• 沒有找到結果。

Ag nanoparticle as a new activator for catalyzing electroless copper bath with 2,2

N/A
N/A
Protected

Academic year: 2021

Share "Ag nanoparticle as a new activator for catalyzing electroless copper bath with 2,2"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

ElectrochimicaActa56 (2011) 8880–8883

ContentslistsavailableatScienceDirect

Electrochimica

Acta

jo u r n al h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / e l e c t a c t a

Ag

nanoparticle

as

a

new

activator

for

catalyzing

electroless

copper

bath

with

2,2



-bipyridyl

Chien-Liang

Lee

,

Chia-Chieh

Syu

DepartmentofChemicalandMaterialsEngineering,NationalKaohsiungUniversityofAppliedSciences,Kaohsiung807,Taiwan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12May2011

Receivedinrevisedform3July2011

Accepted26July2011

Available online 5 August 2011 Keywords:

Activation

Printedcircuitboard

a

b

s

t

r

a

c

t

AgnanoparticlescanbesuccessfullyusedinsteadofPd,whichisanexpensivemetal,asnovel activa-torsforelectrolesscopperdeposition(ECD).Theanalyticalresultsobtainedusingelectrochemicalquartz crystalmicrobalancemeasurementsandmixedpotentialtheoryillustratethattheactivityofAg nanopar-ticlescanbeenhancedbyadding2,2-bipyridyltotheECDbath.TheresultsofapreviousstudyonAg nanoparticlesinasimpleECDbathshowedthatthenanoparticleswereinactive.Incontrast,theresults ofthisstudydemonstratethattheadditionof2,2-bipyridylcanimprovethedepositioncurrentdensity byabout0.004mAcm−2andhelptoachieveadepositionrateof33.9␮gcm−2s−1.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Electrolesscopperdeposition(ECD)iswidelyusedandis car-riedouttodepositconductiveCuontothesidewallsofthethrough holeinprintedcircuitboardswhilefabricatingelectroniccircuits

[1,2].TheactivationnecessarytotriggeranECDreactionisa cat-alyticreactionthatistriggeredbyactivecolloidsonthesurface ofsubstratesdippedintheECDbath;thiscatalyticreaction pro-ceedsviaHCHOoxidation[3,4].IntheanodicprocessofECD,the bondbetweentheHradicalandthe ˙CHOHO−radicalisfirst bro-kenatanenergyabovetheactivationenergyof11.7kcalmol−1[5]. Ontheotherhand,theactivationenergyformetalreductionvia acathodicpathwayis6.5–7.5kcalmol−1[5].Theformed ˙CHOHO− radicalisthenoxidizedtoyieldCH(OH)2O−,releasinganelectron

forCureduction.Simultaneously,theHradicalsproducedinthe firststepformH2byrecombination[5].Theactivecatalyst

there-foreactsasanelectroncarrierforthetransferofelectronsfrom thereducingagent(HCHO)totheCuions.APd/Sncolloid[4,6–8]

is now usedas a typicalactivatorand catalyst for ECD. Simul-taneously,dispersingpurePdcolloid[9]andnanoparticle[3,10]

havebeenfoundthepotentialforactivatingECDbath.However, Pdisexpensiveandcanresultinahighmaterialscostwhenitis usedforECD.Inaneasierstudy,Ohnoandco-workers[11] suc-cessfullyidentifiedtheorderofactivationenergiesfortheanodic oxidationofHCHObyusingvariousbulkelectrodes;theorderof activationwas asfollows: Au<Ag<Pd [11]. Alongwith Pd and Au,Ag maybeusedasanefficientand comparatively inexpen-sivecatalystfortheECDprocessinindustry.Recently,Wanand

∗ Correspondingauthor.Tel.:+886738145265131;fax:+88673830674.

E-mailaddresses:cl lee@url.com.tw,cllee@kuas.edu.tw(C.-L.Lee).

co-workers[12]reportedexquisiteresearchinwhichtheyused Ag/PdnanoparticlestocatalyseanECDbath.Theyfoundthatthe activityofAg/Pdnanoparticleswithamolarratioof1:1is compa-rabletothatofPdnanoparticles.Theyalsosuccessfullyprepared Ag/Pdnanoparticleswitha Pd-richsurfacetoimproveECD effi-ciency[13].Subsequently,toreducetheamountofPdusedasa catalyst,wepreparedAg/Pdnanoparticles[14],nanoplates[15], andnanorings[16]containingalowamountofPdbyusinga dis-placementmethod.Wesuccessfullyusedthesealloynanoparticles aseffectivecatalysts,particularlythattheinactivedepositionrate catalysedbyPdcolloidswasobservedfrombasingonthesame Pdloading[14,16].Intheaboveexperiments,Agnanoparticlesalso showedaninertactivityinasimpleECDbathwithoutanyadditives

[14,16].Recently,Vaˇskelisandco-workers[17]successfully initi-atedanECDreactionusing5–100-nmAg/SnO2colloidsprepared

viaasynthesissimilartothatusedforPd/Sncolloidsthatare pre-paredusingSn2+asareducingagent.Subsequently,Fujiwaraetal.

[18]usedAg/SnO2 colloidsastestcatalystsinanECDbathwith

added2,2-bipyridylanddepositedconductiveCuontoaglass sub-strate.Thecompound2,2-bipyridylisoftenusedasastabilizerfor ECDbathswhendepositionistriggeredbyaPd/Sncolloid[19].The purposeofthepresentstudyistodemonstratetheuseofpureAg nanoparticlesasnovelECDactivatorsandtoconduct electrochem-icalquartzcrystalmicrobalance(EQCM) measurementsand use mixedpotentialtheory(MPT)toanalysetheeffectof2,2-bipyridyl onthedepositionkinetics.

2. Experimental

2.1. Synthesisofactivator

Initially, approximately 10−3moles of AgNO3

pow-der was added to a beaker containing 100ml of 1.82mM

0013-4686/$–seefrontmatter © 2011 Elsevier Ltd. All rights reserved.

(2)

C.-L.Lee,C.-C.Syu/ElectrochimicaActa56 (2011) 8880–8883 8883 0.5 0.0 -0.5 -1.0 -1 0 1 2 Current density / mA cm -2 Potential / V vs. SCE Ag with Bipyridine Ag without Bipyridine

Fig.4.Theeffectofthe2,2-bipyridylonthepolarizationcurvesofformaldehyde

oxidationbyAgnanoparticlesintheanodicbathshowninTable1.

curvesobtainedusingtheTafelequationfor ECDbathswithout orwith2,2-bipyridyl(Table1)catalysedbyAgnanoparticles,Pd nanoparticles,andPd/Sncolloids.Theresultsaresummarizedin

Table2.AccordingtotheMPT,thecoordinatesoftheintersection pointoftheanodicandcathodiccurvesarethedepositioncurrent

(Ideposition)andthemixedpotential(Emp),respectively,atwhich

thedepositionreactionoccursinasteadystate[3,21,22].Forthe activationofthebathswithout2,2-bipyridyl,theEmp valuesfor

Agnanoparticles,Pdnanoparticles,andPd/Sncolloidsareabout −0.46V,−0.25V,and−0.53V,respectively.Forthebathswith2,2 -bipyridyl,thevaluesforAgandPdnanoparticlesare−0.49Vand −0.28V,respectively.TheEmpvalueforPd/Sncolloidsis−0.37V.

TheEmpvaluesforPdandAgnanoparticlesweremorenegativeby

about30mVwhenthe2,2-bipyridylwaspresent.Thisdeviation indicatesthatthedrivingforcefortriggeringECDincreases. How-ever,forPd/Sncolloids,abarrierisobservedbecauseEmpincreases

by160mVwhen2,2-bipyridylispresent.Thisindicatesthat2,2 -bipyridylcouldsuppresstheinherentactivityofPd/Sncolloidsand actonlyasastabilizer.NotethatinthecaseofAgandPd nanoparti-cles,Idepositionisenhancedwhen2,2-bipyridylispresent.Asshown

inTable2,thedifferenceinIdeposition(Ideposition)iscalculatedusing

measurementsfortheECDbathswithandwithout2,2-bipyridyl.

