• 沒有找到結果。

無鉛銲錫在球格陣列構裝應用之挑戰

N/A
N/A
Protected

Academic year: 2021

Share "無鉛銲錫在球格陣列構裝應用之挑戰"

Copied!
11
0
0

加載中.... (立即查看全文)

全文

(1)

൑࿖ዤᐁд஧ॾੱЕၹ྅ᑕϡ̝߄ጼ

CHALLENGES FOR THE APPLICATION OF

LEAD-FREE SOLDERS ON BALL GRID ARRAY

PACKAGES

ఄ!ڌ!႔

*

ૺ!͵!᎖

**

ዑ!ځ!྿

ͳ!ކ!౼

Tung-Han Chuang Shih-Ying Chang Ming-Da Cheng Shiuan-Sheng Wang

*ି଱ **౾̀ޢࡁտ ౾̀Ϡ

઼ϲέ៉̂ጯՄफ़ࡊጯᄃ̍඀ጯր࿪̄ၹ྅၁រ室

*

Professor **Post-doctorate †Ph.D. candidate Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C.

Abstract

The adoption of Pb-free solders in lieu of Pb solders is an inevitable trend in the electronics industry. This study sums up the failure modes to which the ball grid array packaging process is susceptible when various Pb-free solders, such as Sn-3.5Ag, Sn-0.9Cu, Sn-58Bi, Sn-51In, Sn-20In-0.8Cu, Sn-20In-2.8Ag, Sn-4Ag-0.5Cu, Sn-3Ag- 0.5Cu and Sn-4Ag-5Cu, are employed. Examples of potential failure modes include: intermetallic embrittlement, gold embrittlement, void formation, Ag3Sn plate formation, pad lifting, Sn-Bi joint degradation caused by Pb contamination, fatigue-induced ductile/brittle transition, Ag thick film dissolution, and non-wetting due to precipitation. Keywords: electronic packaging, lead-free solders, BGA

package, failure analysis.

ၡ ࢋ

࿪̄ၹ྅ଳϡ൑࿖ዤᐁࠎ˘൑Ξਫ਼ᔖ۞ॡ΃ᔌ๕Ăώ ͛ЕᓝЧ჌̙Тј̶൑࿖ዤᐁд஧ॾੱЕၹ྅ᄦ඀ٙ൴ன ৔ຫયᗟĂ׎̚൑࿖ዤᐁΒ߁ĈSn-3.5AgăSn-0.9CuăSn- 58Bi ă Sn-51In ă Sn-20In-0.8Cu ă Sn-20In-2.8Ag ă Sn-4Ag- 0.5CuăSn-3Ag-0.5CuăSn-4Ag-5CuඈЪܛĂᕩৼ̝৔ຫ၁ ּΒ߁Ĉ̬ܛᛳ਑ᕝăܛ਑৔ຫă߽͋ԛјăڕېAg3Snԛ јăዤါࣤᗓăണ঻࿖ౄјSn-BiତᕇК̼ăি౻ౄјؼّ ᖼ਑৔ຫăᅙݓቯ໘ྋ৔ᕝͽ̈́ژ΍ۏౄјዤᐁ̙ማᒅඈĄ ᙯᔣෟȆ ࿪̄ၹ྅ă൑࿖ዤᐁă஧ॾੱЕၹ྅ă৔ᗼ̶ژĄ

1. ݈! ֏

็௚࿪̄ၹ྅ֹϡᅚЪܛٕᜠᗈЪܛ͔ཙᄃО ה ࿪ ྮ ڕ ซ Җ ௡ ྅ (assembly) Ă ͔ ཙ ଵ Е ѣ ಏ ᙝ (Single In-line Package, SIP) ă ᗕ ᙝ (Dual In-line Package, DIP) ٕ α ͞ ଵ Е (Quad Flat Package, QFP)Ă׎̚α͞ଵЕၹ྅੫၆੼ I/O ᇴᅮՐ̏஽ҖȈ ዶѐĂ൒҃༊ၹ྅ I/O ᇴ੼ٺ 300Ăֹϡ QFP ̝ତཙ ม෼૟̈ٺ 0.3mmĂயݡ̙։தᆐᆧĂጱ࡭Ϡயјώ ೩੼ĂЯᑕ҃Ϡ۞ߏͽዤᐁ஧פ΃ܛᛳ͔ཙ۞஧ॾੱ Еၹ྅ (Ball Grid Array Package, BGA)ĂBGA Ϥٺଳ ϡࢬੱଵЕ (area array)Ăᐁ஧ତᕇม෼Ξ಼̂ٸᆵĂ ࢫҲயݡ̙։தĂѩγ၆ٺТཙᇴၹ྅ĂBGA ͎̇ᒺ ̈Ăᄃ็௚͔ཙᓑତ۞ QFP ၹ྅࠹ͧĂΞ༼࠷࿪ྮڕ ۩ม̂ࡗ 49%Ă࿪ّ͞ࢬΞഴ͌ 31% ੈཱི࿪टᄃ 46% Ϲ̢࿪ຏĂЯ҃ᒺൺੈཱིؼᏵ̂ࡗ 46%ĂѩγĂᐁ஧ ۞ҋҖ၆Ҝ (self-alignment) Ϻѣӄٺ׎ᄦ඀։த۞ ೩੼ [1]Ą Ϥٺ஧ॾੱЕၹ྅ߏӀϡዤᐁ஧ᄃОה࿪ྮڕ ᓑତĂၹ྅̰۞೿ͯăދሀቱăૄڕͽ̈́Оה࿪ྮڕ ඈ̙ТՄኳٙԛјሤᑕ˧͹ࢋӮϤዤᐁ஧ٚצĂЯѩ ᐁ ஧ ତ ᕇ ۞ Ξ ያ ޘ ૟ ՙ ؠ ஧ ॾ ੱ Е ၹ ྅ ۞ ֹ ϡ ု ׻ĂᇆᜩЯ৵Β߁Ĉᐁ஧ј̶ᄃ຋ඕၹăᐁ஧͎̇ᄃ ԛېăᐁ஧ତᕇ੼ޘăᐁ஧ዤါԛё (Solder Mask Defined, SMD ٕ Non-Solder Mask Defined, NSMD) ᄃܑࢬ఍ந (surface finishes)ăᐁ஧̶Ҷ (Б႕ă̚δ ۩৿ٕม࿣۩৿)ăᐁ஧ม෼ăāዤᄃॡड़୧ІඈĂ׎ ̚ᐁ஧ј̶Ϥٺ࿪̄யຽܜ˳ͽֽͽ Sn-37Pb Ъܛࠎ ͹Ăѣᙯ BGA ᐁ஧ତᕇΞያޘ۞࠹ᙯࡁտϺ̂ొ੫ ၆ѩ็௚В೿࿖ᐁЪܛ [2~8]Ą

