notes on biology. International Journal of Acarology, 34: 13–42.. 46.. Apanaskevich, D.A., Horak, I.G. (2008) The genus Hyalomma. VI. Systematics of H. (Euhyalomma) truncatum and the closely related species, H. (E.) albiparmatum and H. (E.) nitidum (Acari: Ixodidae). Experimental and Applied Acarology, 44: 115–136.. 47.. Apanaskevich, D.A., Horak, I.G. (2009) The genus Hyalomma Koch, 1844. IX. Redescription of all parasitic stages of H. (Euhyalomma) impeltatum Schulze & Schlottke, 1930 and H. (E.) somalicum Tonelli Rondelli, 1935 (Acari: Ixodidae). Systematic Parasitology, 73: 199–218.. 48.. Apanaskevich, D.A., Horak, I.G. (2010) The genus Hyalomma. XI. Redescription of all parasitic stages of H. (Euhyalomma) asiaticum (Acari: Ixodidae) and notes on its biology. Experimental and Applied Acarology, 52: 207–220.. 49.. Apanaskevich, D.A., Horak, I.G., Camicas, J.L. (2007) Redescription of Haemaphysalis (Rhipistoma) elliptica (Koch, 1844), an old taxon of the Haemaphysalis (Rhipistoma) leachi group from East and southern Africa, and of Haemaphysalis (Rhipistoma) leachi (Audouin, 1826) (Ixodida: Ixodidae). Onderstepoort Journal of Veterinary Research, 74: 181–208.. 50.. Apanaskevich, D.A., Horak, I.G., Geevarghese, G. (2009) The genus Hyalomma Koch, 1844. VIII. Redescription of three Hyalommina Schulze, 1919 species (Acari: Ixodidae) from South Asia with notes on their biology. Zootaxa, 2050: 31–55.. 51.. Apanaskevich, D.A., Santos-Silva, M.M., Horak, I.G. (2008) The genus Hyalomma Koch, 1844. IV. Redescription of all parasitic stages of H. (Euhyalomma) lusitanicum Koch, 1844 and the adults of H. (E.) franchinii Tonelli Rondelli, 1932 (Acari: Ixodidae) with a first description of its immature stages. Folia Parasitologica, 55: 61–74.. 52.. Apanaskevich, D.A., Schuster, A.L., Horak, I.G. (2008) The genus Hyalomma: VII. Redescription of all parasitic stages of H.. 32.

