• 沒有找到結果。

Observer-based adaptive sliding mode control for pneumatic servo system

N/A
N/A
Protected

Academic year: 2021

Share "Observer-based adaptive sliding mode control for pneumatic servo system"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

PrecisionEngineering37 (2013) 522–530

ContentslistsavailableatSciVerseScienceDirect

Precision

Engineering

jou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / p r e c i s i o n

Observer-based

adaptive

sliding

mode

control

for

pneumatic

servo

system

Yung-Tien

Liu

a

, Tien-Tsai

Kung

b

, Kuo-Ming

Chang

b,∗

, Sheng-Yuan

Chen

a

aDepartmentofMechanicalandAutomationEngineering,NationalKaohsiungFirstUniversityofScienceandTechnology,No.1,UniversityRd.,

Yen-Chau824,Kaohsiung,Taiwan,ROC

bDepartmentofMechanicalEngineering,NationalKaohsiungUniversityofAppliedSciences,No.415,Chien-KungRoad,Kaohsiung807,Taiwan,ROC

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30July2012

Receivedinrevisedform7October2012

Accepted31October2012

Available online 29 January 2013 Keywords:

Pneumaticservosystem

Precisionpositioning

Adaptiveslidingmodecontrol

Extendedstateobserver

Dead-zone

a

b

s

t

r

a

c

t

Inthispaper,anextendedstateobserver(ESO)beingincorporatedwiththeadaptiveslidingmodecontrol theoryisproposedtodealwithanonlinearpneumaticservosystemcharacterizedwithinput dead-zone,unknownsystemfunction,andexternaldisturbance.TheESOisusedtoestimatesystemstate variablesoftheunknownnonlinearsystem;theadaptivelawisemployedtocompensatefordead-zone systembehavior.Positioningexperimentsbasedonthederivedcontrolstrategywereperformed.Asone exampleofpositioningresults,thepositioningaccuracywithsub-micrometersrangewasverifiedfor bothforwardandbackwardactuationswithstepcommandsof3mm.Thecontrolschemeprovidedin thispaperthatcansignificantlyimprovethepositioningperformanceofatraditionalpneumaticservo systemisdemonstrated.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Inrecentyear,pneumaticservosystemhasbeenwidelyused in automation industry withlow cost, fast speed, long stroke. However, due tothe drawbacks of compressibility of air, non-linear frictionforce existing oncontact surfaces,and nonlinear dead-zonecharacteristicofservovalve,thepneumaticpositioning systemusually cannot achieve highprecisionpositioning accu-racy.Inordertoimprovethepositioningperformanceofpneumatic servosystems,manymethodshavebeenproposed,suchassliding mode[1–3],neuralnetwork[4],fuzzyPWM[5],andthescheme ofthepneumaticsystemcombinedwithpiezoelectricactuators [6–8].Inaddition,theyalsohavebeenreportedaseffectiveness tocompensateforthestick-slipphenomenonbyaddingavelocity compensationsignaltotheservovalve[9]andbyusinga piezo-electricdither[10].

Although the sliding mode control scheme with excellent robustnesshasbeenwidelyappliedtopneumaticservosystems,it requiresthatthederivativeofoutputvariableofthecontrolsystem mustbedetermined.Thisbringsaboutthedifficultyincontroller design.Therefore,inthispaper,anextendedstateobserver(ESO) [11]isproposedtoestimatetheimmeasurablesystemstate vari-ablesandsystemuncertaintiesofapneumaticservopositioning

∗ Correspondingauthor.Tel.:+88673814526x5334;fax:+88673831373.

E-mailaddress:koming@kuas.edu.tw(K.-M.Chang).

system,and thenreferringtotheadaptive slidingmodecontrol [12]toderiveanobserver-basedadaptiveslidingcontrolscheme throughaso-calledalmostslidingsurface.Itisvalidatedthatthe proposed control schemecan significantly improve positioning performanceinapneumaticservosystem.

2. Pneumaticservosystem

ThepneumaticservosystemisschematicallyshowninFig.1 and the photograph of experimental equipment is shown in Fig.2. Thepneumaticcylinder (Airpel,ø10×12mm)is fixedto the base. The target object of sliding table with a dimension of 35mm×25mm×35mm rests on the V-grooved base. The pneumaticcylinderis controlledby aproportional valve(Festo, MPYE-5-M5-010B). A12-bitdigital-to-analog (D/A)converteris usedtotransferthecontrolcommandtotheproportionalvalve (PV)viaapoweramplifier(Amp).Anon-contacttypelinearencoder (Renishaw,RGH25F2000)withtheresolutionof10nmismounted besidetheslidingtableandthedisplacementofsliding tableis measuredbythelinearencoderthroughdigitalinput/output(DIO) ports.Toavoidenvironmentaldisturbance,theexperimentalsetup issetontheanti-vibrationairtable.