(2)

ܕѐֽĂϤٺᒖܲຍᙊ۞೩چĂ࿪̄யݡԼϡ൑ ࿖ዤᐁ۞ײᓏ͟ৈ੼ႚ [9]Ăለ߷ВТξಞ̏ՙᛉҋ ̳̮ 2008 ѐ̮͡ 1 ͟੓Бࢬ༰ϡӣ࿖࿪̄யݡĂ͟ ώೀछ̳̂Φ (HitachiăNECăSonyăToshiba ඈ) Ϻ ̏ ࢎ ؠ ܕ ഇ ྿ ז ഴ ͌ ࿖ ֹ ϡ ณ 50% ۞ ϫ ᇾ Ă Matsushita ̳Φϫ݈Տ࣎͡Ϡய෹࿅ 40,000 ֹ࣎ϡ൑ ࿖ዤᐁ۞ਜ਼ҰЍჄ፟Ă֭࿰ࢍٺܕഇԆБ૟࿖Ϥ࿪̄ யݡ̚ᅁ΍ĂNokia ̈́ Toshiba ̳Φՙؠͽ Sn-Ag-Cu ൑࿖ዤᐁϡٺ׎Ϡயቢ˯ [10]Ă1997 ѐΐो̂ Nortel ̳ΦϺϠயௐ˘׍̙ӣ࿖۞ॸ˯ݭ࿪ྖĂ׎࿪ྮڕ௡ ІତЪֹϡ Sn0.7Cu ൑࿖ዤᐁ [11]Ă઼࡚ᔵ൒ѝд 1990 ѐಶ̏Ϥણᛉੰ೩९טؠ̍ຽயݡ༰ϡ࿖̝ڱ ΄ĂҭЯ߆થӀৈ࠹̢֎˧҃дϲڱ˯̪൑ซणĂ൒ ҃дለ߷̈́͟ώ۞ᑅ˧˭Ăధк̳Φ (͍׎ՠ֘ᄦౄ ຽ̈́࿪ܫ఼ੈຽ) Ϻ൑ڱཉְ֗γĂּт Motorola ̳ Φ̏ࢎ΍׎൴ण൑࿖யݡ۞ॡ඀ᄃ̍ү޽΄ĄѩγĂ ధкࢦࢋ̍ຽ௡ᖐт NEMIăEIA ̈́ IPC ˵д᎕ໂࡁ થтңЯᑕ൑࿖ዤᐁϲڱ఼࿅ޢ̝኏ᑝĂధкጯఙࡁ տ፟ၹ (NCMSăNISTă֧ঔ̂ጯඈ) ͽ̈́ధкዤᐁ ᄦౄ̳Φ (Alpha MetalsăAIMăKesterăIndium ඈ) Ӯ ̏Ըڦໂ͕̂˧ࡁ൴൑࿖ዤᐁĄ Яᑕॡ΃ሗ߹Ă஧ॾੱЕၹ྅ֹϡ൑࿖ዤᐁ̏ߏ ൑Ξ੟ᔖ۞ᔌ๕Ă൒҃னล߱൑࿖ዤᐁ஧ॾੱЕၹ྅ ̪ѣధкܨޞҹڇ۞યᗟĂώ͛૟έ̂Մफ़ր࿪̄ၹ ྅၁រވ࠹ᙯࡁտٙ൴னЧ჌൑࿖ዤᐁЪܛᑕϡٺ஧ ॾੱЕၹ྅۞৔ຫ၁ּઇ˘ᕩৼĂ൑Ⴗ۞Ăࢬ၆൑࿖ ዤᐁ۞߄ጼĂயጯࡁࠧᔘѣ˘߱࠹༊ᓞࡴ۞ྮࢋ֕Ą

2. ၁រ͞ڱ

ώ ၁ រ ֹ ϡ Sn-3.5Ag ă Sn-0.9Cu ă Sn-58Bi ă Sn-51In ă Sn-20In-0.8Cu ă Sn-20In-2.8Ag ă Sn-4Ag- 0.5CuăSn-3Ag-0.5CǘSn-4Ag-5CuዤᐁĄ၁រٙ̚ ֹϡ۞஧ॾੱЕၹ྅ૄڕࠎBT๬ቱૄڕ̈́Al2O3౜஭ ૄڕĂ๬ቱၹ྅͎̇ࠎ 7 × 7 × 1mmĂ̰ѣۣ೿֭ͯ ދቱĂBTૄڕ˯ѣ 7 × 7 ࣎ੱЕ̶Ҷ۞ᅚዤါĂဦ 1 ࠎ׎ೀңඕၹᄃ͎̇Ă౜஭ૄڕ݋ٺܑࢬ፵ඕ 7 × 7 ࣎ੱЕଵЕ۞ᅙݓቯዤါĄ BTૄڕ˯ᅚዤါ۞ܑࢬ఍நࠎAu/NiᔠᆸĂ׎ݓ ޘ̶Ҿࠎ 0.7µm׶ 10µmĂ׎̚Niᆸߏࠎ˞֨ͤᅚါ ᄃዤᐁ۞ԣిͅᑕĂAuᔠᆸߏࠎ˞ܑ֨ͤᆸউ̼֭ᆧ ΐᄃዤᐁ۞ማᒅّĄAl2O3౜஭ૄڕ˯̝ᅙݓቯዤါݓ ޘࠎ 20µmĄ ၁រ̶Ҿ૟Ч჌̙Тј̶ᐁ஧ങдૄڕዤါ˯ [12]Ăᐁ஧͎̇Ӯࠎۡश 0.4mmĂ൒ޢซҖਫ਼ዤĄ੫ ၆ Տ ˘ ჌ ̙ Т ј ̶ ۞ ዤ ᐁ ̶ Ҿ ଳ ϡ প ؠ ۞ ਫ਼ ዤ ѡ ቢĂ׎౵੼໢ޘ̂ࡗӮ੼ٺዤᐁႦᕇ 50°CĂਫ਼ዤᚤࠎ ဦ 1 ώࡁտ๬ቱ஧ॾੱЕၹ྅̝ೀңඕၹᄃ͎̇ Fig. 1 Geometry of BGA speciments used in this

