• 沒有找到結果。

以平均首度穿越時間研究膠體穩定性

N/A
N/A
Protected

Academic year: 2021

Share "以平均首度穿越時間研究膠體穩定性"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

(2)  

(3)  Colloid Stability Studied by Mean First Passage Times NSC 87-2113-M-009-001  86 8

(4) 1  87 7

(5) 31      

(6)  mean first passage time, Tr  ! stability ratioW"#$   %DLVO &'

(7) ()   Abstract. Overbeek 4 ¯ ° ±  * ² ³  ´ µ  turbidity E L AgI Ag2S *+3 ¶ˆ/‡ E ·¸V¹D (dE / dt )t →0 ! W Wº"»:PŠ± Fuchs &'$¼œ”½ —˜¾¿ÀÁÂè$ ÄÅ_3¶ÆÇ%ÈK ÉÊB,-Ë4}ÌÍÎÏ]ÐÑÒ>Ó, -œ;<ÔÕÖinduction timeÐ$ ×W·ØÔُÚ>

(8)  5-7$ Û:>Ü{ÝÞ

(9) ßàÄŚ0 ,-4`á>ºâreflective»0,4=}ã;ä4å撓Û:;ä4`á> çèabsorbing»0ÄÅéêz£*`ë ìÒ;ä`í±$    . The task of this project is to study the colloidal stability under the context of the DLVO theory by the concept of mean first passage time and compare with the results obtained from the usually used stability ratio.. Keywords: Colloid Stability, DLVO Theory, Mean First Passage Times  `|}Fîï. 

(10)  25 F^|#ŸÚ ψ < mv „2|  z *+,-./0123456 } VR ðFîW 8,9ñ κ a > 10 789-:;<=>?@A:B$CD VR = 2πε aψ 2 ln {1 + exp( −κ Ho )} ( 2a ) EFDGHIJKL%MNOPQRSTUV WXNOYZ[\]UK^_`abRcYdef ñ κ a ≥ 5 !gfhijklm_nopKqgrst 2  a 4πε aψ (d − a )  VR = ln 1 + exp( −κH o )  uv 1$ d   (d − a ) wx DLVO Derjaguin, Landau, Verwey and 2 Overbeek&' y_z{|}~`0 (2b) van der Waals  }`0€p‚aƒ C‡ d 0z‡òó‰ô a 0§¨ô „2|}: „2|}†!./‡ˆ/‰+ H o = d − 2 a ô ε 0f.HŒô ψ 0 Š.‹ŒdF^|_$Ž:y F^|ô κ 0 Debye − H&u&ckel HŒõ *,+9->|}y‘’“$ ”•– 9-&'—˜> =ö÷øù‰+úŒ z : z ²³$:F 3 Fuchs ™š0›œ49-onž 25 mvñ κ a > 3  Ÿ :¡¢`£"stability ratio, ^|#nÚ ψ > z W, ¤Œ „2|} VR ðFîW 8 ∞ exp[V ( r) / kT] T dr (1) W = 2a a 2a r2 VR = 2 L( Z , κH o ) ( 2c ) z 0*¥¦C‡ a 0§¨. ∫. VT (r ) 0|}k 0©ª«HŒT 0¬­. C‡ Z. ®$ 1. =. ze ψ Lû|0 10−7 ergs/cm$3¶ Z kT.

(11) . κ Ho. ! L ‹ÄŖ ‘^Œüý. ý0±å`Î3=ö÷þ. ï. `9-“0» 9-‹ŒÓ 2  1$é. ñZ = 2. ê

(12) ,-‡ó‰0 RÄ. L = exp[ 2.02681 − 0.881944 × κ H o. Å A  B z0`éê A /o‡. − 0.0257656 × (κH o ) ] 2. òÎ x 0 |  A  B zi½”Aó‰. ñZ = 3. 0 2a | 0KqÓ u Fîô. L = exp[2.76729 − 0.979338 × κ Ho. B  x R |  | 0‘qÓ d F. + 0.00455125 × (κH o ) ] 2. î$ñ B 9-œKq"K! A <#. ñZ = 4. `íð°0 B  x 2a | 0 0. L = exp[ 3.25795 − 1.12159 × κH o. | 0çèÝÞÂ$absorbing boundaryô. + 0.0392934 × (κ Ho ) ] þ`å^2|} VA 0 8 2. »ÄÅ=ö÷ A  B z9-“0ñ B  ‘q| =}æ%3}æ&» x 2. A 2 2 s −4 [ 2 + 2 + ln( 2 )] ( 3) 6 s −4 s s C‡ A 0 Hamaker HŒô s = d / a $» Ž|} VT 0 VT = V A + VR ( 4) VA = −. 25oC  1 κ 2 = (2000 F2 / εRT)I. ( 5). C‡ F 0 Faraday’s HŒ I 0 ionic strength. κ. R | 0ºâÝÞÂ$reflective boundary $ ÄÅ Siegel. `/0ð°0