Inordertoanalyzethedynamicmodelofpneumaticservo sys-tem,aschematicdrawingofpneumaticservosystemisdepicted inFig.3.Althoughtheheatoftheatmospheremightgiveagreat influenceontheservosystem,forsimplicity,thevariationof tem-peratureisregardedasadisturbanceandthepneumaticsystem is assumed as isothermal. Therefore, the pneumatic system is

0141-6359/$–seefrontmatter © 2013 Elsevier Inc. All rights reserved.

(2)

Y.-T.Liuetal./PrecisionEngineering37 (2013) 522–530 523

Fig.1.Pneumaticservosystem.

Fig.2.Photographoftheexperimentalequipment.

isothermal,thethermo-dynamicequationoftheleftchamberin Fig.3canbewrittenas

PaVa=maRT (1)

where

Pa:pressureinleftchamber

Va:volumeofleftchamber

ma:flowrateinleftchamber

R:gasconstant

T:temperatureoftheair

OndifferentiationoftheEq.(1)andarranging,theflowratein leftchamberisasfollows,

˙ ma=

1

RT( ˙PaAay+PaAa˙y) (2)

whereyisthepistondisplacementmeasuredfromleftendwall andAaisthepistoncross-sectionalarea.Similarly,theflowratein

therightchambercanbewrittenas ˙

mb=

1

RT[ ˙PbAb(L−y)−PbAb˙y] (3)

Fig.3.Schematicofpneumaticservosystem.

Fig.4. Dead-zonefunction.

whereListhestrokeofcylinder,andPbandVbarepressureand

effectivevolumeintherightchamber,respectively.

ConsideringEqs.(2) and (3),iftheflow rates aretakeninto accountinimplementingaservosystem,thepressuresinboththe cylinderchambersshouldbemeasured.Thiswillbringthecontrol loopcomplicated.Forsimplicity,thepneumaticsystemisregarded asasecond-ordersystembyemployingareduced ordersliding modecontrolscheme[1].Accordingtothepneumaticservo sys-temwithreducedorder,thedynamicequationcanberepresented as md 2x 1 dt2 + dx1 dt =PaAa−PbAb=Fapplied (4) where

m:massofslidingtable :dampingcoefficient

Fapplied:netforceofpneumaticcylinder

x1(t):displacementofslidingtable

AlthoughEq.(4)isexplicitlyasecond-orderlineardifferential equation, actually, nonlinear characteristics exist in compress-ibility of air, friction force, and proportional valve. Therefore, consideringthepneumaticservossystemwithnonlinear charac-teristics,Eq.(4)canberewrittenasfollows[2],

d2x 1 dt2 = −ff( ˙x1)−fP(x1, ˙x1) m +d(t)+ Fapplied m (5)

ff( ˙x1):nonlinearfunctionoffriction

fP(x1, ˙x1):nonlinearfunctionofaircompressibility

d(t):externaldisturbanceandsystemunmodelederror InEq.(5),thefrictionandaircompressibilityareunknown non-linearfunctions;thepneumaticservosystemisakindofnonlinear inputdead-zonesystemcausedbytheproportionalvalveand non-linearfriction.Inthispaper,tocopewellwiththepneumaticservo system,anESOisemployedtoestimateunknownnonlinear func-tionanddisturbanceofsystem.Thenonlineardifferentialequation havingdead-zonecharacteristicofEq.(5)canberewrittenas fol-lows,



˙x1=x2 ˙x2=f(X,t)+d(t)+B(t)w(u)=a(t) (6) where

X(t)=[x1(t)x2(t)]T∈R2 isasystemstatevector,f(X,t)∈Risan

unknownnonlinearfunctionofthesystem,B(t)∈Risanunknown controlgain,u(t)∈Riscontrolinput,andd(t)∈Risadisturbance.

(3)

524 Y.-T.Liuetal./PrecisionEngineering37 (2013) 522–530

Fig.5.Blockdiagramofcontrollerdesign.

w(u):R→Risanonlinearinputdead-zonefunctionasshownin Fig.4,whichcanbeexpressedas

w(u)=

mr(u(t)−br)where u>br 0where bl≤u≤br ml(u(t)−bl) whereu<bl (7)

whereml>0andmr>0areslopesofdead-zoneonbothsides.bl<0

andbr>0arethresholdpositionsofdead-zoneonbothsides.u>br

indicatestheslidingtablewillmoveforward;u<blindicatesthe

slidingtablewillmovebackward.However,blubrindicatesthe

slidingtablestandstillsandremainsapre-slidingstate.Regarding tod(t),B(t),a(t)inEq.(6)andthedead-zoneparametersinEq.(7), theyarewiththefollowingassumptions:

Assumption1. Externaldisturbanceofsystemisabounded func-tion,suchthat



d(t)



≤,isapositiveconstant.

