• 沒有找到結果。

急性錳中毒對小鼠的耳毒性

N/A
N/A
Protected

Academic year: 2021

Share "急性錳中毒對小鼠的耳毒性"

Copied!
49
0
0

加載中.... (立即查看全文)

全文

(1)Acute Manganism Induces Ototoxicity of Mice. Yu-Pu Han. Chung-Hsin Wu, Ph.D..

(2)

(3) !. 1!.

(4) !. 2!.

(5) ..…………………………………………………………..…...4 ……………………………………………………..………….5 1 (1.1) (1.2) (1.3). ………..………………...……….........7 ……………….………...………………......9 …...………...………………....9 ………………………………………………………………12. 2 3 (3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (3.8) (3.9) (3.10). ……………………………………………...………….13 ……………………………………………...………….13 ………………………………………………...……….13 ……………………………………………...………….14 …………………………………………...…………….14 ……………….…………...……15 (ROS) …………………….…..……………...16 ………………………………………...……….16 ……...……………………………………...……..17 ………………………………………...………...18. 4 (4.1) (4.2) (4.3) (4.4) 5 6 7 8. !. ……………….…...…19 ………………….......….20 ………………….…...20 prestin c-caspase 3 ……………..…20 ……………………………………………………………………22 ……………………………………………………………………27 ………………………………………………………………28 ………………………………………………………………39. 3!.

(6) 2011. Ding. ICR (ABR ) (10 /. /. /. /. 5 ). (50. ) ICR. ICR prestin. cleaved caspase-3 ICR. ABR. ICR prestin. ICR ICR cleaved caspase-3. !. 4!.

(7) Abstract In vitro, overdose of manganese is toxic to auditory nerve fibers as well as spiral ganglion neurons and cochlear hair cells. In 2011, Ding and his colleagues published a study in Neurotoxicology showing for the first time that low levels of manganese initially damage neurons and sensory hair cells in the inner ears of rats. To understand the mechanism for manganese-induced auditory impairment, we assessed the degree of hearing impairment and the cochlear histopathological damage in ICR mouse model resulting from various levels of manganese. The auditory brainstem response (ABR) recording was used to determine and compare the auditory threshold in ICR mice after 5 times subcutaneous injection of saline, low (10 mg/kg/day) or high dose (50 mg/kg/day) of manganese chloride. Immunochemistry staining techniques were used to compare expression of prestin, a cochlear motor protein, and cleaved caspase-3, a apoptosis protein, in the cochlea of ICR mice. Our results show that the ABR thresholds of ICR mice were significantly elevated with low and high dose of manganese treatments. Although the difference of prestin expression in outer hair cells was not observed among ICR mice with subcutaneous injection of saline, low and high dose of manganese. The apoptosis-related cleaved caspase-3 was obviously observed in outer hair cells, spiral ganglion neurons, and stria vascularis cells in the cochlea of ICR mice with subcutaneous injection low and high dose of manganese. !. 5!.

(8) Thus we suggest that the cochlear apoptosis may be involved in manganese-induced auditory impairment.. Keywords: manganism, neurotoxicity, cochlea, auditory impairment, hair cells, spiral ganglion, stria vascularis.. !. 6!.

(9) 1 (1.1) (manganese, Mn). glutamine synthetase (GS). mitochondrial superoxide dismutase. pyruvate carboxylase. (McCord, 1976; Wedler et al., 1984; Gonzalez-Zulueta et al., 1998; Keen et al., 2000). 3~5%. (Von, 1907; Cotzias, 1958). (Keen et al., 2000; Myers et al., 2003; Myers et al, 2009; Park et al., 2009) (Yang et al., 2012) methylcyclopentadienyl manganese tricarbonyl (MMT) !. 7!.

(10) 18 mg/L 0.05-0.5 µg/m3. (. MMT)(Yin et al., 2010). (Rose et al., 1999; Katsoyiannis et al., 2006; Bouchard et al., 2007) (Manganism). (Von, 1907; Cotzias, 1958; Barbeau, 1984) 1837. Glascow. Couper (Couper, 1837) (Gupta et al., 1980) (Yamada et al., 1986; Pal et al.,. 1999). (Olanow et al.,. 1996). (dopamine) (norepinephrine). !. 8!.

(11) (Ding et al., 2011; Ma et al., 2008). (1.2). (Ding et al., 2011). (1.3) (hearing loss). (basilar membrane) (tectorial membrane). (outer hair cells, OHCs) (electromotility) !. 9!.