(13) /²³ K i S hi !. T ( i) ( s) ýï0 sinh(qhi )   cosh(qh ) − ~ i  T (s ) = DqK i    ~ − DqKi sinh( qhi ) cosh( qhi )  ( i). ( 1/ nm ). (6). (10). ~ C‡ K i = Ki r2 ô q = s / D $»ÄÅ=ö÷`. 9-åÔï. * B ý4ð B °0 Dirac. “0ð– 9-åÔïC. delta-function ýï. åÔï0 10. ∂ 1 ∂ ∂ ρ ( r, t ) ρ ( r, t ) = 2 D(r )K (r) r2 ∂t r ∂r ∂r K ( r). aˆ d (s)  aˆ u (s ) 1 00 Jˆ ( s) = T (s) Jˆ ( s) + 0 11  d   u     T11( s) T12 ( s) aˆu ( s)  0 =  +   T21(s) T22( s) Jˆ u (s ) 1. Œð– Stokes’s law éê9-‹Œ3·| V

(14) D(r) DC0. 11. kT 6π aη. ( 8). (11). C ‡ aˆ x ( s)  Jˆx ( s) 0J ax (t ) o J x (t ) y Laplace V×ï x u 5FKqx d. 0 25o C f0 8.937 poise. ô,‹Œ K(r) !Ž|} VT (r ) ‹0 10. 11. K ( r) = exp( −VT (r ) / kT). !B \­3 n. /0 9-Ô'()*Fî0 13. (7). C‡ D(r) 09-‹Œ K(r) 0,‹Œ$9-‹. η. T ( i) ( s) ,2. 03 £ i /0,‹ŒSó‰d)*'($. C‡ M 0ˆ/mol/L$. D=. '()*B9-.

(15) /9-$ÄÅ9--.,W n £Ÿ/01. 1. κ = 3.288 × z × M. 12. “0»,‹Œ K ·| V+ÓÁ>`,. . ðW. !. 5 F ‘ q $ T(s) > 6 £ - .  ) * ' (. ( 9). T (s) = T ( n) (s )T ( n−1) ( s) LT (1) ( s)ô Tij (s ) > T(s). k

(16) .  '(78$»KqJ. ÄÅÓ/o‡ò. aˆu ( s) = 0 ‘qo. Jˆd (s) = 0 zÂ$59 (11) ïð œ 2.

(17) Jˆu ( s) = −. 1 T22( s). 160 102.4m V. ( 12). 140. ¹ Ï ¤ @. 120 100. ;Ôy;Û<,=»

(18) :; t >. 76.8mV. 80. log W. B 9-œKqoð°0 A ! B z:. 60 40. 0

(19) mean first passage time5-7. 51.2mV. 20. C0. 25 .6mV. 0 -2 0 -3. d ˆ J u ( s) − t J u ( t )dt ∫ 0 ds = − lim t = ∞ s→0 Jˆ u (s ) − J ( t ) dt ∫ u. -2.5. -2. -1.5. -1 lo gM. ∞. 0.5. 1. 51.2mV 20. ¹ Ï ¤ G. 38.4mV 15. log W. 812!13zïð œ. d T22( s) d t = lim ds = lim T22( s) s→0 T ( s) s→0 ds 22. 10 2 5.6mV 5 12.8mV. ( 14). 0. -5 -3 .5. T22 (0) = 1 » B 9-ԇ ?_@ºÉ. -3. -2.5. -2. -1 .5. -1. -0.5. 0. lo gM 9. A$0±! W "#_|}~y

(20) . 34.1m V. 8. t f FîB|}y

(21) . 7. ts Fî ts ñ¤ö Tr 0C­. 5. 25.6mV. ¹ Ï ¤ T. 6. log W. Ó. 0. 25. ( 13). 0. Ó. -0.5.