Assumption2. B(t)isanunknownpositiveconstantandvariation inaboundedrange,suchthatBmin≤B(t)≤Bmax.

Assumption3. a(t)iscontinuouslydifferentiableanditschange ratewithtimeisbounded.

Assumption 4. mr and ml are unknown positive constants

and vary in bounded ranges, such that mrmin≤mr≤mrmax,

mlmin≤ml≤mlmax;brandblareunknownconstants,andbr>0,

bl<0,brmin≤br≤brmax,blmin≤bl≤blmax.

3. Observer-basedadaptiveslidingmodecontrol

3.1. Overallcontrolstructure

Dueto that thepneumatic servo system is a nonlinear and time-varyingsystem,itisdifficulttoestablishaprecision math-ematicalmodel.Thustraditionalcontrolmethodsaredifficultto apply.However,theslidingmodecontrolschemeislessdependent onmathematicalmodelandwithbetterrobustness;itissuitably beingappliedtopneumaticservosystem,hydraulicservosystem, andmotordrivingsystem.Withawelldevelopedtheory,thedesign processfor thesliding modecontrol schemehasbeingdefined already.Thefirststepistoconstructaslidingsurfacewhichis con-stitutedwithsystem’soutputvariableanditsderivative.However, thederivativeofsystem’soutputvariableisnoteasytomeasure orunabletoobtainwithcost-effectiveness.Therefore,insteadof usinganexpensivesensor,inthispaper,anESOisappliedto incor-poratewiththeadaptiveslidingmodecontroltheorytodealwith thepneumaticservosystem.Fig.5istheblockdiagramofcontroller designinthispaper.TheESOisusedtoestimatesystemstate vari-ablesandunknownsystemmodel,andanadaptivelawisderivedto estimatedead-zoneparameters.Theobtaineddead-zone parame-terswillbeusedtocompensateforthenonlinearinputdead-zone characteristic,thusthecontrolperformanceoftheservossystem canbelargelyimproved.

3.2. Extendedstateobserver

Eq.(6)showstwostatevariablesofx1andx2.Let ¨x1expandas

anothersystemstatevariable,Eq.(6)canbewrittenas

˙x1=x2 ˙x2=x3=a(t) ˙x3= ˙a(t) (8)

ByemployingthestructureofESO[11,13]withtheobserved systemstates ˆxi(i=1–3)asfollows,

˙ˆx1= ˆx2−l1g(ˆx1−x1) ˙ˆx2= ˆx3l2g(ˆx1−x1) ˙ˆx3=−l3g(ˆx1−x1) (9)

whereg(ˆx1−x1)isadesignfunctionandmustmeetthefollowing

conditions:

(1)g(ˆx1−x1)iscontinuouslydifferentiable

(2)g(0)=0

(3) g(ˆx1−x1)= dg(ˆxd(ˆx11−x−x11)) /=0

Whenthedesignofg(ˆx1−x1)isconfirmed,licanbegivenas

li=

ki

g(ˆx1−x1)

(i=1,2,3) (10)

whereki(i=1–3)aredesignconstants.SubmittingEq.(10)intoEq.

(9),thestructureoftheESOcanberewrittenas

˙ˆx1= ˆx2− k1 g(ˆx1−x1) g(ˆx1−x1) ˙ˆx2= ˆx3− k2 g(ˆx1−x1) g(ˆx1−x1) ˙ˆx3=− k3 g(ˆx1−x1) g(ˆx1−x1) (11)

Inthispaper,weselectg(ˆx1−x1)= ˆx1−x1,andletϕ= ˆx1−x1,

then g(ϕ)=ϕ=g(ˆx1−x1)= ˆx1−x1, g(ϕ)=g(ˆx1−x1)=1.

Sub-mittingaboveequalitiesintoEq.(11),wecanobtain

˙ˆx1= ˆx2−k1(ˆx1−x1) ˙ˆx2= ˆx3−k2(ˆx1−x1) ˙ˆx3=−k3(ˆx1−x1) (12)

Defineobservedstateerroras

x1= ˆx1−x1 x2= ˆx2−x2 x3= ˆx3−x3= ˆx3−a(t) (13)

(4)

530 Y.-T.Liuetal./PrecisionEngineering37 (2013) 522–530

References

[1]Paul AK, Mishra JE, RadkeMG. Reduced ordersliding mode controlfor

pneumatic actuator. IEEE Transactions on Control Systems Technology

1994;2(3):271–6.

