• 沒有找到結果。

結合尖端機電技術與資訊智慧之開放式控制器---子計畫III:CNC系統的參數估測泛智慧型監控系統設計

N/A
N/A
Protected

Academic year: 2021

Share "結合尖端機電技術與資訊智慧之開放式控制器---子計畫III:CNC系統的參數估測泛智慧型監控系統設計"

Copied!
7
0
0

加載中.... (立即查看全文)

全文

(1)

(2)   

(3)  Parameter estimation and intelligent diagnostic system design for CNC systems .

(4)

(5)

(6)   

(7).     .       !"#$%& '()*+,-./0     CPLD  DSP 

(8)   !"#$%&'()*+,-./0123456%01789:; <="#$0>?@ A

(9) BCDE FGHIJA

(10) ,-% 2K 1.5Hz 53LMNCOP"#QR ST1 4~5 U6% CPLD VWXYZ [\]^_`ab7cde=C fg2hiGjklm6n% DSP VW Xopqr )stuCY" #$4vwCxyz{i|D} ~€‚6ƒ€„ † %‡ˆ‰'Š‹<Œˆ Ž‰‘ Ž’“D” 2•"#$+ % SVPWM C–— %Z˜™Ž’6   š !›2•"#›\]^_  Abstract. PWM. With the measured stator resistor of the induction motor, the proposed system only requires one-line stator current feedback to achieve the compensation. It is shown that by using the proposed method, the speed of the induction motor can be controlled down to 1.5Hz with more than 5 times load torque than that before compensation. Keywords: Stator Resistor, Low Frequency, Compensation, Space Vector . 

(11)   œ ž—J(),-?@Ÿ  ¡¢£

(12) %¤¥ƒ+ ˆdc¦ §6¨.%¤¥©.7•eª«¬ w­® ¯ °_?@(Scalar Control) $u­± V/f ²³qB ?@$´G8pstµ¶ ‚·¸¹º­%()*+,-+ . »¼K2•53L½Pql¾ ! F¿ÀÁÂÔ5S2<ÄÅ8Æ 945ÇÈ< 6ÉʃËÌÍ¥© GÎÏ©ÐÑD”¸¹ÒÓÔ$ G"#$(Abbondanti, 1977; Munoz-Garcia et. al., 1997; Bose, 1996) ÓÕ53?@> Ö6×L%D},-؏ÙBÚÛÜÝ  ` a b 7 Þ ß à 0 á ª  Õ â (Holtz, 1994)ã¨\]^_`ab7(Space Vector Pulse Width Modulation, SVPWM)(Zhang, et. al., 1994; äåæˆç ªè, 1994; éêëˆìµí, 1999)ÞÏ. 0î2hi›‘ïjkðñGîž  F® B6òóôªõö ÷ÞÏ (VLSI)øâù3JúªG4v3û ü

(13) ™z{VW= DSP›ASIC›CPLD› FPGA ý+ þ þ¢£½z{8×. This thesis presents a newly simplified design of the resistor compensation of the induction motor under the load at the low speed. The simplified compensation and realization based on the space-vector PWM are also presented by using the CPLD and DSP chips. Under the load change situation, the voltage utilization of this compensation method is well controlled. It also reduces the current harmonic and the switching loss by using the optimal space-vector PWM in this study. The V/f concept is used for deriving the relation between the compensated voltage and the modulation inside the space-vector 1.

(14) v 2 v v (3) V s ≡ ( v an + av bn + a 2 v cn ) = V x ⋅ e jωt 3 v v v vv v an = Re(V s ), v bn = Re( a 2V s ), v bn = Re( aV s ). ÓÔ$Cm%7•e .6 % !"#$.0Î (Munoz-Garcia, et. al., 1997) DSP VW 8„¨Ä¹p ' )st ¶6% 

(15) 

(16) DSP VW(TI, 1997) Ò ! "#$$  Munoz-Garcia ý “D”îKK .opq ' )st ¶{" #$à­l % SVPWM  7•e.¨. SVPWM % CPLD VW(=, 1996)Xq§"#_ Gcd53q§C ¼ e(DSP)vT6. (4) %(3). v x ªï+-45HI ªïƐ#n?5k˜*53û @ÃA A•B'ý6%> E<ƒ u