(12) prestin. (Zheng et. al., 2000) prestin. prestin (Peter et al., 2008). (Uy et al., 2013). prestin. prestin. (Liberman et al., 2002; Dallos et al., 2008) (Rajagopalan et al., 2007; Rajagopalan et al., 2009; Sfondouris et al., 2008). (Oliver et. al., 2001; Santos-Sacchi et al., 2006; Schaechinger et al., 2007) prestin prestin. prestin (Cheatham et al.,. 2009). (mitochondria). (Gold et al., 1994) !. 10!.

(13) (Hutchin et al., 2000). (Degoul. et al., 1991; Goto et al., 1992) ATP (Seidman et al., 1999). !. 11!.

(14) 2 (MnCl2). (Ding et al., 2011) MnCl2. !. 12!.

(15) 3 (3.1) ICR (. ). 25 C. ICR. 12 h/12 h. (3.2). (Subcutaneous injection, SC). ABR. (3.3) (3.3.1)0.9%. (Isotonic Sodium Chloride Solution, Saline) 4DH2433. (3.3.2). .4H2O (Manganese(II) Chloride Tetrahydrate). Sigma-Aldrich CAS No. : 13446-34-9 !. 13!. SI-M3635-100G.

(16) 0.5%. (3.4) (3.4.1). ICR 5 ml/kg. (Subcutaneous. injection, SC) (3.4.2). ICR 10 mg/kg. (3.4.3). :. ICR 50 mg/kg. (3.5) ABR St. Louis, Mo, U.S.A.). Atropine (Sigma, 0.5 mg/kg. (Intramuscular injection, IM). 20. Urethane(Sigma, St. Louis, Mo, U.S.A.) (intraperitoneal injection, IP). !. 14!. 1.2 g/kg.

(17) (3.6). (auditory brainstem response, ABR) ABR (Moller, 2006) (. ABR. 1). (msec). (cochlear) (cochlear nucleus) (superior olivary complex) (nucleus of the lateral lamniscus) (inferior colliculus). (medial. geniculate). (auditory. radiation)(Ruebhausen et al., 2012) ABR. (threshold). (Ruebhausen et al., 2012; Willott, 2006) ABR. Tucker-Davis Technologies BioSigRP – Stimulate/Record System RZ5. 10 8k. 100~20 dB. !. RP Filter. 12k. 24k. 300~3k Hz. 15!. 10 32k Hz NT. 50 Hz. 4.4.1 701.

(18) Tucker-Davis Technologies(ES1 SN:3532) 15. (3.7). (ROS) (saline, MnCl2 10mg/kg, MnCl2 50mg/kg). 40. l. 10. l. heparin. CL. CL. Chemiluminescence Analyzing System CLD-110. Tohoku Electronic Industrial Co.,. Sendai, Japan 25 l. l. 60. 25. luminol/lucigenin. CL. 180. CL count. (3.8) ABR 10% !. 16!.

(19) 5. Leica RM 2125. 3-5. m. (3.9) Novolink polymer diction system (Leica) buffered saline(PBS). 0.1 M phosphate. tween-20. 60 C. 95%. ddH2O. epitope retrieval buffer peroxidase block (3% H2O2) antigoat polymer. protein block (goat antibody. ). DAB chromogen(substrate buffer hematoxylin solution(. Novelinktm 40. PBS. ) ) ddH2O. 95%. (1) Prestin Antibody (Santa Cruz. SC-22694. goat. polyclonal Ab) (2)Cleaved Caspase-3 (Asp175) Antibody (Cell Signaling Technology. 9661). Cleaved form. caspase. !. caspase-3. caspase. 17!. caspase.

(20) (3.10) Prism. GraphPad. Software, Inc., La Jolla, CA 92037 USA one-way ANOVA. Dunnett. (mean) (95% confidence intervals). !. Alpha = 0.05 * p-values. 18!. 0.05. ** p-values. 0.01.

(21) 4 (4.1) (saline) (10mg/kg). (50mg/kg) 12k Hz 50. 2a&b). 80. 32k Hz. (. 50 80. (. (MnCl2 10mg/kg). 3a&b). (MnCl2 50mg/kg) (saline). ABR 12k Hz. (. 8k Hz 4a&b). 44. (MnCl2 10mg/kg) (MnCl2 50mg/kg). 24k Hz. 32k Hz(. 72.5. 76.67. 80. 85. 4c&d). 62. 58. 93.33 87.5. !. 47.5. 19!. 82.5. 86.67.