[2]SongJ,IshidaY.Arobustslidingmodecontrolforpneumaticservosystems.

InternationalJournalofEngineeringScience1996;35(8):711–23.

[3]Korondi P, Gyeviki J. Robustposition control for a pneumatic cylinder.

Proceedingsofthe12thPowerElectronicsandMotionControlConference

2006:513–8.

[4] GrossDC,RattanKS.Anadaptivemultilayerneuralnetworkfortrajectory

trackingcontrolofapneumaticcylinder.ProceedingsofIEEEInternational

ConferenceonSystemsManandCybernetics1998;2:1662–7.

[5]ShihM-C,MaM-A.PositioncontrolofapneumaticcylinderusingfuzzyPWM

controlmethod.JournalofMechatronics1998;8(3):241–53.

[6]LiuY-T,LeeC-H,FungR-F.Apneumaticpositioningdevicecoupledwith

piezo-electricself-movingmechanism.AsianJournalofControl2004;6(2):199–207.

[7]Chiang M-H, Chen C-C, Tsou T-N. Large stroke and high precision

pneumatic–piezoelectrichybridpositioningcontrolusingadaptivediscrete

variablestructurecontrol.Mechatronics2005;15:523–45.

[8]LiuY-T,JiangC-C.Pneumaticactuatingdevicewithnanopositioningability

utilizingPZTimpactforcecoupledwithdifferentialpressure.Precision

Engi-neering2007;31:293–303.

[9]PaiK-R,ShihM-C.Nanoaccuracypositioncontrolofapneumaticcylinder

driventable.JSMEInternationalJournalSeriesC2003;46(3):1062–7.

[10]LiuY-T,ChangK-M,LeeH-R.Studyofaprecisionpneumaticpositioning

deviceusingPZTdither. International Journalof AutomationTechnology

2011;5(6):780–5.

[11]HanJ.Extendedstateobserverforaclassofuncertainplants.ControlDecis

1995;10(1):85–8.

[12]WangX-S, SuC-Y,HongH.Adaptiveslidinginversecontrolofaclassof

nonlinearsystemsprecededbyunknownnon-symmetricaldead-zone.IEEE

InternationalSymposiumonIntelligentControl2003;16:16–21.

[13]KangZ-J,ChenX-Y.Adesignmethodofnonlinearextensionstateobserver.

ElectricMachinesandControl2001;5(3):199–203.

[14]LiY-G,LiX-Y,ShiX-P.Sliding-modecontrolforaclassofunknown

nonlin-earsystemswithuncertaintiesbasedonextendedstateobserver.Journalof

UniversityofShanghaiforScienceandTechnology2010;32(2):110–4.

[15] CrnosijaP,BanZ,KrishnanR.Applicationofmodelreferenceadaptivecontrol

withsignaladaptationtoPMbrushlessDCmotordrives.IEEEInternational

Symposium2002;3:689–94.

[16]WangJ,PuJ,MooreP.Apracticalcontrolstrategyforservo-pneumaticactuator

systems.ControlEngineeringPractice1999;7(12):1483–8.

[17]TsaiM-H,ChengC-N,ShihM-C.Designandcontrolforthepneumaticcylinder

precisionpositioningunderverticalloading.Proceedingsofthe21stAnnual

ASPEMeeting2006:1921.

[18]ZhangDQ,PandaSK.Chattering-freeandfast-responseslidingmode

con-troller.IEEProceedings onControlTheoryand Applications1999;146(2):

數據

Fig. 1. Pneumatic servo system.
Fig. 5. Block diagram of controller design.

參考文獻

相關文件

CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Performance of technical analysis in growth and small

CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Performance of technical analysis in growth and small

2 System modeling and problem formulation 8 3 Adaptive Minimum Variance Control of T-S Fuzzy Model 12 3.1 Stability of Stochastic T-S Fuzzy

We shall show that after finite times of switching, the premise variable of the fuzzy system will remain in the universe of discourse and stability of the adaptive control system

This study proposed the Minimum Risk Neural Network (MRNN), which is based on back-propagation network (BPN) and combined with the concept of maximization of classification margin

This research is to integrate PID type fuzzy controller with the Dynamic Sliding Mode Control (DSMC) to make the system more robust to the dead-band as well as the hysteresis

In order to improve the aforementioned problems, this research proposes a conceptual cost estimation method that integrates a neuro-fuzzy system with the Principal Items

Kuo, R.J., Chen, C.H., Hwang, Y.C., 2001, “An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and