• 沒有找到結果。

Estimating the carbon footprint and energy consumption of Taiwan tourism

N/A
N/A
Protected

Academic year: 2021

Share "Estimating the carbon footprint and energy consumption of Taiwan tourism"

Copied!
33
0
0

加載中.... (立即查看全文)

全文

(1)

Estimating the carbon footprint and energy  consumption of Taiwan tourism Dr. Ya‐Yen Sun Assistant Professor, Department of Kinesiology, Health and Leisure Studies  National University of Kaohsiung, Taiwan 2011.10.17 Michigan State University

(2)

Contents

1. Introduction 2. Environmental Extended Input‐Output Model 3. Literature review 4. Case study‐ electricity usages and its associated CO emission of visitors in Taiwan

(3)

Introduction

The tourism sector has an important place in that (Kyoto Protocol) framework, given its global economic and social value, its role in sustainable

development and its strong relationship with climate.

2003 Djerba Declaration 

by World Tourism Organization (WTO) and  United Nationals Environment Programme (UNEP) 

(4)

Kyoto Protocol (KP)

> Annex I countries agreed to reduce their collective  GHG emissions by 5.2% of their 1990 levels by the  end of 2012.

ƒ Greenhouse gas (GHG) – CO2, O3, CH4, N2O, CFCs, PFCs, FCs,  HCFCs, and SF6 ƒ KP only controls CO2, CH4, N2O, HFCs, PFCs, SF6 > Carbon footprint ‐ the amount of GHG emissions  associated with the production and consumption of  goods and services at the level of an individual firm,  industry or entire economy

(5)
(6)
(7)
(8)

The accurate information on the carbon footprint of  each of the various sectors that comprise “the  tourism industry” is essential for  ƒ The mitigation and regulation of GHG emission, ƒ The securing of financial resources to assist regions and  businesses

(9)

Contents

1. Introduction

2. Environmental Extended Input‐Output Model

3. Literature review

(10)

Environmentally Extended Input‐Output Model 

(EEIO)

The basic idea of EEIO models > Augmenting the technical coefficients matrix with additional  rows and / or columns to reflect energy consumption or  pollution production.

(11)

Generalized IO model

R = resource input coefficient = resource intensity per dollar of output Q= pollution output coefficient = pollution intensity per dollar of output

Direct impact  coefficient

Industry A Industry B Direct impact per $ of output

Energy Oil 0.2 0.3 BTUs  (British thermal unit ) Coal 0.1 0.4 BTUs Pollution CO2 0.5 1.1 tonnes SOx 0.7 0.7 tonnes

(12)

Calculation formula  ‐ type I multipliers

Type I resource and pollution multipliers R* = R(I‐A)‐1 = M (X)‐1(I‐A)‐1 Q* =Q (I‐A)‐1 = N (X )‐1(I‐A)‐1 Where X = Total output A = Technical input coefficients M = Flow‐in resource matrix N = Flow‐out commodity matrix R* = The total amount of resource required, directly and indirectly,  per dollar’s worth of output by industry Q* = The total amount of ecological commodity emitted, directly and  indirectly, per dollar’s worth of output by industry

(13)

Total effects

Total amount of resources required: R* (I‐A)‐1Y Total amount of pollution produced: Q* (I‐A)‐1Y > Production driven: Total amount of ecological resources = R* [(I‐A)‐1Y] Total amount of ecological emission = Q* [(I‐A)‐1Y] > Consumption driven: Total amount of ecological resources = [R(I‐A)‐1]* Y Total amount of ecological emission= [Q(I‐A)‐1]* Y

(14)

Contents

1. Introduction

2. Environmental Extended Input‐Output Model

3. Literature review

(15)

Literature Review

EEIO studies on tourism ‐ a relative new research topic Articles Becken & 

Patterson  (2006) Jones & Munday (2007) Kelly & Williams  (2007) Dwyer, Forsyth,  Spurr, & Hoque (2010) Konan & Chan  (2010)

Destination New Zealand Wales, UK Whistler,  Canada Australia Hawaii Reference  Year 1997/98 2000 2000 2003‐2004 1997 Environment al variables Carbon dioxide;  energy  consumption Carbon  dioxide, waste  outputs Carbon‐dioxide  equivalent GHG  emission for  energy and the  disposal of  solid waste Green House  Gas (GHG) Seven fuel  types and three  GHG gases  (CO2, Methane  and NOx)

(16)

Differences across the previous studies

1. Analysis method

ƒ Top‐down approach

ƒ Bottom‐up approach

(17)

The bottom‐up analysis

> The bottom‐up analysis computes energy use and  GHG emission based on information on energy end‐ uses of typical tourism industry and tourist behavior.  1. Sample transportation, accommodation and attraction  business to calibrate the average energy efficiency and  coefficients with respect to per dollar sales (industry analysis) 2. Combine with tourist travel behavior and visitor volume  (tourist analysis) to estimate total energy use in the tourism  sector.

(18)

The top‐down analysis

> The second approach, referred as Integrated  Economic‐Environmental Accounting, allows the  assessment of tourism as a sector within a  comprehensive national economic platform. 1. Adopt Tourism Satellite Accounts and national EEIO table 2. Allocate the proportional sales, energy use and GHG emission  to the the tourism industry by the TSA tourism ratio. 

(19)

Advantages of the bottom‐up approach

> Detailed energy information can be gathered using business  surveys to reflect the regional characteristics in production  function. For example, the transportation category can be  differentiated by domestic air, private air, rental car, coach,  train, motorcycle, scheduled bus, or ferry, depending on the  transportation modes that are best utilized in the area.  > The linkages of recreational behaviors and GHG emission can  be established. It helps to trace the GHG emission due to  behavior changes overtime. ƒ Whistler, British Columbia, Canada (Kelly & Williams, 2007)  ƒ 2004 World Rally Championship (Jones, 2008)  ƒ Hawaii (Konan & Chan, 2010)

(20)

Advantage of the top‐down method

> The top‐down analysis is best suited for comparing  the tourism’s eco‐efficiency with other sectors, or  formulating the macroeconomic instruments such as  carbon charges on the tourism industry at the  national level. ƒ GHG estimation for New Zealand (Becken & Patterson, 2006)  ƒ Wales, UK (Jones & Munday, 2007) ƒ Australia (Dwyer, et al., 2010)

(21)

Differences across previous studies

1. Analysis method 2. Research scope ƒ tourism‐characteristic industries  ƒ tourism‐characteristic industries & tourism‐related industries ƒ Whether to include air transportation, especially international aviation ƒ Residents vs. tourists ƒ Internal destination energy consumption vs. employee commuting to  and from the destination vs. visitor travel to and from the destination. ƒ Direct effects ƒ Direct + indirect effects ƒ Direct + indirect + induced effects

(22)

Contents

1. Introduction

2. Environmental Extended Input‐Output Model

3. Literature review

4. Case study‐ electricity usages & CO2 emission for  tourists in Taiwan

(23)

Study purposes of the Taiwan project

1. To construct the Environmental Extended Input‐Output Model  (EEIO) as a life‐cycle assessment tool for Taiwan. ƒ 10  energy types ƒ GHG emission 2. To evaluate the amount of carbon emission based on different  visitor segments per capita including  ƒ Inbound tourist vs. domestic tourist ƒ Visitor segments based on nationality and travel purposes  ƒ Per dollar tourist spending vs. per dollar output of the non‐tourism  injection  ƒ Per tourist in Taiwan vs. a global average tourist journey 3. To estimate total carbon emission associated with tourism in 2006

(24)

Data sources

1. 2006 National Taiwan IO table 2. 2006 Taiwan Tourism Satellite Account 3. 2006 Energy consumption data ƒ Coal ƒ Crude oil and petroleum products (7 types) ƒ Natural gas ƒ Electricity 4. 2006 Energy converting coefficients ƒ Parameters that can covert each energy use to the emission of  GHG

(25)

Analytical 

framework

(26)

An example‐ The tourism electricity 

consumption in Taiwan

Party-trip consumption in Taiwan (NT$) China ferry passenger Kaohsiung day visitors Domestic visitors International visitors World Games participant Accommodation 4,000 0 1,276 13,659 3,208 Food & beverage 2,764 771 1,395 6,565 2,399 Transportation 1,635 288 944 4,568 599 Entertainment 1,207 90 427 2,399 476 Shopping 25,703 570 1,728 10,509 4,502 Travel agency 2,330 0 157 1,760 185 Total 37,640 1,720 5,928 39,460 11,370

(27)