(22) (4.2) CL count luminol MnCl2 10mg/kg. (. 5a). saline. 35382). MnCl2 50mg/kg. 27318 49161. luminol lucigenin. (. 5b). CL count. 26082.67. 24982.33. 27228.67. (4.3). (. 6). (4.4). prestin cleaved caspase-3. prestin. (. 7). cleaved caspase-3(Asp175). cleaved caspase-3 cleaved caspase-3 (spiral ganglion !. 20!.

(23) neurons, SGN). (. 9). cleaved caspase-3. SGN. SGN. cleaved caspase-3. !. 21!.

(24) 5. (extra pyramidal symptoms, EPS). (Bowler et al., 2007; Antonini et al., 2009; Antonini et al., 2009). (PEL-TWA). 1 mg/m3. 5 mg/m3 (Occupational Safety and Health. Administration, OSHA) (. ). 5 mg/m3. (auditory nerve fibers, ANF) (Ding et al., 2011). (Kalliomaki. et al., 1983; Josephs et al., 2005; Bouchard et al., 2008) (lung) !. (inner ear)(Kalliomaki et al., 1983; 22!.

(25) Park et al., 2007; Ma et al., 2008; Park et al., 2009) 2011 Ding. Prof. MnCl2. (reactive oxygen species, ROS). (Ingersoll et al., 1995). MnCl2 ABR. (. urethane. pure tone. 4) ABR. ABR. Prof. Ding prestin (Peter et al., 2008; Xia et al., 2013). !. 23!.

(26) (Zhang et al., 2008). (Zhang et al., 2004). al., 2006). (Kwik-Uribe et. (Milatovic et al., 2009; Zhao et al., 2009). dopamine. glutamate. (Desole et al., 1995; Normandin et al., 2002;. Gwiazda et al., 2007; Sistrunk et al., 2007; Erikson et al., 2008). luminol. lucigenin. (O2-). H2O2. O2-. luminol. endoperoxide. lucigenin. O2H2O2. SOD(superoxide dismutase) H2O2. H2O2. catalase. H2O2. O2-. SOD H2O2. catalase. catalase. H2O2. luminol. lucigenin (MnCl2 50mg/kg). 14. luminol. 14. lucigenin. ( (O2-). !. 24!. ).

(27) (Hazell et al., 2006; Milatovic et al., 2009). (Mn2+). (Ca2+) (Gavin et al., 1990;. Gunter et al., 2004). (oxidative. phosphorylation). (Gunter et al., 2004) (Yin et al., 2008). (Rama et al., 2007; Yin et al., 2008). (stria vascularis). (Wangemann et al., 1995). cleaved caspase-3 (Wangemann et al., 2012). SGN. ABR. SGN !. 25!.

(28) ABR glutamate. glutamate. Wolfram. (endoplasmic reticulum stresss) (Inoue et al., 1998; Bespalova et al., 2001). !. 26!.

(29) 6. !. 27!.

(30) 7 Antonini JM, Roberts JR, Stone S et al. Short-term inhalation exposure to mild steel welding fume had no effect on lung inflammation and injury but did alter defense responses to bacteria in rats. Inhal Toxicol. 2009;21:182–192. Antonini JM, Sriram K, Benkovic SA et al. Mild steel welding fume causes manganese accumulation and subtle neuroinflammatory changes but not overt neuronal damage in discrete brain regions of rats after short-term inhalation exposure. Neurotoxicology. 2009;30:915–925. Au C, Benedetto A, Aschner M. Manganese transport in eukaryotes: the role of DMT1. Neurotoxicology. 2008;29:569–576. Barbeau A. Manganese and extrapyramidal disorders (a critical review and tribute to Dr. George C. Cotzias). Neurotoxicology. 1984;5:13-35. Bespalova IN, Van Camp G, Bom SJ et al. Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss. Hum Mol Genet. 2001;10:2501–2508. Bouchard M, Laforest F, Vandelac L et al. Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environ Health Perspect. 2007;115:122–127. Bouchard M, Mergler D, Baldwin ME et al. Manganese cumulative exposure and symptoms: a follow-up study of alloy workers. !. 28!.