(38) (Euhyalomma) dromedarii and H. (E.) schulzei (Acari: Ixodidae). Journal of Medical Entomology, 45: 817–831. 53.. Apanaskevich, M.A., Apanaskevich, D.A. (2015) Description of a new Dermacentor (Acari: Ixodidae) species from Malaysia and Vietnam. Journal of Medical Entomology, 52: 156–162.. 54.. Apanaskevich, M.A., Apanaskevich, D.A. (2015) Reinstatement of Dermacentor bellulus (Acari: Ixodidae) as a valid species previously confused with D. taiwanensis and comparison of all developmental stages. Journal of Medical Entomology, 52: 573–595.. 55.. Ariyarathne, S., Apanaskevich, D.A., Amarasinghe, P.H., Rajakaruna, R.S. (2016) Diversity and distribution of tick species (Acari: Ixodidae) associated with human otoacariasis and socio-ecological risk factors of tick infestations in Sri Lanka. Experimental and Applied Acarology, 70: 90–123.. 56.. Armstrong, P.M., Brunet, L.R., Spielman, A., Telford, S.R. (2001) Risk of Lyme disease: perceptions of residents of a lone star tick-infested community. Bulletin of the World Health Organization, 79: 916–925.. 57.. Arzua, M., Barros, D.M., Linardi, P.M., Botelho, J.M. (1994) Noteworthy records of Ixodes auritulus Neumann, 1904 (Acari, Ixodida) on birds from Paraná, southern Brazil. Memórias do Instituto Oswaldo Cruz, 89: 129.. 58.. Arzua, M., Onofrio, V.C., Barros-Battesti, D.M. (2005) Catalogue of the tick collection (Acari: Ixodida) of the Museu de Historia Natural Capao da Imbuia, Curitiba, Parana, Brazil. Revista Brasileira de Zoologia, 22: 623–632.. 59.. Asghar, N., Lindblom, P., Melik, W., Lindqvist, R., Haglund, M., Forsberg, P., Overby, A.K., Andreassen, A., Lindgren, P.E., Johansson, M. (2014) Tick-borne encephalitis virus sequenced directly from questing and blood-feeding ticks reveals quasispecies variance. Public Library of Science ONE, 9: 8 pp.. 60.. Ash, A., Elliot, A., Godfrey, S., Burmej, H., Abdad, M.Y., Northover, A., Wayne, A., Morris, K., Clode, P., Lymbery, A., Thompson, R.C.A. (2017) Morphological and molecular description of Ixodes woyliei n. sp. (Ixodidae) with consideration for co-extinction with its critically endangered marsupial host. Parasites and Vectors, 10: 16 pp.. 61.. Aubry, C., Socolovschi, C., Raoult, D., Parola, P. (2016) Bacterial agents in 248 ticks removed from people from 2002 to 2013. Ticks and Tick-borne Diseases, 7: 475–481.. 62.. Baer-Lehman, M.L., Light, T., Fuller, N.W., Barry-Landis, K.D., Kindlin, C.M., Stewart, R.L. (2012) Evidence for competition between Ixodes scapularis and Dermacentor albipictus feeding concurrently on white-tailed deer. Experimental and Applied Acarology, 58: 301–314.. 63.. Baeza, C.R. (1979) Tick paralysis – Canal Zone, Panama. Morbidity and Mortality Weekly Report, 28: 428–433.. 64.. Bakirci, S., Aysul, N., Eren, H., Unlu, A.H., Karagenc, T. (2014) Diversity of ticks biting humans in Aydin Province of Turkey. Ankara Universitesi Veteriner Fakultesi Dergisi, 61: 93–98.. 65.. Bakirci, S., Sarali, A., Aydin, L., Latif, A., Eren, H., Karagenc, T. (2011) Hyalomma rufipes (Koch, 1844) [sic] infesting cattle in the West Aegean region of Turkey. Turkish Journal of Veterinary and Animal Sciences, 35: 359–363.. 66.. Banerjee, K., Bhat, H.R. (1977) Correlation between the number of persons suffering from Kyasanur Forest disease and the intensity of infection in the tick population. Indian Journal of Medical Research, 66: 175–179.. 67.. Banerjee, S.N., Banerjee, M., Fernando, K., Dong, M.Y., Smith, J.A., Cook, D. (1995) Isolation of Borrelia burgdorferi, the Lyme disease spirochete from rabbit ticks, Haemaphysalis leporispalustris from Alberta. Journal of Spirochetal and Tick-Borne Diseases, 2: 23–24.. 68.. Banerjee, S.N., Banerjee, M., Scott, J.D., Lankester, M., Kubinec, J. (1996) Isolation of Borrelia burgdorferi—Thunder Bay District, Ontario. Canada Communicable Disease Report, 22: 138–142.. 69.. Baptista, S., Quaresma, A., Aires, T., Kurtenbach, K., Santos-Reis, M., Nicholson, M., Collares-Pereira, M. (2004) Lyme borreliosis spirochetes in questing ticks from mainland Portugal. International Journal of Medical Microbiology, 293: 109–116.. 70.. Barandika, J.F., Berriatua, E., Barral, M., Juste, R.A., Anda, P., García-Pérez, A.L. (2006) Risk factors associated with ixodid tick species distributions in the Basque region in Spain. Medical and Veterinary Entomology, 20: 177–188.. 71.. Barandika, J.F., Olmeda, S.A., Casado-Nistal, M.A., Hurtado, A., Juste, R.A., Valcárcel, F., Anda, P., García-Pérez, A.L. (2011) Differences in questing tick species distribution between Atlantic and continental climate regions in Spain. Journal of Medical Entomology, 48: 13–19.. 72.. Barbour, A.G., Bunikis, J., Travinsky, B., Hoen, A.G., Diuk-Wasser, M.A., Fish, D., Tsao, J.I. (2009) Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. American Journal of Tropical Medicine and Hygiene, 81: 1120–1131.. 73.. Barker, I.K., Lindsay, R., Campbell, G.D., Surgeoner, G.A., McEwen, S.A. (1993) The groundhog tick Ixodes cookei (Acari: Ixodidae): a poor potential vector of Lyme disease. Journal of Wildlife Diseases, 29: 416–422.. 74.. Barker, S.C., Walker, A.R. (2014) Ticks of Australia. The species that infest domestic animals and humans. Zootaxa, 3816: 1–144.. 75.. Barker, S.C., Walker, A.R., Campelo, D. (2014) A list of the 70 species of Australian ticks; diagnostic guides to and species account of Ixodes holocyclus (paralysis tick), Ixodes cornuatus (southern paralysis tick) and Rhipicephalus australis (Australian cattle tick); and consideration of the place of Australia in the evolution of ticks with comments on four controversial ideas. International Journal for Parasitology, 44: 941–953.. 76.. Barnett, L.K., Phillips, B.L., Heath, A., Coates, A., Hoskin, C. J. (2018) The impact of parasites during range expansion of an invasive gecko. Parasitology, 145: 1400–1409.. 77.. Barrett, A.W., Noden, B.H., Gruntmeir, J.M., Holland, T., Mitcham, J.R., Martin, J.E., Johnson, E.M., Little, S.E. (2015) County scale distribution of Amblyomma americanum (Ixodida: Ixodidae) in Oklahoma: addressing local deficits in tick maps based on. 33.