Itcanbeseenthat Ideposition decreasesin thefollowingorder:

Agnanoparticles>Pdnanoparticles>Pd/Sncolloid.Typically,the depositionrateisproportionaltothemagnitudeofIdeposition[21].

ThisrelationshipthereforesuggeststhattheactivityofAg nanopar-ticlescanbeimprovedwiththeadditionof2,2-bipyridyl.

Typically, the cathodic elementary step for ECD is that Cu(II)–EDTAcomplexwasreducedtoCu(I),andthentoCu0.Ifthe

significantcontentofCu(I)waspresent,Cu2Ofinepowerswere

formedandfurthergrownthroughthereactionasfollows: Cu2O+H2O→Cu+Cu2++2OH− (1)

ThisoftencausestheinstabilityofECDbath.Theadditionof2,2 -bipyridylcaninactivate theseCu2Opowers bytheiradsorption

ontheCu2Osurfaceandstabilizetheelectrolyte.Accompanying

decreasein depositionratecanhappen [23]. Inthis study, this suppressiveeffectof2,2-bipyridylfortheIdeposition ofPd/Sn

col-loidswasobservedbased ontheMPTanalyses.Additionally,as showninFig.4,thepolarizationcurvesofformaldehyde oxida-tionrevealedthereasonoftheenhancementeffectof2,2-bipyridyl uponAgnanoparticles.Comparedtothecurrentdensitywithout 2,2-bipyridyl,thecurrentdensityofoxidizingformaldehydewith additional2,2-bipyridylisgreater,indicatingthatthepowerofAg

nanoparticlesforoxidizingformaldehydeisimproved.Thiscauses thattheinactiveECDreactionisfurtheractivated.

AnothersurprisingfindingisthatastheAgnanoparticlesare sufficientlyactive,thedepositionrateofCucanbedetermined.The depositionratesachievedusingdifferentactivatorscanbe calcu-latedbyconsideringthechangesintheelectrodefrequency(Fig.2) usingtheSauerbreyequation[24].Theoretically,theamountofCu depositedissensitivetofrequencychangesandisexpressedbythe Sauerbreyequation:[24]

m= FA √ −2F2

0

where m (g) is the increased mass after deposition, F is the frequency change, F0 is the starting frequency, A is the

areaoftheAusubstrate(0.159cm2),istheshearmodulusof

quartz (2.947×1011gcm−1s−2), and  is the density of quartz

(2.648gcm−3). The results of these calculations are listed in

Table2.Themeandepositionrates achievedusingAg nanopar-ticles,Pdnanoparticles,and Pd/Sncolloidsare33.9␮gcm−2s−1, 42␮gcm−2s−1,and88.1␮gcm−2s−1,respectively.Themeasured depositionratesindicatethatAgnanoparticlescanbeusedasnovel activatorsforECDandthattheyserveasanalternativeforreducing thematerialscostinadvancedelectronicprocesses.

4. Conclusion

PureAgnanoparticlesweresuccessfullyusedasnovel activa-torsfortheECDprocess.EQCMandMPTanalysesshowedthatthe activityofAgnanoparticlescanbeenhancedbyusing2,2-bipyridyl asanadditiveintheECDbath.

Acknowledgement

TheauthorswouldliketothanktheNationalScienceCouncil oftheRepublicofChina,Taiwan,forfinanciallysupportingthis researchunderContractNo.NSC98-2221-E-151-033-MY2.

References

[1] S.Abe,M.Ohkubo,T.Fujinami,H.Honma,Trans.Inst.Met.Finish.76(1998)12.

[2] H.Meyer,R.J.Nichols,D.Schroer,L.Stamp,Electrochim.Acta39(1994)1325.

[3]C.L.Lee,Y.C.Huang,L.C.Kuo,J.SolidStateElectrochem.11(2007)639.

[4]J.Horkans,J.Kim,C.McGrath,L.T.Romankiw,J.Electrochem.Soc.134(1987)

300.

[5]J.Vandenmeerakker,J.Appl.Electrochem.11(1981)395.

[6]X.Y.Cui,D.A.Hutt,D.J.Scurr,P.P.Conway,J.Electrochem.Soc.158(2011)D172.

[7]M.Froment,E.Queau,J.R.Martin,G.Stremsdoerfer,J.Electrochem.Soc.142

(1995)3373.

[8]T.Osaka,H.Takematsu,K.Nihei,J.Electrochem.Soc.127(1980)1021.

[9]P.C.Hidber,W.Helbig,E.Kim,G.M.Whitesides,Langmuir12(1996)1375.

[10]C.Peng,S.H.Y.Lo,C.C.Wan,Y.Y.Wang,ColloidsSurf.A:Physicochem.Eng.

Aspects308(2007)93.

[11]I.Ohno,O.Wakabayashi,S.Haruyama,J.Electrochem.Soc.132(1985)2323.

[12]C.C.Yang,C.C.Wan,Y.Y.Wang,J.ColloidInterfaceSci.279(2004)433.

[13]J.L.Lan,C.C.Wan,Y.Y.Wang,J.Electrochem.Soc.155(2008)K77.

[14]C.L.Lee,C.M.Tseng,R.B.Wu,C.C.Wu,S.C.Syu,Electrochim.Acta54(2009)

5544.

[15]C.L.Lee,C.M.Tseng,R.B.Wu,Electrochem.Commun.11(2009)627.

[16]C.L.Lee,C.M.Tseng,R.B.Wu,S.C.Syu,J.Electrochem.Soc.156(2009)D348.

[17]A.Vaskelis,A.Jagminiene,L.Tamasauskaite-Tamasiunaite,R.Juskenas,

Elec-trochim.Acta50(2005)4586.

[18]Y.Fujiwara,Y.Kobayashi,T.Sugaya,A.Koishikawa,Y.Hoshiyama,H.Miyake,

J.Electrochem.Soc.157(2010)D211.

[19]D.G.Kim,J.S.Bae,J.H.Lee,Y.D.Kim,Y.M.Ahn,Electrochemicalkineticsstudyof

electrolesscopperplatingforelectronicsapplication,in:S.G.Kang,T.Kobayashi

(Eds.),Designing,ProcessingandPropertiesofAdvancedEngineeringMaterials,

Pts1and2,TransTechPublicationsLtd.,Zurich-Uetikon,2004,p.393.

[20]M.Paunovic,J.Electrochem.Soc.124(1977)349.

[21]G.O.Mallory,J.B.Hajdu,ElectrolessPlatingFundamentalsandApplications,

Orlando,1990.

[22]L.C.Kuo,Y.C.Huang,C.L.Lee,Y.W.Yen,Electrochim.Acta52(2006)353.

[23]M.Oita,M.Matsuoka,C.Iwakura,Electrochim.Acta42(1997)1435.

數據

Fig. 4. The effect of the 2,2  -bipyridyl on the polarization curves of formaldehyde

參考文獻

相關文件

We summarize these properties as follows, using the fact that this function is just a special case of the exponential functions considered in Theorem 2 but with base b = e

As a byproduct, we show that our algorithms can be used as a basis for delivering more effi- cient algorithms for some related enumeration problems such as finding

By integrating data from a variety of government and commercial sources, we discovered 19,397 potential new commercial properties to inspect, based on the property usage types that

provisional mission stations by the Sōtō School along with other schools in the Longshan Temple, had soon made the temple as “a hotly contested spot for monks.” These

From Remark 3.4, there exists a minimum kernel scale σ min , such that the correspondence produced by the HD model with the kernel scale σ ≥ σ min is the same as the correspondence

• following up the recommendation of offering vocational English as a new Applied Learning (ApL) course, as proposed by the Task Force on Review of School Curriculum with a view

Then, we tested the influence of θ for the rate of convergence of Algorithm 4.1, by using this algorithm with α = 15 and four different θ to solve a test ex- ample generated as

obtained by the Disk (Cylinder ) topology solutions. When there are blue and red S finite with same R, we choose the larger one. For large R, it obeys volume law which is same