study ̣߱Ӯ໢ડሤࢲ၆߹ёĄਫ਼ዤޢ۞ྏͯГٺ̙Т໢ޘ ̈́ॡม˭ซҖॡड़఍நĂͽሀᑢၹ྅၁ᅫֹϡ̝ྻү ୧ІĂٙѣྏͯӮซҖၟࢬܛ࠹៍၅Ă֭ͽ SEMă EDXăEPMA ඈᆇጡ̶ژࠧࢬٙϠј̬ܛᛳ̼Ъۏ۞ ј̶ĄՏ჌൑࿖ዤᐁ஧ॾੱЕၹ྅ྏͯΩγซҖଯ஧ ീྏĂͽෞҤତᕇ۞ૻޘĂొ̶ၹ྅ซҖજၗি౻ྏ រĄଯ஧ീྏ̈́ি౻ྏរӮֹϡ MTS-Tytron-250 ຋ ̈࢑ఈྏរ፟ĂѩᆇጡΞͽд౵̈ 0.001N ࢑ఈ̈́ 0.1µm Ҝொ˭ซҖᐖၗ̈́જၗ፟ୠّኳീྏĄଯ஧ྏ រఢቑֶ໰ JEDEC ᇾ໤ (JESD22-B117)Ăྏរ̚ଯ ˥Җซిதࠎ 0.1mm/secĂ੼ޘࠎᐁ஧ۡश۞ 1/2Ăଯ ஧ീྏޢ۞ᇹݡซҖ৔ᕝࢬ៍၅Ăͽଣ੅৔ຫ۞ݭၗ ᄃ፟நĄ

3. ඕڍᄃ੅ኢ

ტ Ъ Ч ჌ ̙ Т ј ̶ ൑ ࿖ ዤ ᐁ ஧ ॾ ੱ Е ၹ ྅ ၁ រĂΞᕩৼ΍˭Е৔ຫ९ּĈ

3.1 ̬ܛᛳ਑ᕝ

Sn-20In-0.8Cu Ъܛ̝׽୵࠹ቢ໢ޘ̶Ҿࠎ 163°C ᄃ 187°CĂѩ൑࿖ዤᐁ͹ࢋ۞ᐹᕇࠎ׎Ⴆᕇତܕ็௚ ۞В೿࿖ᐁЪܛĂϺӈ੫၆В೿ Sn-0.9Cu ൑࿖ዤᐁ۞ ੼ႦᕇયᗟΐͽԼචĂIn ۞୹ΐੵ˞ࢫҲႦᕇĂՀΞ ೩੼Ъܛ۞ԩሕតّ̈́֨ͤܛ਑ன෪۞൴ϠĄ ဦ 2(a) ࠎѩ჌ Sn-20In-0.8Cu ൑࿖ዤᐁਫ਼ዤޢĂ Гགྷ 115°C ॡड़఍ந 1,000 ̈ॡ̝ܛ࠹௡ᖐĂዤᐁᄃ ૄڕ˯۞ Au/Ni ᔠᆸͅᑕĂٺ׎ࠧࢬ఍Аޢԛј׌჌

(3)

(a) 界面介金屬型態

(b) 推球試驗斷面組織

ဦ 2 Sn-20In-0.8Cu ዤ ᐁ ஧ ॾ ੱ Е ၹ ྅ ᄦ ඀ གྷ

115°C ॡ ड़ 1,000h ޢ ̝ ৔ ຫ ९ ּ Ĉ (IM1:

Cu6(Sn,In)5 + Ni3(Sn,In)4; IM2: Ni3 (Sn,In)2)

Fig. 2 Sn-20In-0.8Cu solder joint in BGA pack- aging after aging at 115°C for 1,000 hours, (a) morphology of the intermetallic compounds; (b) fractography after ball shear test

ࠎCu6(Sn,In)5ᄃNi3(Sn,In)4஄Ъ௡јĂIM2 ̬ܛᛳ௡ј

ࠎNi3(Sn,In)2Ąଯ஧ྏរពன਑ّ৔ᕝĂତᕇૻޘϤ ਫ਼ዤېၗ۞ 4.5NࢫҌ 3.2NĂ৔ᕝҜཉϺϤࣧАࡍ࿅ ዤᐁ̰ొᖼೱࠎڻ඾IM2 ̬ܛᛳᆸĂᙋ၁ࠧࢬ̬ܛᛳ ਑ᕝࠎ׎ତᕇૻޘК̼۞ჹЯ [13]Ą

3.2 ܛ਑৔ຫ

В೿ Sn-0.9Cu Ъܛࠎ˘ໂజ࠻р۞൑࿖ዤᐁĂ࡚ ઼઼छ࿪̄ᄦౄםົ (NEMI) ౵ܕޙᛉਫ਼ዤ (reflow) ᄦ඀ଳϡ Sn-3.9Ag-0.6Cu ЪܛĂگዤ (wave soldering) ᄦ඀ଳϡВ೿ Sn-0.9Cu ЪܛĄѩ൑࿖ዤᐁႦᕇ੼྿ 227°CĂࠎ׎౵͹ࢋ৿ᕇĂҭЯ׍ѣྵָ۞ତЪૻޘ ᄃҲຆ۞јώĂ҃צזຽࠧࢦෛĄ ੫၆൑࿖ዤᐁਫ਼ዤᄦ඀ٙซҖ̝ࡁտĂဦ 3(a) ព ϯSn-0.9Cuዤᐁਫ਼ዤޢĂዤါ˯۞ᔠAuᆸԆБᏉˢዤ ᐁ̚Ă֭ԛјफᑎې(Au,Ni)Sn4̬ܛᛳ̼ЪۏĂ҃д ତᕇࠧࢬ఍ԛј(Cu,Ni,Au)6Sn5̬ܛᛳᆸĂѩॡଯ (Au, Ni)Sn4 IM1

(Cu, Au, Ni)6Sn5

IM2

Ni

(a) 迴銲後

(b) 150°C 時效 300 小時

ဦ 3 Sn-0.9Cu ዤᐁ஧ॾੱЕၹ྅৔ຫ९ּ Fig. 3 Morphology of the Sn-0.9Cu solder joint of

the BGA package after (a) reflow; (b) aging at 150°C for 300 hours ஧ૻޘ੼྿ 8.4NĄ൒҃ޢᜈд 150°Cॡड़఍ந 300h ޢĂࣧАҜٺዤᐁ̰ొ۞ (Au,Ni)Sn4̬ܛᛳົаזࠧ ࢬ఍ĂֹࣧАࠧࢬ̝̬ܛᛳᆸ̰Auӣณ೩੼˘ࢺ (ဦ 3(b))ĂѩॡซҖଯ஧ྏរΞ൴ன׎৔ᕝҜཉڻ඾ࠧࢬ ۞̬ܛᛳᆸĂତᕇૻޘϺ಼̂ࢫҲҌ 5.1N [14]Ą

3.3 ߽͋ԛј

Sn-20In-2.8Ag тТ Sn-20In-0.8Cu Ъܛ˵ߏࠎ˞ ࢫҲВ೿ Sn-3.5Ag ЪܛႦᕇ҃୹ΐ In ̮৵Ă׎׽୵ ࠹ቢ໢ޘ̶Ҿࠎ 175°C ᄃ 187°CĂѩ൑࿖ዤᐁጾѣໂ ָ۞ؼणّᄃԩሕតّĄ ൒҃Ăώࡁտ൴னSn-20In-2.8Ag஧ॾੱЕၹ྅གྷ ਫ਼ዤޢĂГซҖ 100°Cॡड़఍ந 700 ̈ॡ (ဦ 4)Ăᐁ ஧ତᕇ̰ొᄃࠧࢬӮ΍னځព۞߽͋Ăѩ߽͋۞ԛј ᄃ̬ܛᛳ̼Ъۏјܜ࠹ᙯᓑĂ׎ඕڍጱ࡭ᐁ஧৔ᕝڻ ࠧࢬ൴ϠĄѩSn-20In-2.8Agዤᐁд 150°C̙Тॡมซ Җॡड़఍நޢĂ߽͋ԛјՀΐᚑࢦ (ဦ 5)Ă༊ॡड़ॡม ܜ྿ 1,000 ̈ॡĂᐁ஧ೀͼតј۩͕ඕၹ(ဦ 5(e))Ăଯ ஧ྏរૻޘϺϤਫ਼ዤېၗ۞ 5.1NࢫҌ 3.5N [15]Ą

(4)

AuIn2

(a) ࠧࢬ̬ܛᛳ̈́ෘᓀݭၗ (b) ଯ஧ྏរᕝࢬ௡ᖐ

ဦ 4 Sn-20In-2.8Ag ዤᐁ஧ॾੱЕၹ྅ᄦ඀གྷ 100°C ॡड़ 700h ޢ̝৔ຫ९ּ

Fig. 4 Sn-20In-2.8Ag solder joint in BGA packaging after aging at 100°C for 700 hours: (a) morphology of the intermetallic compounds and cracks; (b) fractography after ball shear tests

(a) 100h (b) 300h

(c) 500h (d) 700h (e) 1000h ဦ 5 Sn-20In-2.8Ag ዤᐁ஧ॾੱЕၹ྅གྷ 150°C ̙Тॡมॡड़ޢ̝߽͋ԛј৔ຫ९ּ

Fig. 5 Voids formation for Sn-20In-2.8Ag solder joint in BGA packaging after aging at 150: (a) 100 h; (b) 300 h; (d) 500 h; (d) 700 h; (e) 1,000 h

(5)

3.4 ڕېAg

3

Sn̬ܛᛳԛј

В೿ Sn-Ag-Cu րЕЪܛߏజෛࠎ౵ѣ፟ົଳϡ ۞൑࿖ዤᐁĂ׎Ⴆᕇࡗд 216 ~ 218°C ̝มĂ׍ѣ։ р۞፟ୠّኳĂͷᄃૄՄѣޝр۞ማᒅّĄ ˘ਠଐڶĂSn-Ag-Cuዤᐁ̰ొົ೸Ҷ඾ᔺ௕ې Ag3Sn̬ܛᛳ࠹Ă͹ࢋԷႊژ΍ૻ̼ड़ᑕĂ൒҃ώࡁ տ൴ன૟˘ј̶ࠎSn-4Ag-0.5Cu۞஧ॾੱЕၹ྅ਫ਼ዤ ޢĂᐁ஧̰ొົϠј̂๴ڕې۞Ag3Sn̬ܛᛳ[16] (ဦ 6(a) ׶ဦ 6(b))Ăޢᜈ۞જၗি౻ྏរពϯෘᓀ͹ࢋ ൴ϠٺAg3Snڕ๴ᄃዤᐁૄՄ۞۞ࠧࢬćѩγĂܜ୧ ڕېAg3Sn̬ܛᛳ۞хдϺົԛјᗝγ۞࿪ྮాඕĂ ౄј࿪ّ۞ԼតĄ ૟Ω˘ј̶ࠎSn-3Ag-0.5Cu۞൑࿖ዤᐁ஧ॾੱЕ ၹ྅ਫ਼ዤޢ̝ܛ࠹௡ᖐពϯᐁ஧̰ొ̙֭ົயϠڕ ېAg3Sn̬ܛᛳ(ဦ 6(c) ׶ဦ 6(d))ĂϤѩᙋ၁ΞᖣϤ አፋዤᐁЪܛ̰AgӣณҲٺ 3wt%ĂͽԺͤѣच۞ڕ ېAg3SnϠјĄ