(17) F^_456œq8J+-^_ 45

(18) 6œq8=(4)“(6 v. λs =. v V3 (0,1,0). IV. v V5 (0,0,1). π. 3. I. VI. V. r t2V2. v V1 (1,0,0). r Tz Vref r t1V1. v V6 (1,0,1). (a). v V1 (1,0,0). α. (b). K€ 8 {8×Fû\]^_ F$ q '8L 6 L](Sector)/0M 1(a)nN L] Dq ^_ FO v /0 F( Vref )­PQ 'R^ _ FSƒT F n™#=M 2.5(b) .U I L]/0 F­P^_ F v v v v v v V1›V2 ›V0 ˆ V7 ¨. Vref  V1  VF α 6 2 v v (v an + avbn + a 2 v cn ) 3 π j ( i −1) 2 3 = Vdc ⋅ e i = 1,L,6 3. Vi =. W%X. v an (t ) = V x cos(ωt ). v cn (t ) = V x cos(ωt +. v V2 (1,1,0).  1 (a)(Sector) ;(b)  . 2π 4π j j ¨. av = e 3 , av 2 = e 3  van › vbn › vcn ­& ' F> _6. 3. (5). r Vref. II α. 3. ). j ( ωt − ) 2. v V2 (1,1,0). III v V4 (0,1,1). \]^_`ab7(SVPWM)$­ !¹`ab7(PWM).\]^_~" #=$&'%& F%\]%§ ƒ^_'($cdq)*5+,(+^_).ó?@/0 F^_^ª ï1()*+,-%23(Airgap).“* +”*5+-^_45C6œq 78à9­?@ÚÛBÜÝÄ-: ;L]™/z{8× F•B) 6  < F\]^_= v 2 v v (1) V s ≡ ( v an + av bn + a 2 v cn ). π. ω. π. e. .  . v bn (t ) = V x cos(ωt −. Vx. ∫. (2). t0 / 4. 0. +. ). (1). 2 ­1?„5k˜^_@. .. 3. > _&'ÃAêBC³'ýu­ %DEFûLêBC³qG6. t2 2. 2. ∫. (6). Fv$~Í Y=. v V0 dt +. ∫. t 0 / 4 + t1 / 2. t0 / 4. t 0 / 4 + t1 / 2 + t 2 / 2 + t 0 / 4. t 0 / 4 + t1 / 2 + t 2 / 2. v V7 dt =. ∫. t 0 / 4 + t1 / 2 + t 2 / 2. t 0 / 4 + t1 / 2. ∫. Tz. 0. v V2 dt. v Vref dt. v F V1 Ä-L] v F V2 Ä-L]. t1 =\]^_ 2. =\]^_. v V1dt +. (7).