(31) Neurotoxicology. 2008;29:577–583. Bourre JM. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1. Micronutrients. J Nutr Health Aging. 2006;10:377–385. Bowler RM, Roels HA, Nakagawa S et al. Dose-effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders. Occup Environ Med. 2007;64:167–177. Cheatham MA, Low-Zeddies S, Naik K et al. A chimera analysis of prestin knock-out mice. J Neurosci. 2009;29:12000–12008. Chillrud SN, Epstein D, Ross JM et al. Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City’s subway system. Environ Sci Technol. 2004;38:732-737. Cotzias GC. Manganese in health and disease. Physiol Rev. 1958;38:503-532. Couper J. On the effects of black oxide of manganese when inhaled into the lungs. Br Ann Med Pharmacol. 1837;1:41-42. Dallos P, Wu X, Cheatham MA et al. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron. 2008;58:333–339. Degoul F, Nelson I, Lestienne P et al. Deletions of mitochondrial DNA in Kearns-Sayre syndrome and ocular myopathies: genetic, biochemical and morphological studies. J Neurol Sci. 1991;101:168–177. !. 29!.

(32) Desole MS, Esposito G, Migheli R et al. Cellular defence mechanisms in the striatum of young and aged rats subchronically exposed to manganese. Neuropharmacology. 1995;34:289–295. Ding D, Roth J, Salvi R. Manganese is toxic to spiral ganglion neurons and hair cells in vitro. NeuroToxicology. 2011;32:233–241. Emmerer AR, Elvehjem CA, Hart EB. Studies on the relation of manganese to the nutrition of the mouse. J Biol Chem. 1931;92:623– 630. Erikson KM, Dorman DC, Lash LH et al. Duration of airbornemanganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Neurotoxicology. 2008;29:377– 385. Finley JW. Does environmental exposure to manganese pose a health risk to healthy adults? Nutrit Rev. 2004;62:148-153. Fox SI. Human physiology. McGraw-Hill Higher Education. 2008;10e:269-280. Fujinami Y, Mutai H, Mizutari K et al. A novel animal model of hearing loss caused by acute endoplasmic reticulum stresss in the cochlea. J Pharmacol Sci. 2012;118:363-372. Gavin CE, Gunter KK, Gunter TE. Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochem J. 1990;266:329–334. Gold M and Rapin I. Non-Mendelian mitochondrial inheritance as a !. 30!.

(33) cause of progressive genetic sensorineural hearing loss. Int J Pediatr Otolaryngol. 1994;30:91–104. Gonzalez-Zulueta M, Ensz LM, Mukhina G et al. Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci. 1998;18:2040–2055. Goto Y, Horai S, Matsuoka T et al. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): a correlative study of the clinical features and mitochondrial DNA mutation. Neurology. 1992;42:545–550. Gunter TE, Miller LM, Gavin CE et al. Determination of the oxidation states of manganese in brain, liver, and heart mitochondria. J Neurochem. 2004;88:266–280. Gupta SK, Murthy RC, Chandra SV. Neuromelanin in manganese-exposed primates. Toxicol Lett. 1980;6:7-20. Gwiazda R, Lucchini R, Smith D. Adequacy and consistency of animal studies to evaluate the neurotoxicity of chronic low-level manganese exposure in humans. J Toxicol Environ Health A. 2007;70:594–605. Hazell AS, Normandin L, Norenberg MD et al. Alzheimer type II astrocytic changes following sub-acute exposure to manganese and its prevention by antioxidant treatment. Neurosci Lett. 2006;396:167– 171. Hutchin TP and Cortopassi GA. Mitochondrial defects and hearing loss. Cell Mol Life Sci. 2000;57:1927–1937. !. 31!.

(34) Ingersoll RT, Montgomery EB, Aposhian HV. Central nervous system toxicity of manganese. Fundamental And Applied Toxicology 1995;27:106–113. Inoue H, Tanizawa Y, Wasson J et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet. 1998;20:143–148. Josephs KA, Ahlskog JE, Klos KJ et al. Neurologic manifestations in welders with pallidal MRI T1 hyperintensity. Neurology. 2005;64:2033–2039. Kalliomaki PL, Tuomisaari M, Lakomaa EL et al. Retention and clearance of stainless steel shieldgas welding fumes in rat lungs. Am Ind Hyg Assoc J. 1983;44:649–654. Katsoyiannis IA, Katsoyiannis AA. Arsenic and other metal contamination of groundwaters in the industrial area of Thessaloniki, Northern Greece. Environ Monit Assess. 2006;123:393–406. Keen CL, Ensunsa JL, Clegg MS. Manganese metabolism in animals and humans including the toxicity of manganese. Met Ions Biol Syst. 2000;37:89–121. Keen CL, Ensunsa JL, Watson MH et al. Nutritional aspects of manganese from experimental studies. Neurotoxicology. 1999;20:213–223. Kwik-Uribe C, Smith DR. Temporal responses in the disruption of iron regulation by manganese. J Neurosci Res. 2006;83:1601–1610. !. 32!.