(22) C0. 4. 17mV. 3 2. t Tr = f ts. 1. ( 15). 8.53mV. 0 -1. -5. -4.5. -4. -3.5. -3. - 2.5 lo gM. -2. -1.5. -1. -0.5. D" 2. KD0 z = 1A ,20 2 × 10−20 J . 8,-ó‰0 R ,BEF». 5 × 10 −20 J 10 × 10−20 J 3¶F^|y. 1ï¸GW 1,9. exp(−VT / kT) dr ∫ 2a 2 r W= R 1 ∫ 2a r 2 dr R. =. ∫. R. 1 dr K (r) r 2 R 1 ∫ 2a r 2 dr. ‘ logWMNFî ! logTrONFî. 2a. ­ logM K$ ÄÅðÆ¢F^|#Ÿ C¶ logM y‘ logW ! logTr #` T$þ`å^A )Ÿ)$. (16) HI'!<'. 10. DÄÅI' a = 100 nmT = 298KR =. H o < 1000 nm ý‘"#8. 15!16ï+ œ<J 1. K`LKk0 A =. ¹ Ï ¥ |. 6. log W. 1200 nmÚ 0 <. 8. 2 × 10 −20 J  z ,. A=10. 4. A=5. A=2. 2. 0. 20 1, 2, 3 y‘­3¶F^| logW. -2. MNFî! logTrONFî­ logM . -4. -3.5. -3. -2.5. -2. -1.5. -1. -0.5.    Y± z = 1QF^|> 75 mvˆ/  ccc (critical coagulation concentration) Z½[\ K`"d

(23) o lo gM. K$ÄÅð¹DPÛ#QF^|C¶ logM y‘logW ! logTr _`R3¶Sn T:zUVWXi½$þ`å^ÄÅð Æ¢F^|)Q)$ 3.

(24) ]Cñi½$   1. R. J. Hunter, Foundations of Colloid Science (Clarenden Press, Oxford, Vol. 1, 1989). 2. E. Verwey and J. Th. G. Overbeek, Therory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948). 3. N. A. Fuchs, Z. Physik. 89, 736 (1934). 4. H. Reerink and J. Th. G. Overbeek, Trans. Faraday Soc. 18, 74 (1954). 5. G. H. Weiss, Adv. Chem. Phys. 13, l (1967). 6. N. G. von Kampen, Stochastic Processes in Physics and chemistry (North-Holland, Amsterdam, 1981). 7. A. Szabo, K. Schulten and Z. Schulten, J. Chem. Phys. 72, 4350 (1980). 8. J. Th. G. Overbeek, in Colloid Science, ed. by H. R. Kruyt, (Elsevier, Amsterdam, Vol. 1, p. 270, 1952). 9. L. N. MaCartney and S. Levine, J. Colloid Interface Sci. 30, 345 (1969) 10. J. M. Deutch, J. Chem. Phys. 73, 4700 (1980). 11. J. H. Noggle, Physical Chemistry (Scott, Boston, 1989). 12. R. A. Siegel, J. Phys. Chem. 95, 2556 (1991). 13. J. S. Chen and W. Y. Chang, J. Chem. Phys. 106, 8022 (1997). 14. R. M. Barrer, Diffusion in and through Solids (Cambridge Univ. Press, 1951). 15. J. Crank, The Mathematics of Diffusion (Clerendon Press, Oxford, 1975). 16. J. S. Chen, J. Chem. Soc. Faraday Trans. 90, 2765 (1994). 17. W. G. Shi and J. S. Chen, J. Chem. Soc. Faraday Trans. 91, 469 (1994).. 4.

(25)

參考文獻

相關文件

substance) is matter that has distinct properties and a composition that does not vary from sample

Reading Task 6: Genre Structure and Language Features. • Now let’s look at how language features (e.g. sentence patterns) are connected to the structure

好了既然 Z[x] 中的 ideal 不一定是 principle ideal 那麼我們就不能學 Proposition 7.2.11 的方法得到 Z[x] 中的 irreducible element 就是 prime element 了..

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =&gt;

For pedagogical purposes, let us start consideration from a simple one-dimensional (1D) system, where electrons are confined to a chain parallel to the x axis. As it is well known

The observed small neutrino masses strongly suggest the presence of super heavy Majorana neutrinos N. Out-of-thermal equilibrium processes may be easily realized around the

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix