• 沒有找到結果。

104第一學期考試題目與解答.

N/A
N/A
Protected

Academic year: 2021

Share "104第一學期考試題目與解答."

Copied!
7
0
0

加載中.... (立即查看全文)

全文

(1)

北區高中學生數學與科學跨領域研究人才培育計畫 一○四學年 上學期 招生甄試考題 考試時間:一○四年9月20日, 13:30 – 16:30,計三小時 本試題共五題,兩頁 試題若有疑問, 請於考試開始後的三十分鐘內, 舉手提交 「提問單」 詢問;之後不再接受詢 問。 A4 白紙為答案紙與計算紙, 考試結束請將答案排序, 然後提問單與計算紙排在最後 面, 再由監考人員裝訂。 答案限用黑色或藍色筆書寫, 僅作圖可使用鉛筆, 不得使用修正液 (帶), 不得使用電子計算器。 每題七分,答題的“推演過程”為評分的依據。 1. 設ABCD為正方形,點E, F 分別在AB延長線及BC 延長線上,且AE = EF + F C. 試證:∠EDF = 45.

Let ABCD be a square. A point E that lies on the extended line AB beyond B, and another point F that lies on the extended line BC beyond C, satisfy that AE = EF + F C. Prove that ∠EDF = 45.

2. 試決定所有正整數對(x, y, p),其中p為質數,滿足下列等式: xy3

x+ y = p.

Determine all triads of positive integers(x, y, p), where p prime, which satisfy the following equation: xy3 x+ y = p. 3. 令a, b, c為三正實數且滿足 a+ b + c + abc = 4.試證下列不等式成立: (1 + a b + ca)(1 + b c+ ab)(1 + c a + bc) ≥ 27.

Prove that for all positive real numbers a, b, c satisfying a+ b + c + abc = 4 the following inequality holds:

(1 + a b + ca)(1 + b c+ ab)(1 + c a + bc) ≥ 27. 1

(2)

4. 已知實數x1, x2, x3 (x1 < x2 < x3)為方程式x 3 − 3x2 + (a + 2)x − a = 0之根, 其中a為一實數。 試求4x1− x 2 1+ x 2 3 之可能值。

Numbers x1, x2, x3(x1 < x2 < x3) are the roots of the equation

x3

− 3x2

+ (a + 2)x − a = 0, where a is a real number.

Find all possible values of the expression4x1− x 2 1+ x 2 3. 5. 在7 × 7的方格陣中, 將所有格子填入適當的實數, 使得任意3 × 3的方格陣中之9 個數的乘積會等於任意4 × 4的方格陣中之16個數的乘積。 試問: 在7 × 7的格子 中之所有數字的乘積可能為2015嗎?

Real numbers are written in the cells of the 7 × 7 table so that the product of the numbers in any3 × 3 square to the product of the numbers in any 4 × 4 square. Is it possible for the product of all numbers in the table to be 2015?

(3)

一○四學年 北區高中學生數學與科學跨領域研究人才培育計畫 上學期 招生甄試考題 參考解答

一○四年9月20日

1. 設ABCD為正方形,點E, F 分別在AB延長線及BC 延長線上,且AE = EF + F C. 試證:∠EDF = 45.

Let ABCD be a square. A point E that lies on the extended line AB beyond B, and another point F that lies on the extended line BC beyond C, satisfy that AE = EF + F C. Prove that ∠EDF = 45.

解: 如圖,將直角三角形∆CDF 繞點D順時針旋轉90,得到直角三角形∆ADF. 結F F′. 由AE = EF + F C = EF + AF′ = EF′+ AF′ ⇒ EF = EF′. 因為DF = DF′,所以, DE 垂直平分F FDF⊥DF,∠EDF = 45. A F′ B E C F D

(4)

2. 試決定所有正整數對(x, y, p),其中p為質數,滿足下列等式: xy3

x+ y = p.

Determine all triads of positive integers(x, y, p), where p prime, which satisfy the following equation:

xy3

x+ y = p.

解: 令d = gcd(x, y). 則存在正整數a, b使得x = da, y = db,其中(a, b) = 1. 將x, y

代入題設之等式,得 d3 ab3 a+ b = p. (1) 由於(a, b) = 1,得(a, a + b) = 1且(b3 , a+ b) = 1,再由(1)式得(a + b)|d3 . 所以 d3 a+ b = k, (2) 其中k為一正整數。 則(1)式得: kab3 = p ⇒ b3 |p. 因此b = 1且ka = p. 底下我 們分兩種情形討論: (1) 若k= p, a = 1則(2)式得: d3 2 = p ⇒ 2p = d 3 ⇒ 2|d.因此8|d3 且8|2p矛盾! (2) 若k= 1, a = p則(2)式得 d3 = p + 1 ⇒ d3 − 1 = p ⇒ (d − 1)(d2 + d + 1) = p. 因此,我們有d−1 = 1, d2 +d+1 = p (因d2 +d+1 > d−1) ⇔ d = 2, p = 7. 故(x, y, p) = (14, 2, 7).

(5)

3. 令a, b, c為三正實數且滿足 a+ b + c + abc = 4.試證下列不等式成立: (1 + a b + ca)(1 + b c+ ab)(1 + c a + bc) ≥ 27.

Prove that for all positive real numbers a, b, c satisfying a+ b + c + abc = 4 the following inequality holds:

(1 + a b + ca)(1 + b c+ ab)(1 + c a + bc) ≥ 27. 解: 將題設之左式化簡,得 (1 + a b + ca)(1 + b c+ ab)(1 + c a + bc) = (a + b + c + abc)(a + b + c + abc + 1 a + 1 b + 1 c) − 1. 由題目給定之條件知: a+ b + c + abc = 4.故我們只要證明 1 a + 1 b + 1 c ≥ 3. 底下證明: abc≤ 1. 證明: 假設abc >1. 則a+ b + c = 4 − abc < 3且由算幾不等式得 3 > a + b + c ≥ 3√3 abc >3 (矛盾). 故abc≤ 1. 再使用算幾不等式得 1 a + 1 b + 1 c ≥ 3 3 √ abc ≥ 3. 故原不等式得證。

(6)

4. 已知實數x1, x2, x3 (x1 < x2 < x3)為方程式x 3 − 3x2 + (a + 2)x − a = 0之根, 其中a為一實數。 試求4x1− x 2 1+ x 2 3 之可能值。

Numbers x1, x2, x3(x1 < x2 < x3) are the roots of the equation

x3

− 3x2

+ (a + 2)x − a = 0, where a is a real number.

Find all possible values of the expression4x1− x 2 1+ x 2 3. 解: 答: 4 注意“1”為底下方程式之根 x3 − 3x2 + (a + 2)x − a = 0. (1) 化簡(1)式之左邊,得 x3− 3x2+ (a + 2)x − a = x3 − x2 − 2x2 + 2x + ax − a = (x − 1)(x2 − 2x + a), 故題設之方程式等價於 (x − 1)(x2 − 2x + a) = 0. 所以方程式(1)之另兩根α, β 為方程式 x2− 2x + a = 0 (2) 之解且α+ β = 2. 不妨假設α < 1, β > 1. 因此x2 = 1且x1, x3 為(2)式之解。 因此 4x1− x 2 1+ x 2 3 = (x3 + x1)(x3− x1) + 4x1 = 2(x3− x1) + 4x1 = 2(x3+ x1) = 2 · 2 = 4.

(7)

5. 在7 × 7的方格陣中, 將所有格子填入適當的實數, 使得任意3 × 3的方格陣中之9 個數的乘積會等於任意4 × 4的方格陣中之16個數的乘積。 試問: 在7 × 7的格子

中之所有數字的乘積可能為2015嗎?

Real numbers are written in the cells of the 7 × 7 table so that the product of the numbers in any3 × 3 square to the product of the numbers in any 4 × 4 square. Is it possible for the product of all numbers in the table to be 2015?

解: 答: 可能的! 令a, b為任意實數且滿足 ab= 1. 考慮底下7 × 7的方格: a b a b a b a b a b a b a b 1 1 1 1 1 1 1 a b a b a b a b a b a b a b 1 1 1 1 1 1 1 a b a b a b a 在上述的7 × 7方格中, 在所有3 × 3的方格與4 × 4 的方格中數字的乘積皆為1. 此外,在此7 × 7的方格中,數字的乘積為a6= 0.故取a= 2015及得到答案。

參考文獻

相關文件

It is hereby certified all the goods were produced in Taiwan and that they comply with the origin requirements specified for those goods in the generalized system of

More precisely, it is the problem of partitioning a positive integer m into n positive integers such that any of the numbers is less than the sum of the remaining n − 1

11[] If a and b are fixed numbers, find parametric equations for the curve that consists of all possible positions of the point P in the figure, using the angle (J as the

It is important to allow for all students to add their ideas to the story so giving each student an area of responsibility to add to the story recipe can help prompt this. For

Now, nearly all of the current flows through wire S since it has a much lower resistance than the light bulb. The light bulb does not glow because the current flowing through it

The long-term solution may be to have adequate training for local teachers, however, before an adequate number of local teachers are trained it is expedient to recruit large numbers

Then, it is easy to see that there are 9 problems for which the iterative numbers of the algorithm using ψ α,θ,p in the case of θ = 1 and p = 3 are less than the one of the

By correcting for the speed of individual test takers, it is possible to reveal systematic differences between the items in a test, which were modeled by item discrimination and