(35) Liberman MC, Gao J, He DZ et al. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature. 2002;419: 300–304. Ma C, Schneider SN, Miller M et al. Manganese Accumulation in the Mouse Ear Following Systemic Exposure. J Biochem Mol Toxicol. 2008;22:305–310. McCord JM. Iron- and manganese-containing superoxide dismutases: structure, distribution, and evolutionary relationships. Adv Exp Med Biol. 1976;74:540–550. Milatovic D, Zaja-Milatovic S, Gupta RC, Yu Y et al. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol. 2009;240:219– 225. Moller, A.R. Hearing: Anatomy, Physiology, and Disorders of the Auditory System, second edition. Elsevier, Oxford, UK. 2006;pp.163-170. Myers JE, Fine J, Ormond-Brown D et al. Estimating the prevalence of clinical manganism using a cascaded screening process in a South African manganese smelter. Neurotoxicology. 2009;30:934–940. Myers JE, teWaterNaude J, Fourie M, Zogoeh B et al. Nervous system effects of occupational manganese exposure on South African manganese mineworkers. Neurotoxicology. 2003;24:649–656. Nikolov Z. Hearing reduction caused by manganese and noise. JFORL J Fr Otorhinolar- yngol Audiophonol Chir Maxillofac. 1974;23:231– !. 33!.

(36) 234. Normandin L, Hazell AS. Manganese neurotoxicity: an update of pathophysiologic mechanisms. Metab Brain Dis. 2002;17:375–387. Olanow CW, Good PF, Shinotoh H et al. Manganese intoxication in the rheusus monkey: a clinical, imaging, pathologic and biochemical study. Neurology. 1996;46:492-498. Oliver D, He DZ, Klocker N et al. Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science. 2001;292:2340–2343. Orent ER, McCollum EV. Effects of deprivation of manganese in the rat. J Biol Chem. 1931;92:661–678. Pal PK, Samii A, Calne DB. Maganese neurotoxicity: a review of clinical features, imaging and pathology. NeuroToxicology. 1999;20:227-238. Park JD, Kim KY, Kim DW et al. Tissue distribution of manganese in iron-sufficient or iron-deficient rats after stainless steel welding- fume exposure. Inhal Toxicol. 2007;19:563–572. Park RM, Bowler RM, Roels HA. Exposure-response relationship and risk assessment for cognitive deficits in early welding-induced manganism. J Occup Environ Med. 2009;51:1125–1136. Peter D, Xudong Wu, Mary Ann Cheatham et al. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron. 2008;58(3):333–339. !. 34!.

(37) Rajagopalan L, Greeson JN, Xia A et al. Tuning of the outer hair cell motor by membrane cholesterol. J Biol Chem. 2007;282:36659– 36670. Rajagopalan L, Organ-Darling LE, Liu H et al. Glycosylation regulates prestin cellular activity. J Assoc Res Otolaryngol. 2010;11:39–51. Rama Rao KVR, Reddy PVB, Hazell AS et al. Manganese induces cell swelling in cultured astrocytes. Neurotoxicology. 2007;28:807–812. Rose C, Butterworth RF, Zayed J, Normandin L et al. Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver disfunctyon. Gastroenterology. 1999;117:640–644. Ruebhausen MR, Brozoski TJ, Bauer CA. A comparison of the effects of isoflurane and ketamine anesthesia on auditory brainstem response (ABR) thresholds in rats. Hearing Research. 2012;287:25-29. Santos-Sacchi J, Song L, Zheng J et al. Control of mammalian cochlear amplification by chloride anions. J Neurosci. 2006;26:3992–3998. Schaechinger TJ and Oliver D. Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers. Proc Natl Acad O Sci U S A. 2007;104:7693–7698. Seidman MD, Quirk WS and Shirwany NA. Mechanisms of alterations in the microcirculation of the cochlea. Ann NY Acad Sci. 1999;884:226–232. Sfondouris J, Rajagopalan L, Pereira FA et al. Membrane composition !. 35!.

