• 沒有找到結果。

臭氧應用於水及廢水處理系統改良之研究---子計畫三:臭氧化程序功能之提昇與實際工業廢水之應用(I)

N/A
N/A
Protected

Academic year: 2021

Share "臭氧應用於水及廢水處理系統改良之研究---子計畫三:臭氧化程序功能之提昇與實際工業廢水之應用(I)"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

(2)  (1)() The Functional Increment of Ozonation Process and Application for Industrial Wastewater Treatment      NSC 87-2211-E-009-027     86/8/1~87/7/31.

(3)     . !". #$%&'()*+,-./. After understanding all the results from the ozone solubility and the mass transfer. establish models were 0123456'78(9:;<=)* experiments, >?@?AB3CD>)*EFGB0 established to simulate the behaviors of ozone 8.0 (mg/l)378(90 1atm2atm3atm in solution under different conditions. We also analyze and evaluate the results obtained from 4atm3(pH=3))*H?AB0 1.992 4.0086.2657.956 (mg/l)3=I./,- the ozonation of the chlorophenols chosen in JKL#MNOP78(9pH QR) *FSTPU3VW$XPUY#./H Z[L4Y\]^_A`ab]cMde +fgh2)*+iN3_jk,-I Kl+BR\]m`P+T3no) *+./2JpL q r s )*+3?AB3tu3l+3 m` ABSTRACT The objective of this study is to build the Pressurized ozonation system. It is attempted to increase both the solubility of ozone in solutions and the reaction efficiency of the system . The effects caused by the operating parameters including the reactor pressure, the hydroxyl ion concentration and the ozone gas flow rate were found. The analysis of reaction rate, mineralization efficiency and toxicity. this study. After the ozonation tests of the actual petrochemical wastewater, we can get the chemical oxygen demand removal efficiency and the changes on the biodegradability. Finally economic evaluation for the ozonation system.was also carry out . vwxR12 )*_yz#{|a}2*+9 ~3€k‚ƒ„] †initiator‡ˆ\ *+9‰}2Š*‹ŒLŽ-‘> ’‘g“mX3”€$*+•\]^$_ A2–fgL—ke+fg>˜Y™š ›œ2fgžŸ 3\]¡¢2Jpa 3”£¤¥¦"”aJ2]+¡¢§¨ 2%&R-‘L. ©2)*+¡¢§¨3ª$)*« were carried out during the whole experiment. ¬­¡¢Hg35?>@®2)*_ Furthermore, on the basis of the analysis, we y¯k°\]Š*‹Œ±²³]=$* made within the system we can evaluate the +3´Dµ¶k·¸4a¹º»¼¼H performance of the system..

(4) ¡¢L½£)*>g?AB¾3¿'J p)*ˆ\ÀHÁ¬Â#‰'L Ã. !"#$%& 4.1 '(. Ä)*¡¢§¨2-‘ÅÆLU6ÇÈ< ) 4-1 *+,-./012345 =)*>g2GBcɾˆ\À2Á¬ pH=3 34678)./019 Â#3ÊÂ01Ë)*-‘X2 "^ÌL :5 1atm 2atm 3atm 4atm ; ͹ÎÏÐÑÒÓ)*>@®2? 8.0(mg/l)< = 2>mg/l? 4>mg/l?. ABR#{Ô®2_(QÂÕÖL0<= 6>mg/l? 8>mg/l? @A5BC )*>?@2?AB3×iØ=( DEFGHIJK LMN ./3Ù)*_(QÚ'3EÛÚÜk? OPQRSTU ABLݵ$Þß ºª(à78H)* 4.1.1 PQVW01"pH X678 +§¨LÇ6€Œá¾JpH)*ˆ\À YZ[\]^ PQVW*_` ´Dá'HJâLãp0)*+./VD ä2åæL ç¢èéê. Pi = H ⋅ X i ……………..(1) Pi= xi= . JKabcdefgPQVWhi  pH Xj7kl\fg5"mCn o PQVW_`./01pj7. 8 qrst78u) 4-2 v w 5BC./xy>pH=3? q,z{ |YZ9} t~€‚cW. H=

(5)  (atm/mole fraction). ƒW„ a†‡ˆ qrv‰.          =     +    −      .(2). p H = 1 0 p H = 7. KA:. :  =  ⋅     . . ( 4 ) :  =  ⋅     . . ( 5 ). KB:.   =   × 

(6) −     −   =   × 

(7) −      • . 