(39) passive reporting. Journal of Medical Entomology, 52: 269–273. 78.. Barros-Battesti, D.M., Arzua, M., Onofrio, V.C., Labruna, M.B. (2007) Validation and redescription of Amblyomma romitii Tonelli-Rondelli, 1939 (Acari: Ixodidae). Systematic Parasitology, 68: 79-86.. 79.. Barros-Battesti, D.M., Arzua, M., Pichorim, M., Keirans, J.E. (2003) Ixodes (Multidentatus) paranaensis n. sp. (Acari: Ixodidae) a parasite of Streptoprocne biscutata (Sclater, 1865) (Apodiformes: Apodidae) birds in Brazil. Memórias do Instituto Oswaldo Cruz, 98: 93–102.. 80.. Bartosik, K., Sitarz, M., Szymanska, J., Buczek, A. (2011) Tick bites on humans in the agricultural and recreational areas in south-eastern Poland. Annals of Agriculture and Environmental Medicine, 18: 151–157.. 81.. Baruchin, A.M., Barr, Y., Nahlieli, O., Scharf, S. (1999) Tick simulating a traumatized or infarcting skin growth – ticks can trick. European Journal of Plastic Surgery, 22: 193–194.. 82.. Basu, A.K., Charles, R.A. (2017) Ticks of Trinidad and Tobago-An overview. Academic Press, London, San Diego, 89 pp.. 83.. Beati, L., Meskini, M., Thiers, B., Raoult, D. (1997) Rickettsia aeschlimannii sp. nov., a new spotted fever group rickettsia associated with Hyalomma marginatum ticks. International Journal of Systematic Bacteriology, 47: 548–554.. 84.. Begum, F., Wisseman, C.L., Casals, J. (1970) Tick-borne virus of West Pakistan. II. Hazara virus, a new agent isolated from Ixodes redikorzevi ticks from the Kaghan Valley, W. Pakistan. American Journal of Epidemiology, 92: 192–194.. 85.. Beldomenico, P.M., Baldi, J.C., Antoniazzi, L.R., Orduna, G.M., Mastropaolo, M., Macedo, A.C., Ruiz, M.F., Orcellet, V., Peralta, J.L., Venzal, J.M., Mangold, A.J., Guglielmone, A.A. (2003) Ixodid ticks (Acari: Ixodidae) present at Parque Nacional El Rey, Argentina. Neotropical Entomology, 32: 273–277.. 86.. Belikova, N.P., Tatarinova, L.G. (1960) Spontaneous infection of the tick Haemaphysalis japonica douglasi with the virus of tick-borne encephalitis in the Maritime Province. Doklady Akademii Nauk SSSR, 132: 1462–1464.. 87.. Bennett, M.D., Woolford, L., Banazis, M.J., O’Hara, J., Warren, K.S., Nicholls, P.K., Sims, C., Fenwick, S.G. (2011) Coxiella burnetii in western barred bandicoots (Perameles bougainville) from Bernier and Dorre Islands in Western Australia. Ecohealth, 8: 519–524.. 88.. Berdiyev, A., Atayev, Ch., Annayev, D., Ovezmukhammedov, A. (1974) Reptiles of Turkmenistan as the hosts of ixodic [sic] mites. Izvestiya Akademii Nauk Turkmenskoy, SSR Series Biologii, 6: 31–34.. 89.. Bergeon, P., Balis, J. (1974) Contribution a l’etude de la repartition des tiques en Ethiopie (enquete effectuee de 1965 a 1969). Revue de l’Elevage et de Medecine Veterinaire des Pays Tropicaux, 27: 285–299.. 90.. Bermudez, S.E., Castro, A., Esser, M., Liefting, Y., Garcia, G., Miranda, R.J. (2012) Ticks (Ixodida) on humans from central Panama, Panama. Experimental and Applied Acarology, 58: 81–88.. 91.. Bermudez, S.E., Castro, A.M., Trejos, D., Garcia, G.G., Gabster, A., Miranda, R.J., Zaldivar, Y., Paternina, L.E. (2016) Distribution of spotted fever group rickettsiae in hard ticks (Ixodida: Ixodidae) from Panamanian urban and rural environments (2007-2013). EcoHealth, 13: 274–284.. 92.. Bermudez, S.E., Mejia, L., Hernandez, L., Apanaskevich, D.A. (2015) First records of Ixodes boliviensis Neumann, 1904 and Dermacentor dissimilis Cooley, 1947 (Ixodida: Ixodidae) as parasites of domestic mammals in Nicaragua. Systematic and Applied Acarology, 20: 462–464.. 93.. Bermudez, S.E., Miranda, R.J., Zaldivar, Y., Page, K. (2010) Dermacentor variabilis (Ixodida: Ixodidae) in Panama: report associated with tourism. Journal of Vector Ecology, 35: 208-209.. 94.. Bernasconi, M.V., Casati, S., Peter, O., Piffaretti, J.C. (2002) Rhipicephalus ticks infected with Rickettsia and Coxiella in southern Switzerland (Canton Ticino). Infection, Genetics and Evolution, 2: 111–120.. 95.. Bettencourt, E.M.V., Tilman, M., Narciso, V., Carvalho, M.L.S., Henriques, P.D.S. (2015) The livestock roles in the wellbeing of rural communities of Timor-Leste. Revista de Economiae Sociologia Rural, 53: S063–S080.. 96.. Beyhan, Y.E., Mungan, M., Babur, C. (2016) The species of ticks bites on humans and their seasonal distribution in Ankara, Turkey. Ankara Universitesi Veteriner Fakultesi Dergisi, 63: 115–119.. 97.. Billeter, S.A., Blanton, H.L., Little, S.E., Levy, M.G., Breitschwerdt, E.B. (2007) Detection of “Rickettsia amblyommii” in association with a tick bite rash. Vector-Borne and Zoonotic Diseases, 7: 607–610.. 98.. Bishopp, F.C., Trembley, H.L. (1945) Distribution and hosts of certain North American ticks. Journal of Parasitology, 31: 1–54.. 99.. Blair, P.J., Jiang, J., Schoeler, G.B., Moron, C., Anaya, E., Céspedes, M., Cruz, C., Felices, V., Guevara, C., Mendoza, L., Villaseca, P., Summer, J.W., Richards, A.L., Olson, J.G. (2004) Characterization of spotted fever group Rickettsiae in flea and tick specimens from northern Peru. Journal of Clinical Microbiology, 42: 4961–4967.. 100.. Blanda, V., Torina, A., La Russa, F., D’Agostino, R., Randazzo, K., Scimeca, S., Giudice, E., Caracappa, S., Cascio, A., Fuente de la, J. (2017) A retrospective study of the characterization of Rickettsia species in ticks collected from humans. Ticks and Tick-borne Diseases, 8: 610–614.. 101.. Bode, D., Speicher, P., Harlan, H. (1987) A seed tick infestation of the conjunctiva: Amblyomma americanum larva. Annals of Ophthalmology, 19: 365–366.. 102.. Bogdanov, A.S., Makenov, M.T., Medyanikova, L.V., Shchouchinova, L.D., Yakimenko, V.V. (2017) Variability of mitochondrial cytochrome oxidase first subunit gene (COI) fragments in several ticks of the marginatus group (Ixodidae, Amblyomminae, Dermacentor). Biology Bulletin, 44: 379–383.. 34.

參考文獻

Outline

相關文件

Infrequently giant salivary gland calculi (GSGC) &gt;15 mm have been reported in the literature. The submandibular gland and its duct appear to be the sites most susceptible to

Figure 10 Orthopantomogram (7 years after decompression and 2 years following enucleation) revealing the recurrence lesion, distending the mandibular body area spanned from right

The tuberculous lesion may present at different sites of the orofacial region, in the hard tissues or soft tissues of the mandible, maxilla, lymph nodes, salivary glands,

Human papillomavirus- related squamous cell carcinoma of the oropharynx: a comparative study in whites and African Americans. Prevalence of human papillomavirus type 16 DNA in

Despite the highest number of reports coming from the Caucasian group, the numbers of KOTs per year were much higher for the African and East Asian groups.. The number of cases seen

In this report, we describe a rare case of bilateral symmetric ectopic oral tonsillar tissue located at the ventral surface of the tongue along with two solitary cases arising from

reported two similar cases with the use of infrared laser in continuous scanning mode (0.053 J/cm 2 fluence during 15 minutes; five sessions for 2 weeks), in a patient

In cases of odontogenic sinusitis, thorough examination is crucial as evidenced by the case reported in this study, where a sinusitis caused by a third ectopic molar associated with