(19) t0 4. Tz =. v v  V0

(20) V7  t1 t 2 t 0 + + 2 2 2. . v. Vref . (6) Vv 1 . v 2 = V2 = Vdc 3. RQ;‘’ ;“” •l 1 ,"()0 ,"–—(;). (7). v t0 v t v t v t v V0 + 1 V1 + 2 V2 + 7 V7 = Tz Vref 4 2 2 4. !"#$. v Vref 2 3. Vdc. 000 → 100 → 110 → 110 → 100 → 000. ˜>K™ ?@šB. (8). %&'()"#. v cos α  cos 60  t (9) = V T. o cos 0 o  t1 2 2 2 Vdc  + Vdc  o o 3  sin 60  2  sin 0  2 3. *a =. v v v v v v V0 → V1 → V2 → V2 → V1 → V0. ref.  sin α   . z. (10). (12) @AB201 Ÿ. v V 2 2 3 Vref = Vdc ae jωt = Vdc M e jωt = M dc e jωt 3 3 2 3. M =. 2 a 3. (13).      (13) 0 1     ¡ ¢ £¤ x =¥¦X. t1 =. *. f duty _ b.  M sin α if 0 o ≤ α ≤ 120 o  o = f ( M , α − 120 ) =  M sin(α − 60 ) if 120 o ≤ α ≤ 240 o  0 if 240 o ≤ α ≤ 360 o  o. k‡u›œr M = 2 a žhx=? 3. a ,"-./01234  567(11)89:;<=  2 aTs sin(60o − α ) = MTs sin(60 o − α ) 3 2 t2 = aTs sin α = MTs sin α 3 t 0 = Ts − t1 − t 2. if 0 o ≤ α ≤ 120 o if 120 o ≤ α ≤ 240o if 240 o ≤ α ≤ 360o.  0 if 0 o ≤ α ≤ 120 o  f duty _ c = f ( M , α + 120 o ) =  M [ − sin(60 o + α )] if 120 o ≤ α ≤ 240 o  M ( − sin α ) if 240 o ≤ α ≤ 360 o .  Ts = 2Tz +. cos 60 o  t 2 2 cos 0 o  t1 2 cos α  Ts 2 = Vdc a  + Vdc  Vdc   o  o  3 2 3 2 3 sin 0 sin 60  sin α  2    . f duty _ a.  M sin(60 o + α )  = f ( M ,α ) =  0  M sin(60 o − α ) . (11). v MVdc cos(ωt ) v an (t ) = Re(Vref ) = 3 MVdc π v v v bn (t ) = Re(a 2Vref ) = cos(ωt − ) 3 3 v MVdc π v v cn (t ) = Re(aVref ) = cos(ωt + ) 3 3.  M > ? @ A B (Modulation. Index)&C α : 0o ≤ α ≤ 60o D=EF GH?@I J+K;L2MNOF P Q RSTUVWXY  @Z[\]^R_`ab( Ts ). (14). d§ !Ÿ<x¨/©?? @AB M ª>«¬K­®01¯°± ²³ Vvref = 2 Vdc  M max = 2 v\´ max. 3. 3. M µ¶·?(over modulation) f 2 Vdc r. 2. 3. 2cabdefg IJhi SVPWM jgklmfgn-GH?@ (Center-Pulse SVPWM)(Van Der Broeck et. al., 1988)7  M v v o p l q r  V7 s V0 t  u $vwx yz{|7}~ !l mnfgIJx yz€I‚ƒ I|„(Zhang, et. al., 1994) †‡ˆ‰Š ‹7 IŒ‰Ž . per unit+¸¹‹x †= º»¼

(21)  † ¸¹‹SK./!xK 0 ~ 2 ¡ 3. ¢½¢­®7¾ ¾  

(22)

(23). KA¿ÀÁ¤Â@Ã@ ¤Ä ­®ÅÆ9ÇÈ >KɤÄ´Ê ¬¿Ë  ±²ÌÍÎoÏÐ 3.

(24) ¿Ñ( R s ) ÒÓÌ/ÔÕÖ×Ø. i a (t ) = I x cos(ωt − φ ). ]”7. i b (t ) = I x cos(ωt −. V s ≅ Vm + R s I s + ( 2πfLls ) I m ¾¾¾¾Ù15Ú¾. ¬ Vm áⱬ Vm 67 Vm 2 f j [ã 5 I m k¿67Û K¿ÀÁ¤Âä SåÉà V s æçèéê[ëì¹ ëìäíË5­®$lÛîÐ Rs I s äÞï>h2 f ðR2 I s. ã57  Rs. ¾. Llr Ir. Vs. Rc. Lm. 3. −φ). = V m + I x R x cos(ω e t ) cos(α ) − I x R x sin(ω e t ) sin(α ). Rr s. Vm. π. −φ). V x cos(ω e t ) ≈ Vm + I x R x cos(ω e t + α ). Is. ¾ ¾. Lls. i cn (t ) = I x cos(ωt +. 3. (17) (18)Û#³ÀÁ÷Âê± ò2 &CöÌ@ ܲf¬øù deE± 6ãù+£R5íú² ûühvýþ[eò  ¸>ܱïf¬ãåÉÃÉ ]^ªdeܱ ‰¹Š . hÉÃ

(25) K†ÃÛd ÀÁ. ü=òÌĆïj  ‡[=`c Åü>æ ç1= V/f "Å¥¦Æˆ ‰“”R@7. (15)Û#³ λ A k¿6SKÉà  Vm 6ÌÜzÝ Rs I s ÞÌßà. ¾. π. ≈ Vm + I x R x cos(ω e t ) cos(α ). ¾ ¾ ¾. I x R x cos(ω e t ) cos(α ) = v xcom =.  2

(26) . (18) (19). MV dc 3. 01«Š—( 2)x ¡[ñ «ŠX4( 3)=¿Ë X2 ò Ÿ(Munoz-Garcia et. al., 1997)7 ¾. •l(19)kDëì žlx¨/ hëì>x ¶ž­®?@AB ±² R= Þ67. ¾. . ¾. Vm. φ. φ. I s Rs. Vs. CPLD kR. Is. 3 ¾. DSP k \.   ) 4 Û#7 ¹!"ž#$% & Altera Û/' Flex10k-84 () [ \ž TI %&Û' DSK50(Starter Kit)*+ ,(-. TMS320C50 ‚ AIC ())Ø/  \dÉÃëì GH?@k @Ã0­®,7. Xóòôõ¥¦l ¿X2ò e- φ &CäX4ö(17)Û#7 v an (t ) = V x cos(ωt ) v bn (t ) = V x cos(ωt − v cn (t ) = V x cos(ωt +. π 3. π. 3. ) ,. CPLD Board. ). DSP Board A/D. Stator Resister Compensate. 4 Voltage-Phase Counter. External SRAM 32K Modulation compensate. Modulation register. Sine-wave table. Dead time. SVPWM generator duty ratio_A duty ratio_B duty ratio_C. Variable speed adjust. 4’s Led Display. Overcurrent detect.

(27) . 4. VP"°±‘a’“a²Z,[ 2\,f³a/©%23Žh 1.)‘vP”´µWX(PC)hMaxPlusII ” C5x VDE 45`&vP‘ALM¶·A ´µA‰Š ’“F2.)CPLD ” DSK °± ¸¹hAltera Flex10K10-84 noA01A 7 ()*+AEPROM ” TMS320C50 noA AIC noASRAMAPEEL º»µ¼°± ­ F3.)½E­h¾¿lm" MT-0112 E­%ÀÁŽ£ MOSFET  ½E%5 1 ƒ 2 ã%]/Ÿ AŸ Ä 8Å%ƎÇJEÈÉ

(28) %. ÊJ_F4.)”˝ ÌhŽÍ£ÎÏ Ð"%iÑ\ ÒÃ%ÓÔÕ%Ö× Ä 380V(Y )A Ö× Ä 1.96AAÖ×Ø6 1700 RPMFG ˝̎٣Úlm"%˝Ì $BÃÛÜgAØ­Ý6+AZ ]./45"˝ Ä%˝tÃ\ 1  ÃF5.)Ûܔš›Þ+h400MHz "*ß +A`à ®5+Aáâ2ãÞAßä åæ+AçE ÄèéA ÜÛg F. CPLD º» DSP WXïð.  CPLD  !" #$% 4 &'()*+,- 4 &./0 1%2345)*6789:;<=>8 9,-./67?@01ABC?@01 D Reset E!01FGHI DSK50 JK  9K ";<DLMNOP%QR3SI 32K 16Bits " SRAM NOPTUF V&WX"Y!Z[2\ CPLD ]^_ D DSP ]^_"`ab%Y!]cd efg 1h CPLD--Altera. DSP-DSK50. . 

(29)   .  .  . 

(30).  "#$%&. !. '( ). &* +,#$.  +,-#$ ./0123456. 789:;<=>?.  @AB&. 64K8bits. EPROM. 8. 8. 8. 8. Altera down-c able. Outport and protect circut Button. g 1 VPWXY!i[g. SRAM 32K8Bits SRAM 32K8Bits. jk, Altera lm"no%pq rstua"vPw\xy%zr vP{\ MAX+PLUS II%Z,|}~ "€%‚ƒi[„ "†‡ ˆ†‡-‰Š!‹ŒZ|}FG DSK50  ŽV"vP‘’“f(DSK-VDE ” DSK-Express •–vP)—_A˜ ™Aš›,-;<)*:œFLM f-H›ŒžŸ RS232 " $—_%¡ Ž C50 ¢£vP‰ŠG¤"%Q¥¦”H ›+§¨/©%V&LMª«¬ DSK50 ­" PROM %  ®¯ C50 no"NOPF. Altera Flex10k 10 -84-4. Altera Flex10k 10 -84-4.  5 ê°±¸¹" CPLD °±Ïñòó. ê°±`ëno"Ù£ìíeg 2 î *h Logic Cells. LCs utilized. Input pins. Output pins. . 436. 75%. 12. 31. . 56. 9%. 2. 13. g2. 5. `ë CPLD "dÙ£ìí.

(31) -äF.  ¢£ MaxplusII xyvP¤ SVPWM%e 6 î*F. .  . .  .       .     . . . . . . .

(32)  (Hz. ôõ$% Matlab vPö‰ŠØ6 8 30.5Hz : (a) (b) ”BC%e 7 î*h ,f 9(a)” 9(b)23Ž  íf”ífØ%Z )" "íf"úû þ! 9(a). 1000 900 30.5Hz. 800. . 600. . 20.3Hz. 500. . 400. . 300. 10.2Hz. 200 100 1.5Hz 0 0. 7. 3Hz. . Speed Wr (rpm).   CPLD 

(33) SVPWM  7006. 5Hz. 2Hz 0.5. .    .  . 1. 1.5 Torque (Nm). 2. 2.5. 3  . 

(34) . .  . .  .  . .  . 9(b) "í"%#Ž$F. . ,f 8(a)”(b)Ž¢£ê÷î4õø —_×­ ù"úû%kúûüî! "SÛý°±"ºþF¬ 3Hz "SõM%Ž£ Ø B S˝% \˝ B

(35) ã7 %B¯I%î ,¢£µÂÙƒ"Ø6 (20~50 rpm)%”z¯N‡I°±Õ.

(36)  . 6. 

(37) .

(38) 

(39)    CPLD  DSP   !" #$%&'( )*+,-./012345678 9:;<=>=?@ABCDEFG HIJ (K23,- L@ MN: 1.)DO-/+ PQRS09T UVWX./01YZ23F2.)!<=5 1.5Hz EC[ Z\]^23_ 4~5 `a bcAF3.)def+ SVPWM Zg BhiVjk F4.)l09TUmn o pqrs !@tuv0w!" xF5.)5 DSP >yz{|}~ Z'€ ‚iƒ „ †‡ˆ"F. (b) . G.V. Stanke, “Analysis and Realization of a Pulsewidth Modulator Based on Voltage Space Vectors”, IEEE Trans. Ind.Appl., vol. 24, no. 1, Jan. pp. 142-150, 1988. Zhang, L., C.Wathanasarn, F.Hardan, “An Efficient. Pulse-Width Modulator using Space Vector. 1996.. induction motors driven by variable frequency, variable voltage supplies”, IEEE IAS Intl. Semi. Power Conv. Conf., 1977, pp. 177-184. Bose, B.K., Power Electronics and Variable Frequency Drives, (book), IEEE Press, 1996. “Pulsewidth. modulation. Strategy.”,. ‰Š‹, Œ{0Ž 0‘’“, (”). Abbondanti, A. “Method of flux control in. J,. Modulation. IECON’94., vol. 1, pp.91-96, 1994.. . Holtz,. Microprocessor-based. for. electronic power conversion,” IEEE Proc., vol.82, no.8, pp. 1140-1163, Aug. 1994. Munoz-Garcia, A., T.A.Lipo, D.W.Novotny, “A new induction motor open-loop speed control capable of low frequency operation”, Proc.IEEE IAS Ann.Meeting, 1997, pp.579-586. Texas Instrument, “TMS320C5X User’s Guide”, 1997. Van Der Broeck, H.W., H. Skudelny and 7.

(40)

參考文獻

相關文件

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =&gt;

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix

incapable to extract any quantities from QCD, nor to tackle the most interesting physics, namely, the spontaneously chiral symmetry breaking and the color confinement.. 

• Formation of massive primordial stars as origin of objects in the early universe. • Supernova explosions might be visible to the most

圖4 1 整合資訊系統風險 圖4.1 整合資訊系統風險..

The difference resulted from the co- existence of two kinds of words in Buddhist scriptures a foreign words in which di- syllabic words are dominant, and most of them are the

(Another example of close harmony is the four-bar unaccompanied vocal introduction to “Paperback Writer”, a somewhat later Beatles song.) Overall, Lennon’s and McCartney’s