(8)   3 d [O3(l ) ]. = K L a([O3* ] − [O3(l ) ]) − …(3) dt K d ([O3(l ) ]) N − ∑ Ki [O3(l ) ][CP ] O3(l):. (. /l). KLa: (m -1) O*3: (mg/l) Kd: o    (min -1) N:  

(9)  n=1.5 Ki :   mol-1min-1 J. Hoigne and H.Bader (1983)[5] Kcp : . 4.1.2 ŠA‹6Œ Ž‹X‘(Xu) 4-3  s’PQVW5“./01 ”•BC no–D Ž*OHŽ‹  ’—_`j˜™‹š 4.2 ›œ'( 4.2.1›œ5,-01"pHX6VW ,-./01 2-›œžŸ ¡* ¢./01£¤¥£¤)4-4 9 :u1atm 0.07525 (min-1) £¤¦2 atm  0.12877(min-1) 3atm0.14354 (min-1)u)4-5w2,4-§›œžŸ  ¡9:u1atm 0.07028 (min-1) £¤¦ 2 atm  0.11097(min-1)  3atm .

(10) 0.13394 (min-1)2,4,6-¨›œu)4-6 w© žŸ ¡*u1atm 0.17932 (min-1). 35%£¤¦ 92% òó) 4-10’a èÐH¼{|./01V0£¤¦. £¤¦2 atm  0.27877(min-1)  3atm 0.30302 (min-1). 2atm"3atm 3 Ê­9C´9:£¤ ¦ 80% 83%ô) 4-11. 4.2.2 ›œ5,-06ª1‹. õ"ö÷ó$ø. 9«›œ¬O­V. 1.. W ®‚ J. Hoigne and H.Bader 5 1983 D f¯Š°¢¬±3  |¬6‹š ²³ 2-›œ 2,4-§› œ 2,4,6-¨›œ5BCxy>pH=3? 5./01<¦ 3atm 3´j˜µ™. 01Aüý 4 þ 6p£¤ = 4 þ 2.. ‹š ¶·•V¸O ) 4-7 4.3 ¹¬º»¼¬6'( ½º¾¹¬¿ ÀÁÂÃÄ ÅÆ ÇAÈÉ ÊËÌÍÎϽº»¼Ð HÑÒ [Ó¬±¤ÔÕÖE×* EØÙÚÛܐÝÞßàáâãÑ 4.3.1 ¬±äžŸª16år )4-8*+æÓ»¼ÝÞ¬ ¬± ä|¬€ȼ¬±äžŸ ç$ ej12.2%ÕÖސaè¼ÝÞ ¬ ¬±äéêë 68.5%Ý $EØÙÚÊ­ÐHãѼ éêë 67.5%)4-9*ì’aèÐH¼¯Š,./01¬‘( fg¬±ä žŸ¡í“0>3atm?./x yî‡ï žŸ¡9:*68.5% 72.5% 87.1%. 3.. 4.. 5.. H&‹¤‹š 2-›œ 2,4-§›œ 2,4,6-¨›œž Ÿ ¡¢./01£¤¥¤  ¬¡ ¬ ´j#$’›œ ¬O­ ¡ ’ jµ™ q ‹¥v, ‹š ‘º»¼ÝÞ¬ ¬±ä žŸç$¤ÔÕ֐aèÐH¼ ãѼç$Ê­9C´ ¢6ü“ ç$a ¢./01£¤¥ üý — _ ` 5 “ . / 0 1 3   £ ¤ç $ ¤ ÐH ¡$5_`G ü. J. A. Roth and D.E. Sullivan, “Solubility of Ozone in Water” Ind. Eng. Chem. Fundam. Vol. 20, pp. 137-140, (1981). 2.. J. L. Sotelo, E. J. Beltran, F. J. Benitez and J. Beltran-Heredia, “Ozone Decomposition in Water:. ȼÝÞ¬ Ê­9Cð ÝÞ¤Ô 1.7%£¤¦ 5.3%>BOD/COD? Õ֐ÐH¼ ݬð 33%£¤ ¦ 60%ÝÞEØÙÚ§èÐH¼ñð. 5“ÁV0./•BC PQ VWh./01j7 üsÝ( ¤Ž ’ŠAµ™.