3.5 ੼໢ॡड़ዤါࣤᗓ

В೿Sn-3.5AgЪܛ˵ߏ࠹༊జ࠻р۞൑࿖ዤᐁĂ Ϥٺ̰ొAg3Snژ΍࠹۞ૻ̼үϡĂѩ჌ዤᐁ׍ѣໂ ָ۞፟ୠૻޘᄃԩሕតّĂ221°C۞੼Ⴆᕇజ̳ᄮߏ ѩЪܛפ΃็௚Sn-37Pbዤᐁ۞ᅪᘣĂ൒҃၁រពϯ д஧ॾੱЕၹ྅۞ᑕϡ˯ĂSn-3.5Ag۞યᗟֲ̙ٺ׎ ΁൑࿖ዤᐁĈ݈ࢗSn-0.9Cuዤᐁ஧ॾੱЕၹ྅۞ܛ਑ ৔ຫன෪Тᇹ൴ϠдSn-3.5AgЪܛ [17] (ဦ 7)Ă݈ࢗ Sn-4Ag-0.5Cu۞̂๴ڕېAg3Sn̬ܛᛳ༊൒˵хдٺ Sn-3.5Ag஧ॾੱЕၹ྅[17] (ဦ 8)Ă҃༊ܛ਑ᄃAg3Sn ڕ ې ̬ ܛ ᛳ Т ॡ ΍ ன д ᐁ ஧ ᄃ ዤ ါ ࠧ ࢬ ॡ ( ဦ 9(a))Ăӈֹߏڀෳ۞BTૄڕ˵дዤါડાԛјᚑࢦય ᗟ (ဦ 9(b))Ă׎ඕԊߏጱ࡭ଯ஧ྏរॡ൴Ϡዤါࣤᗓ (ဦ 9(c))Ăᐁ஧ତᕇૻޘϺϤ 8.9N಼̂ࢫҌ 2.9N[17]Ą

3.6 ണ঻࿖ౄј Sn-Bi ዤᐁତᕇК̼

В೿ Sn-58Bi ዤᐁጾѣ։р۞፟ୠૻޘᄃԩি౻ ّĂ׎Ⴆᕇࠎ 138°CĂᆊॾҲຆĂࠎ࠹༊ѣሕ˧۞Ҳ ໢൑࿖ዤᐁĂҭߏд࿪̄யຽԆБซˢ൑࿖ዤᐁᄦ඀ ݈۞࿅ഭॡഇĂొ̶న౯̮̈́ІΞਕ̪ണ঻຋ณ࿖Ă ఺ֱ຋ณ࿖˘ό஄ˢ Sn-Bi ൑࿖ዤᐁ̰Ă૟ԛјˬ̮ ̬ܛᛳ࠹ (Bi-30Pb-8Sn)Ăѩˬ̮̬ܛᛳ࠹۞Ⴆᕇ่ ࠎ 97°CĂдֹϡ˯૟ౄјତᕇ۞К̼Ąဦ 10 ࠎ Sn-58Bi ୹ΐ̙Т࿖ӣณ̝ DSC ̶ژඕڍĂд 97°C хдѣ˘ӛሤपĂࠎ݈ࢗ Bi-30Pb-8Sn Ҳ໢̬ܛᛳ࠹ ۞ϠјͅᑕĂᐌ඾࿖ӣณ۞೩੼Ăѩӛሤपᆧ̂Ăព ϯѩˬ̮ Bi-30Pb-8Sn ̬ܛᛳ۞Ϡјณᐌ඾࿖ӣณ۞

Ag3Sn Ag3Sn (a) (b)

(c) (d)

ဦ 6 (a)ă(b)ĈSn-4Ag-0.5Cu ዤᐁ஧ॾੱЕၹ྅ਫ਼ዤޢԛјڕېAg3Sn̬ܛᛳć(c)ă(d)Ĉͧྵ Sn-3Ag-0.5Cu

ዤᐁ൑ѩன෪

(6)

(c), (d): compared with Sn-3Ag-0.5Cu showing the solder without the phenomenon

ဦ 7 Sn-3.5Ag ዤᐁ஧ॾੱЕၹ྅གྷ 175°C ॡड़

1,000 h ޢ۞৔ຫ९ּ

Fig. 7 Morphology of the Sn-3.5Ag solder joint of the BGA package after aging at 175°C for 1,000 h

ဦ 8 Sn-3.5Ag ዤ ᐁ ஧ ॾ ੱ Е ၹ ྅ གྷ 200°C ॡ ड़

300hޢĂᐁ஧̰ొ΍னλ̂۞ڕېAg3Sn̬ܛ

Fig. 8 Platelike Ag3Sn formation for Sn-3.5Ag

solder joint in BGA packaging after aging at 200°C for 300 h ೩੼҃ᆧкĄဦ 11 ̝ଯ஧ྏរඕڍᙋ၁୹ΐ 0.5wt% ࿖ٺѩ Sn-58Bi ዤᐁ̚Ă׎ᐁ஧ତᕇૻޘϤࣧА 9.1N ࢫҲҌ̂ࡗ 7.6NĂᐌ඾࿖୹ΐณ೩੼Ҍ 2.0wt%Ăᐁ ஧ତᕇૻޘϺᚶᜈࢫҌ 7.3NĄ

3.7 ি౻ౄјؼّᖼ਑৔ຫ

ဦ 12(a) ࠎIn-49Snዤᐁ஧ॾੱЕၹ྅ਫ਼ዤޢ۞ ܛ ࠹ ௡ ᖐ Ă ᔵ ൒ д ׎ ᐁ ஧ ᄃ ዤ ါ ۞ ࠧ ࢬ ఍ ົ Ϡ ј AuIn2̬ܛᛳĂҭᐖၗଯ஧ྏរពϯ৔ᕝڻ඾ᐁ஧̰ ొĂ׎৔ᕝࢬӔனؼّ৔ᗼপᇈ[18] (ဦ 12(b))ĂϺӈ ࠧࢬ̝AuIn2̬ܛᛳ၆ѩၹ྅৔ຫ֭൑ᇆᜩĂ൒҃જ ၗᝈѡি౻ྏរݒពϯෘ৳ڻ඾ࠧࢬAuIn2̬ܛᛳؼ ҩ(ဦ 12(c))Ă׎৔ᕝϺᖼೱࠎ਑ّপᇈ[19]Ą

3.8 ᅙݓቯ໘ྋ৔ᕝ

В೿ In-49Sn ЪܛႦᕇ่ 118°CĂࠎ˘׏ݭ۞Ҳ Ⴆᕇ൑࿖ዤᐁĂд࿪̄ၹ྅ᄦ඀̚Ăྵޢ߱۞ਫ਼ዤ໢ ޘυืҲٺ݈߱ĂѩγĂొ̶࿪̮̄І၆໢ޘྵࠎୂ ຏĂ఺ֱଐڶӮᅮֹϡҲႦᕇዤᐁĄ (a) (b) (c) ဦ 9 (a) Sn-3.5Ag ᐁ ஧ ତ ᕇ གྷ 200°C ॡ ड़ ޢ Ă Ni3Sn4,ă(Au,Ni)Sn4 ᄃAg3Sn ˬ჌̬ܛᛳТ ॡϠјć(b) Sn-3.5Agᐁ஧ତᕇགྷ 200°C 1,000h ॡ ड़ ޢ BT ૄ ڕ ̈́ ዤ ါ ΍ ன ᚑ ࢦ ৔ ຫ ć (c) Sn-3.5Agᐁ஧ତᕇགྷ 200°Cॡड़ 1,000hޢ۞ଯ ஧ᕝࢬĂӔனዤါࣤᗓன෪

Fig. 9 (a) Ni3Sn4, (Au,Ni)Sn4 and Ag3Sn formation

for Sn-3.5Ag solder joint in BGA packaging after aging at 200°C; (b) Damage of the BT substrate and solder for Sn-3.5Ag solder joint of BGA package at 200°C for 1,000 h; (c) Spalling of the solder pad for Sn-3.5Ag solder joint of BGA package at 200°C for 1,000 h

дAl2O3౜஭ૄڕ˯፵ඕ 20µmݓ۞ᅙݓቯዤါ

(ဦ 13(a))Ă֭ങˢIn-49Snᐁ஧Ăͽᄦઇ౜஭஧ॾੱЕ ၹ྅ĄѩIn-49Sn/Agݓቯࠧࢬд 275°CซҖዤᐁͅᑕ 15minޢĂពϯᅙݓቯԣి໘ྋซˢዤᐁ̚Ă֭дࠧ

(7)

ࢬ఍ԛјෘ৳(ဦ 13(b))Ăጱ࡭ዤᐁᄃ౜஭ૄڕ̶ᗓ [20]Ą

ဦ 10 Sn-58Bi ୹ΐ̙Т Pb ӣณ̝ DSC ѡቢ Fig. 10 DSC analysis of Sn-58Bi solder with various

Pb contents 0.0 0.5 1.0 1.5 2.0 2.5 3.0 7.0 7.5 8.0 8.5 9.0 9.5 S h ear S tr ength (N ) Pb Content( wt.%) ဦ 11 Sn-58Bi ୹ΐ̙Т Pb ӣณ̝ଯ஧ૻޘ Fig. 11 Ball shear strengths of Sn-58Bi solder with

various Pb contents AuIn2 (a) (b) AuIn2 (c)

ဦ 12 (a) In-49Sn ஧ॾੱЕၹ྅ਫ਼ዤޢ̝ࠧࢬ̬ܛᛳݭၗć(b) In-49Sn ஧ॾੱЕၹ྅ਫ਼ዤޢซҖᐖၗଯ஧ྏ រĂ৔ᕝࡍ࿅ᐁ஧̰ొ֭Ӕனؼّ৔ຫপᇈć(c) In-49Sn ஧ॾੱЕၹ྅ਫ਼ዤޢซҖજၗᝈѡি౻ྏរĂ Ӕனڻ̬ܛᛳ਑ᕝপᇈ

(8)

In-49Sn solder joint of the BGA package after ball shear tests; (c) IN-49Sn solder joint in BGA packaging showing brittle fracture after bending fatigue tests

(9)

(a)

(b)

ဦ 13 (a) Al2O3౜஭ૄڕܑࢬ፵ඕᅙݓቯዤါ̝ၟ

ࢬܛ࠹ć(b) ᅙݓቯᄃIn-49Snዤᐁд 275°Cͅ

ᑕ 15 ̶ᛗޢĂࠧࢬ΍னෘᓀ

Fig. 13 (a) Cross-sectional image of Ag thick layer on Al2O3 substrate; (b) Cracks formation

for Ag thick layer with I-49Sn solder reaction at 275°C for 15 minutes

3.9 ژ΍ۏౄјዤᐁ̙ማᒅ

Sn-4Ag-0.5Cu ዤᐁ஧ॾੱЕၹ྅ਫ਼ዤޢពϯ։ р ۞ ତ Ъ ّ Ă ͷ ᄃ ዤ ါ ม ѣ ໂ ָ ۞ ማ ᒅ ّ ( ဦ 14(a))Ă൒҃ѩ Sn-Ag-Cu ዤᐁј̶۞૞Ӏયᗟϫ݈̪ ӧᕘ඾࿪̄ၹ྅ຽࠧ [21]Ă˵јࠎ൑࿖ዤᐁᑕϡ۞˘ ࣎ᅪᘣĂࠎ˞ࡎ৔ѩ૞ӀᅪᘣĂώࡁտϺဘྏ൴ण׎ ΁௡ј۞ Sn-Ag-Cu ൑࿖ዤᐁĂSn-4Ag-5Cu ࠎ׎̝̚ ˘Ą ᔵ൒DSC̶ژពϯѩSn-4Ag-5CuາዤᐁЪܛϺ ࠎВ೿ј̶Ăͷ׎ႦᕇᄃSn-4Ag-0.5Cuዤᐁତܕ (ဦ 15(a) ׶ဦ 15(b))Ăѩγ׎፟ୠૻޘՀᅈ੼ٺSn-4Ag- 0.5CuЪܛĂ൒҃ѩ˘੼CuӣณSn-4Ag-5CuЪܛ׶ዤ ါ۞ማᒅّໂमĂܛ࠹̶ژ൴ன׎̰ొԛјధк̂๴ ېCu6Sn5̬ܛᛳ (ဦ 14(b))Ă఺ֱ̂๴Cu6Sn5̬ܛᛳጱ ࡭ᐁ஧ᄃዤါ൑ڱማᒅ [16]Ą (a) Sn-4Ag-0.5Cu Ag3Sn Cu6Sn5 (b) Sn-4Ag-5Cu ဦ 14 ׌჌௡ј Sn-Ag-Cu ዤᐁਫ਼ዤޢܛ࠹௡ᖐ Fig. 14 Morphology of two solder joints of the BGA

package after reflow

195 200 205 210 215 220 -0.4 -0.3 -0.2 -0.1 0.0 0.1 He at Flow (w /g) Temperature (o C) (a) Sn-4Ag-0.5Cu 195 200 205 210 215 220 225 230 235 -0.4 -0.3 -0.2 -0.1 0.0 0.1 H eat Flow (w/ g ) Temperature (o C) (b) Sn-4Ag-5Cu ဦ 15 ׌჌௡ј Sn-Ag-Cu ዤᐁ̝ DSC ѡቢ Fig. 15 DSC analysis of two Sn-Ag-Cu solders

(10)

[9] B. Trumble,“Get the Lead Out,” IEEE Spectrum, May 1998, pp. 55−60.

4. ඕ! ኢ

[10] P. Zarrow, “Lead-Free: Don’t Fight a Fact, Deal with it,” Circuit Assembly, August 1999, pp. 18−20. ࿖ᐁЪܛଂᘲ੺ॡ΃ֹϡҌ̫Ăૄٺன΃ˠ۞ᒖ ܲຍᙊ҂ณĂฟ൴൑࿖ዤᐁͽפ΃็௚࿖ᐁЪܛߏ࿪ ̄யຽ۞૛׻ЇચĂᔵ൒ώ͛Еᓝధк൑࿖ዤᐁ஧ॾ ੱЕၹ྅ᄦ඀ࡁտٙ൴ன৔ຫયᗟĂҭߏགྷϤ৔ຫ፟ ந۞ᒢྋĂዋ༊Ᏼፄ൑࿖ዤᐁј̶ᄃᄦ඀ણᇴĂ࿪̄ ၹ྅ქҒயݡ۞ॡ΃̪ߏ޽͟ΞޞĄ

[11] A. Grusd, “Connecting to Lead-Free Solders,” Circuit Assembly, August 1999, pp. 32−38.

[12] ఄڌ႔ăͳކ౼ĂĶ஧ॾੱЕၹ྅ϡ෹຋̈ዤᐁ ஧۞ᄦౄ͞ڱ̈́׎྅ཉķ, ̚රЩ઼൴ځ૞Ӏ८ ࣞĂ̳Ә̚ (९ཱི 91109034)Ă2003Ą

ણ҂͛ᚥ

[13] M. J. Chiang, S. Y. Chang and T. H. Chuag, “Reflow and Burn-in of an Sn-20In-0.8Cu BGA Package with Au/Ni/Cu Pad,” Journal of Electronic Materials, 2003 in press.

[1] J. H. Lau (Editor), Ball Grid Array Technology, McGraw-Hill, Inc., New York, 1995.

[2] S. C. Bolton, A. J. Mawer and E. Mammo, “Influence of Plastic Ball Grid Array Design/Material upon Solder Joint Reliability,” The International Journal of Microcircuits and Electronic Packaging, Vol. 18, No. 2, 1995, pp. 109−121. [14] ͳชୂĂĶSn0.9Cu ஧ॾੱЕၹ྅ࠧࢬͅᑕࡁտķ, ઼ϲέ៉̂ጯՄफ़ࡊጯᄃ̍඀ጯࡁտٙჇ̀ኢ ͛Ă2002 ѐĄ [15] ӓपᄫĂĶSn20In2.8Ag ஧ॾੱЕၹ྅ࠧࢬͅᑕ ࡁտķ, ઼ϲέ៉̂ጯՄफ़ࡊጯᄃ̍඀ጯࡁտٙ Ⴧ̀ኢ͛Ă2002 ѐĄ

[3] Y. W. Chan, T. H. Ju, S. A. Herob, Y. C. Lee, J. S. Wu and M. J. Lii, “Reliability Modeling for Ball Grid Array Assembly with a Large Number of Warpage Affected Solder Joints,” ASME Advances in Electronic Packaging, Vol. 19, 1997, pp. 1507−1514. [16] ዑځ྿ĂĶSn-Ag-Cu ዤᐁ஧ॾੱЕၹ྅ࠧࢬͅᑕ ࡁտķ, ઼ϲέ៉̂ጯՄफ़ࡊጯᄃ̍඀ጯࡁտٙ ౾̀ኢ͛Ă2003 ѐĄ [17] ҴߌࣖĂĶSn37PbăSn36Pb2Agăᄃ Sn3.5Ag ዤ ᐁ஧ॾੱЕၹ྅ࠧࢬͅᑕࡁտķ, ઼ϲέ៉̂ጯ Մफ़ࡊጯᄃ̍඀ጯࡁտٙ౾̀ኢ͛Ă2002 ѐĄ [4] Q. Yu, T. Kashiwamura, M. Shiratori and K. Satoh,

“Reliability and Structure Optimization of BGA Packages,” ASME Advances in Electronic Package, Vol. 19, 1997, pp. 1761−1767.

[18] T. H. Chuang, S. Y. Chang, L. C. Tsao, W. P. Weng and H. M. Wu, “Intermetallic Compounds Formed during the Reflow of In-49Sn Solder Ball-Grid Array Packages,” Journal of Electronic Materials, Vol. 32, No. 3, 2003, pp. 195−200.

[5] O. Yu and M. Shiratori, “Thermal Fatigue Reliability Assessment for Solder Joints of BGA Assembly,” Advances in Electronic Packaging, Vol. 26, No. 1, 1999, pp. 239−246.

[6] O. Yu and M. Shiratori, “Effects of BGA Solder Geometry on Fatigue Life and Reliability Assessment,” ܑࢬ၁྅ጯົᄫ, Vol. 1, No. 4, 日 文, 1998, pp. 278−283.

[19] ͳކ౼ĂĶSn-58BiăSn-51In ᄃ Sn-37Pb ஧ॾੱ Еၹ྅۞જၗি౻ࡁտ̈́Ξያޘ̶ژķ, ઼ϲέ ៉̂ጯՄफ़ࡊጯᄃ̍඀ጯࡁտٙ౾̀ኢ͛Ă2003 ѐĄ

[7] R. Rorgren, P. E. Tegehall and P. Carlsson, “Reliability of BGA Packages in an Automotive

Environment,” Journal of Surface Mount

Technology, April 1998, pp. 35−44.

[20] เ˷ްĂĶ࿪̄ၹ྅ In49Sn ൑࿖ዤᐁᄃᅙݓቯ̈́ ᅙૄڕ̝ࠧࢬͅᑕࡁտķ, ઼ϲέ៉̂ጯՄफ़ࡊ ጯᄃ̍඀ጯࡁտٙჇ̀ኢ͛Ă2000 ѐĄ

[8] M. Avery, L. Gopalakrishnan and R. Srivastava, “Interconnect Reliability of Micro BGA and Chip Scale Packages,” Journal of Surface Mount Technology, July 1999, pp. 6−14.

[21] M. Abtew and G. Selvaduray, “Lead-free Solder in

Microelectronics,” Materials Science and

(11)

ڌ

(Tung-Han Chuang) ϔ઼ 42 ѐϠĄᇇ઼೻ဦָপ̂ጯՄफ़౾̀Ąனᖚέ៉ ̂ጯՄफ़ࡊጯᄃ̍඀ጯࡁտٙି଱Ą૞ܜࠎ࿪̄ၹ྅ăՄफ़ତЪă৔ຫ̶ژĄ

͵

(Shih-Ying Chang) ϔ઼ 56 ѐϠĄᇇ઼यॲ̂ጯ፟ୠ౾̀Ăனᖚέ៉̂ጯՄ फ़ࡊጯᄃ̍඀ጯࡁտٙ౾̀ޢࡁտĄ૞ܜࠎ࿪̄ၹ྅ă౜஭ତЪă੼໢ჺᄞĄ

ځ

྿

(Ming-Da Cheng) ϔ઼ 66 ѐϠĄ઼ϲέ៉̂ጯՄफ़ࡊጯᄃ̍඀ጯࡁտٙ౾ ̀Ą૞ܜࠎ࿪̄ၹ྅ă൑࿖ዤᐁ࿪ᔠă຋ඕၹ̶ژĄ

ͳ

ކ

(Shiuan-Sheng Wang) ϔ઼ 54 ѐϠĄ઼ϲέ៉̂ጯՄफ़ࡊጯᄃ̍඀ጯࡁտٙ ౾̀Ą૞ܜࠎ࿪̄ၹ྅ăܛᛳΐ̍ăΞያޘ̶ژĄ ќቇ͟ഇ 92 ѐ 7 ͡ 17 ͟ă࣒ࢎ͟ഇ 92 ѐ 9 ͡ 19 ͟ăତצ͟ഇ 92 ѐ 10 ͡ 2 ͟ Manuscript received July 17, 2003, revised September 19, 2003, accepted October 2, 2003

數據

Fig. 1  Geometry of BGA speciments used in this  study  ̣߱Ӯ໢ડሤࢲ၆߹ёĄਫ਼ዤޢ۞ྏͯГٺ̙Т໢ޘ ̈́ॡม˭ซҖॡड़఍நĂͽሀᑢၹ྅၁ᅫֹϡ̝ྻү ୧ІĂٙѣྏͯӮซҖၟࢬܛ࠹៍၅Ă֭ͽ SEMă EDXăEPMA ඈᆇጡ̶ژࠧࢬٙϠј̬ܛᛳ̼Ъۏ۞ ј̶ĄՏ჌൑࿖ዤᐁ஧ॾੱЕၹ྅ྏͯΩγซҖଯ஧ ീྏĂͽෞҤତᕇ۞ૻޘĂొ̶ၹ྅ซҖજၗি౻ྏ រĄଯ஧ീྏ̈́ি౻ྏរӮֹϡ MTS-Tytron-250 ຋ ̈࢑ఈྏរ፟ĂѩᆇጡΞͽд౵̈ 0.00
Fig. 3  Morphology of the Sn-0.9Cu solder joint of  the BGA package after (a) reflow; (b) aging  at 150°C for 300 hours  ஧ૻޘ੼྿ 8.4NĄ൒҃ޢᜈд 150°Cॡड़఍ந 300h ޢĂࣧАҜٺዤᐁ̰ొ۞ (Au,Ni)Sn 4 ̬ܛᛳົаזࠧ ࢬ఍ĂֹࣧАࠧࢬ̝̬ܛᛳᆸ̰Auӣณ೩੼˘ࢺ  (ဦ 3(b))ĂѩॡซҖଯ஧ྏរΞ൴ன׎৔ᕝҜཉڻ඾ࠧࢬ ۞̬ܛᛳᆸĂତᕇૻޘϺ಼̂ࢫҲҌ
Fig. 4    Sn-20In-2.8Ag solder joint in BGA packaging after aging at 100°C for 700 hours: (a) morphology of  the intermetallic compounds and cracks; (b) fractography after ball shear tests
Fig. 6  (a), (b): Platelike Ag 3 Sn formation for Sn-20In-2.8Ag solder joint in BGA packaging after reflow;
+4

參考文獻

相關文件

Wallace (1989), "National price levels, purchasing power parity, and cointegration: a test of four high inflation economics," Journal of International Money and Finance,

(1996), “A Theory of Organizational Knowledge Creation,” International Journal of Technology Management, Vol. Grayson (1998), If only we knew what we know: The transfer of

The results indicated that packaging of products which reflects local cultural characteristics has a direct and positive influence on consumers’ purchase

Tan et al, (1998), “ Supply Chain Management: Supplier performance and Firm Performance ”, International Journal of Purchasing and Material Management , 34(2) , pp. Frankel,(

Zhong, "Design for Enhanced Solder Joint Reliability of Integrated Passives Device under Board Level Drop Test and Thermal Cycling Test," Electronics Packaging

How, ”An Itermetallic Study of solder joints with Sn-Ag-Cu Lead-Free Solder,” Electronics Packaging Technology Conference ,2000,p.72. Poborets, “Evaluation of Moisture Sensitivity

Lee, ”Effects of Build-Up Printed Circuit Board Thickness on the Solder Joint Reliability of a Wafer Level Chip Scale Package (WLCSP),” IEEE International Symposium

Hong, ―Finite Element Modeling of Thermal Fatigue and Damage of Solder joint in a Ceramic Ball Grid Array Package,‖ Journal of Electronic Materials, Vol. Caers,