Economic & environmental effects

Per 1000 party trips Sales  ($ million's) Jobs Electricity  (000 kwh) CO2 emission  (000 kg) Multipliers  (kwh per  dollar direct  sales) Direct effects China ferry passenger $34.3 22.5 217.8 139.0 0.00635 KHH domestic visitors $1.6 1.2 6.4 4.1 0.00400 Domestic visitors $5.7 4.2 43.2 27.6 0.00758 International visitors $38.1 28.0 369.2 235.6 0.00969 World Games participatns $10.8 7.4 96.0 61.3 0.00889 Direct + Indirect effects China ferry passenger $57.8 32.4 326.2 208.1 0.00951 KHH domestic visitors $2.8 1.8 11.6 7.4 0.00725 Domestic visitors $9.6 5.8 60.6 38.7 0.01063 International visitors $63.8 38.5 487.5 311.0 0.01280 World Games participatns $18.4 10.7 131.8 84.1 0.01220

(28)

Direct & Indirect Effects Aggregate I‐O sectors Sales  ($ million's) Jobs Personal  Income ($ million's) Electricity  (1000 Kwh) CO2 emission  (000 kg) Services Lodging 22.2 15 6.3 440 281 Food & beverage 14.2 13 4.5 43 28 Transportation 9.9 7 5.4 31 20 Leisure services 4.8 4 1.8 30 19 Travel agency service 4.5 7 1.4 5 3 Retailing 22.1 16 7.7 37 23 Financial services 6.3 1 1.2 3 2 Other services 10.5 6 3.5 34 22 Manufacturing Manufactured food 7.9 2 0.7 49 31 Clothing 1.2 1 0.3 9 6 Recreation equipment 2.0 1 0.4 5 3 Handicraft products 9.5 4 0.5 85 55 Rest manufacturing sectors 28.2 6 3.1 201 128 Farming, foresting, finishing 4.0 5 1.0 16 10 Utility 4.3 0 0.2 29 19 Construction 1.0 0 0.2 0 0 Total 152.5 89 38.3 1,018 649

(29)

Challenges in implementation

1. The incompatibility across data sources Energy data – 50 sectors IO table – 166 sectors Electricity data – 200 sectors 2. Visitor expenditure data cannot directly link with IO  sectors, which produce errors in estimation and  cannot reflect visitor travel pattern and its  associated GHG emission.

(30)

Recommendations for future visitor expenditure 

surveys

Break down transportation and shopping expenses into detailed  categories. Shopping: (1) Clothes or accessories (2) Jewelry or jade (3) Souvenirs or handicraft products (4) Cosmetics or perfumes (5) Local special products (6) Tobacco or alcohol (7) Chinese herbal medicine or health  food (8) 3C or electric appliances (9) Tea (10) Others Transportation • Domestic air • Rail • Water transportation • Road transportation • Private car / Gasoline • Distance travelled

(31)

Re‐visit Kyoto Protocol

> Individual countries do not assume responsibility for  the carbon footprint from goods produced outside of  their jurisdiction. 

⇒ Carbon emission of International aviation

services does not include or be regulated by the KP framework.

⇒ Imported products, as intermediate inputs or final products, are not included either.

(32)

Reduce GHG emission from tourism 

Factors in influencing recreational GHG emission 1. Final demand  Reduce visitor numbers, reduce length of stay, switching to environmental –friendly  recreational activities 2. Energy requirement per dollars of final demand changes Energy‐saving equipment or technological changes in the production process 3. The relative composition of different energy Adopt clean energy 4. The energy converting ratio with respect to GHG emission Technological changes or innovation in producing energy 5. Carbon Neutral

(33)

Thank you for your listening.

Any questions or comments?

參考文獻

相關文件

 Goal of program - develop optimal levels of functional strength & stabilization.  Focus on neural adaptations instead of absolute

1 As an aside, I don’t know if this is the best way of motivating the definition of the Fourier transform, but I don’t know a better way and most sources you’re likely to check

It turns out that every first-order linear differential equation can be solved in a similar fashion by multiplying both sides of Equation 1 by a suitable function I(x) called

The third step is to express the proper rational function R(x)/Q(x) (from Equation 1) as a sum of partial fractions of the

Theorem (Comparison Theorem For Functions) Suppose that a ∈ R, that I is an open interval that contains a, and that f,g are real functions defined everywhere on I except possibly at

the larger dataset: 90 samples (libraries) x i , each with 27679 features (counts of SAGE tags) (x i ) d.. labels y i : 59 cancerous samples, and 31

且讓我們從解構(deconstruction) 8 的觀點來評估前述 Peter Hill 的主張。「生產與消費」這一組二元對立(binary opposition)無疑是經

As the result, I found that the trail I want can be got by using a plane for cutting the quadrangular pyramid, like the way to have a conic section from a cone.. I also found