(11) “3 ‡“01./_` Aab™  " É 1.. 4.3.2 Ê­äÊ­9C9} uʬ䬱äîX v¦Ê­9Ccd. 5“./01ù  úñ¢t./01û“¥ü“./. Kinetic Study”, Ind. Eng. Chem. Res., 26, 39, (1987) 3.. A. Quederni, J. C. Mora and R. S. Bes, “Ozone Absorption. in. water:. Mass. Transfer. and.

(12) Solubility”, Ozone Science and Engoneering, vol. 9, pp. 1-12, (1987). 8. Bruno Langlais, David A. Reckhow, Deborah R. Brink, “Ozone in Water Treatment Application and Engineering”. A. W. W. A. Research. Foundation (1991). model3 1atm model3 2atm model3 3atm model3 4atm 1atm 2atm 3atm 4atm. 7 6. Ozone (mg/l). 4.. 5 4 3 2. 14. 1. . 0. . . . . . . .  . . 10. 20. 30. 40. 50. Time (min).  4-3  . . .  .

(13)   

(14)     !. 0. . !"#$%&. "#"$% &$%     '() 

(15) *+ 

(16) *+. 4.5. 1atm 2atm 3atm. 4.0 3.5 3.0. -ln(C/C0).  . 2.5 2.0 1.5 1.0 0.5. 1atm 2atm 3atm 4atm. 9 8. 0.0. 10. 15. 20. 25. 30.  4-4 2-'()*+$,-./0 $. 6. 12. 5 4 3. 3.5. 2. 3.0. 1. 2.5. 0. 0. 10. 20. 30. 40. 50. 60. Time (min).  4-1  pH=3 

(17) . ln(C / C0). Ozone (mg/l). 5. Time (min). 7. 1atm 2atm 3atm. 2.0 1.5 1.0 0.5 0.0. 0. 5. 10. pH=10 pH=7 pH=3. 8.85. 15. 20. Time (min).  4-5 2,4-3'()*+$,-./0. 8.80. ln(Henry's const.). 0. $12. 8.75 8.70 8.65. 6. 8.60 8.55. 1atm 2atm 3atm 2,4,6-TCP, pH=3. 5. 1.0. 1.5. 2.0. 2.5. 3.0. 3.5. 4.0. 4.  4-2  pH 

(18) . ln(C0 / C). Pressure (atm). 3. 2. 1. 0. 0. 5. 10. 15. Time (min). 20. 25. 30.

(19)  4-6 2,4,6-4'()*+$,-./0.   pH=7. $12. 1atm 2atm 3atm. 0.9 0.8. BOD / COD. 0.7 1.0. COD / COD0. 0.8. 0.3 0.4. 0.0.          . 0. 20. 0.  4-8. 40. 60. 80. 100. 4-11. 120. ?:@

(20) . 1atm 2atm 3atm. 1.0. 0.8. 0.6. 0.4. 0.2. 0. 20. 40. 60. 80. 100. 120. Time (min).  4-9 AB;<8)9: *+$ >?:@

(21)       . 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0. 0. 20. 40. 60. 80. 100. 120. Time (min). 410 C56789: DEFGHIJ 

(22) $%&. 40. 60. 80. 100. 120. AB;<=78*+,9: D. EFGHIJ. 56789: ;<= >. 0.0. 20. Time (min). Time (min). COD / COD0. 0.5 0.4. 0.6. 0.2. BOD5 / COD. 0.6. . 

(23) $%&.

(24)

參考文獻

相關文件

Salas, Hille, Etgen Calculus: One and Several Variables Copyright 2007 © John Wiley &amp; Sons, Inc.. All

(c) Draw the graph of as a function of and draw the secant lines whose slopes are the average velocities in part (a) and the tangent line whose slope is the instantaneous velocity

• A put gives its holder the right to sell a number of the underlying asset for the strike price.. • An embedded option has to be traded along with the

了⼀一個方案,用以尋找滿足 Calabi 方程的空 間,這些空間現在通稱為 Calabi-Yau 空間。.

• ‘ content teachers need to support support the learning of those parts of language knowledge that students are missing and that may be preventing them mastering the

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =&gt;

• Formation of massive primordial stars as origin of objects in the early universe. • Supernova explosions might be visible to the most

The difference resulted from the co- existence of two kinds of words in Buddhist scriptures a foreign words in which di- syllabic words are dominant, and most of them are the