(38) modulates prestin-associated charge movement. J Biol Chem. 2008;283:22473–22481. Sistrunk SC, Ross MK, Filipov NM. Direct effects of manganese compounds on dopamine and its metabolite Dopac: An in vitro study. Environ Toxicol Pharmacol. 2007;23:286–296. Uy J, Forciea MA. In the clinic. Hearing loss. Ann intern Med. 2013;158:ITC4. Von JR. Veber mangantoxikosen und manganophobie. Munch Med Wochenschr. 1907;20:969-972. Wangemann P, Liu J, Marcus DC. Ion transport mechanisms response for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hearing Research. 1995;84:19-29. Wedler FC, Denman RB. Glutamine synthetase: the major Mn(II) enzyme in mammalian brain. Curr Top Cell Regul. 1984;24:153–169. William E. Brownell, Ph.D. How the ear works – nature’s solutions for listening. Volta Rev. 1997;99:9–28. Willott JF. Measurement of the auditory brainstem response (ABR) to study auditory sensitivity in mice. Curr Protoc Neurosci. 2006;Unit 8.21B:chapter 8. Xia A, Song Y, Wang R et al. Prestin regulateon and function in residual outer hair cells after noise-induced hearing loss. PLoS ONE. 2013;8:e82602. Yamada M, Ohno S, Okagasy I et al. Chronic manganese poisoning: a !. 36!.

(39) neuropathological study with determination of manganese distribution in the brain. Acta Neuropathol (Berl). 1986;71:723-728. Yang SY, Chen CY, Lee LH et al. New frontier in health effects of welding fume. Journal of Occupational Safety and Health. 2012;20:394-407. Yin Z, Aschner JL, dos Santos AP et al. Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Res. 2008;1203:1–11. Yin Z, Jiang H, Lee ES, Ni M et al. Ferroportin is a manganeseresponsive protein that decreases manganese cytotoxicity and accumulation. J Neurochem. 2010;112:1190–1198. Zhang F, Xu Z, Gao J, Xu B et al. In vitro effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain. Environ Toxicol Pharmacol. 2008;26:232–236. Zhang S, Fu J, Zhou Z. In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicol In Vitro. 2004;18:71–77. Zhao F, Cai T, Liu M, Zheng G et al. Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci. 2009;107:156–164. Zheng J, Shen W, He DZ et al. Prestin is the motor protein of cochlear !. 37!.

(40) outer hair cells. Nature. 2000;405:149–155.. 2001;20:10.. !. 38!.

(41) 8. 1. ABR. (Willott JF, 2006). !. 39!.

(42) 2. 12k Hz (MnCl2). !. (saline). 10mg/kg. 50mg/kg. 40!. 50 70.

(43) 3. 32k Hz (MnCl2). !. (saline). 10mg/kg. 50mg/kg. 41!. 50 80.

(44) 4. Hz(c) 32k Hz(d). 8k Hz(a). (saline) (* p 0.05. !. 24k. ABR (MnCl2 10mg/kg). 50mg/kg)都. 16k Hz(b). ** p 0.01). 42!. (MnCl2.

(45) 5.. (saline) total CL count. luminol. CL count (* p 0.05. !. ** p 0.01). 43!. lucigenin. (a) (b).

(46) 6.. (a) ( ). !. 44!. (b)(c).

(47) 7.. (a). (b)(c). prestin (. /. !. 45!. prestin positive area).

(48) 8.. (b)(c). c-caspase-3. ( c-caspase-3 positive. area) !. 46!.

(49) 9. SGN c-caspase-3. c-caspase-3. (a). SGN. (c). (. !. c-caspase-3 positive area). 47!.

(50)

參考文獻

相關文件

- In the current lesion, the epithelioid cells were positive for S100 protein and no sustentacular cells were identified, effectively ruling out PGL as the diagnosis. -

 Finally, the immunohistochemical results in the present case highlights that Bcl-2 negativity in granular cells indicating an apoptotic process, CD-68 positivity in granular

(E) Varying numbers of tumour cells expressing cancer antigen 125 are present in the lining of tubules (objective magnification ¥10).. The arrowed cells show strong nuclear

- D2-40 immunostaining was also performed and observed to be positive in the endothelial cells lining the lymphatic

Its main tool is the stem cells that are seeded on the surface of biomaterials (scaffolds), in order to create a biocom- plex. Several populations of mesenchymal stem cells are found

- In another study, when PDLSCs combined with stem cells from the dental apical papilla, (SCAPs), isolated from the 3rd molar, were seeded in a scaffold and

The aggressiveness of the lesion and destructive growth noted in the present case, along with fascicular pattern of spindle cells in a mixed inflammatory infiltrate ruled out

From the left, epidermal disarray, plentiful small and bright cells, and scattered larger dendritic cells are apparent in the suprabasal epithelium, indicating likely LM (C), then a