• 沒有找到結果。

具備人工生命的汽車駕駛虛擬環境之研究---描繪引擎(I)

N/A
N/A
Protected

Academic year: 2021

Share "具備人工生命的汽車駕駛虛擬環境之研究---描繪引擎(I)"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

(2)  Artificial Life for the Virtual Environment of Driving – Rendering Engine   !"#$$%&'(()(&* +,-."/ 0 " 1 % 23 ") 0 # 1 &% 2  456789:;<=>?@ABCDAE  FGHI. this rendering engine project, we render the objects in a virtual environment realistically. Besides, we will focus on the simulation of natural light in atmosphere, and the light illumination at night. We will perform a deep.  Rendering

(3)   !"#$%&'()* +,-./01234#5  6789:%& .;<=67>?@ABCDE +FGHIJKLMNOPQHJK LR9:STUVWXYZL [9:L. /\]4#^_`a+b HIcdefghbijk lHImJK nopqrostoouvwxrywpx. HIz{| }r~s€rwx‚ ƒ„ † | }r‡wpˆwy~. ‰Š‹ŒHŽJ† 67‘’‰“+‘”•@HI– RR+FGHIJK9:LXY— H˜cL™š4HIL›œ| '™L[. mJKHIz{| „ †|FG8. study on these topics and design the corresponding simulation software. In the first year, we will consider the physics of light in atmosphere and the participating media. And then we use the ray tracing and radiosity algorithms in global illumination to simulate the direct sun light, the light in raining and windy day…etc. We will establish the optical model, design the simulation algorithms and develop program modules. Keywords  Rendering  Global IlluminationRay TracingRadiosityNatural PhenomenaVirtual Environment.  JKLM /MžŸ HIz{ Ray Tracing. „ † Radiosity ›œ|+¡¢ šHIA:9hP£c¤&hG¥ ¦§/+b)+¨b©3ª«¬ ­®Rij¥¯hb°W±²³´K µ¶®3·¸¹’º†T†H»¼HI. Abstract The Rendering of objects and 3D scenes is one of the most important steps in the applications of computer graphics and virtual reality. It affects the realism of display. In 1.

(4)  ‰ (· )½ ¾ Attenuation ƒ ¿ º Scattering de¥»¼mÀhP¿ Á.Blinn[4] ÂÃÄHI/hP¿º L™ Volume Scattering Model. Å¢šh P Æ)Ç(È$É$©ÊËÌÍ ÎÏЮ3 Particle ÑÀ®3·Ò† HI/ÓÔAÕÖHIÁ(£×Ø Ù®3҆HI‰(.ÚÛÜ)—Å ÝÞßàáNishita[24]9XYÍ º† Multi-Scattering HI¿ºL™ fghPâã+Ðâãäå®3 +FGHI9:LæMax[20]ç¶è éêë Analytic Function ìíîï $ðñòêë Fractal ìóô®3/ h P   õ ( æ ; <  Kajiya ƒ Von Herzen[15]öðÍ®3 †¿ºì í÷)ø albedo ®3.ù  â㠔•Ïú@+bHILÖûüý þ)ÝÞ9:UV04#=µÀ +bFGHI9:STUVX YMcH˜c£L™Lâ 㔕Ïú@FGHIM>?67 8AFG.. +bHIJK£+b­ Ю3 Particle HIº† Scattering. ¸¹ Absorption de¥ÝÞ A f g  + ¡   º † Single Scattering. ^_ö=Ùâã®3 fgͺ† Multiple Scattering L ™. +bº†de·£T†H ƒº†®3+Ðâã¥)â㺆: £.®3T†ÜÐ@ !"# º† Rayleigh Scattering  $ Rayleigh / 1871 ]AÃÄBMì4œhb© 3 molecule º†æ; £%# º† Mie Scattering  ìè&®3 T†Ü+’ ß'R@• áî(ªb)* aerosol .+,^_" #º†ìè&”h-.$ -H —ÅHÜ/`a"#º†0 ”-H·º†1ÍAM”h23ì 4-.æ¥56@ŒH78MÐ9 (T†+b:HA;<=>+ 0 ”A”h?.@AËâBCDº †E..F 0.î:öB%# º†ìè&£º†G®3+ Ð)H¥ƒT†IHAMÙ H¡·DãRº†ÄJd0 .¥±-.’E.. Ë躆:£Ú^_BMKLÄ /‹Œø(=M¥N/ Pv ÔO”hMÔ P á P ‰( Q?. £.  NOLPQ /0ÝÞ4#12B©£ + © 0 Cml

(5)  B Õ ( ü  c Visibility preprocessing ªHIz{ Ray Tracing ª „ † Radiosity R›œ|L 12AÄìæ ; +bHILXY+b HIJKL™WfghPõ(HIz{› œ| Volume Density Ray Tracing ƒhP ij„ †| Radiosity Algorithm with Participating Media . /+bHIJKL™ ·,-. I p (λ ) = K ⋅ I λ ⋅ P (Θ ) ⋅ e −(τ 1+τ 2). (1). Iš ‹ŒHRS‰(K £º† '™—Å,ëT1 ƒT2 ©U£ Pa Ö P  Pv Ö P H'<=P(Θ)£'Vê ™.. 2.

(6) ë[ìíâ㔕Ïú@+b©3â ãõ(MNâãH˜cäå. H +bHIJKL™ ^_f gÖ"#º†ª%#º†MN®3Í º†L™9¥K›Ä±&hÏi]hP „ †›œ|W¯CjhJ+bL™ AÃkhë[MN‹Œ/”hl@P ¥m@âãV ìí67ß/ 8HIJK(ánFo). . 

(7) . ™(1)AW¼X +bMÀ®3 ?.£W¼Y”hM2? .  7 8 ™ (1) Z [\ I   View direction Ø©W¯fgÖØ©I§ÑÀ ®3)âãbõ(MNã@4œ º†:£ "#º†%#º†. .Ú ™3á] I v (λ ) =. ∫. Pa Pv.   2/! P.Beckmann,. A.Spizzochino, “The Scattering of Electromagnetic Waves from Rough Surfaces,” New York, Pergamon, 1963.. I λ ⋅ {K r ρ r ( s ) Pr ( Θ ) + K m ρ m ( s) Pm (Θ )}⋅ e −(τ 1( s ) +τ 2( s )). KrªKm ©U£4œ"#º†Q%#º†. 3/! M.Berger,. (2). T.Troutand, N.Levit, “Ray ,ëρr(s) +b©3/PÔ s õ( Tracing Mirages,” IEEE CGA, ρm(s)ö Pb)*õ(PrªPm 10(3):36-41, 1990. "#%#º†'Vê™T1(s) +b 4/! P.Blasi, B.L.Saec, C.Schlics, “A :^Ö s H'¥T2(s) s ÖOß Rendering Algorithm for Discrete Volume _` Pv PH'. Density Objects,” EUROGRAPHICS’93, ;<$ +bº†¡ `aH 12(3):201-210, 1993. ì4œ¥±

(8)

(9) ˜§Ž» 5/! J.F.Blinn, “Light Reflection Functions for RGB aì4œAMÚ^_78Ù Simulation of Clouds and Dusty HbcA!"d§ RGB ae Surfaces,” Computer Graphics, C/

(10) fg§ÄìAçbc 16(3):21-29, 1982.  ™ £ CIE ? .   CIE 6/! C.F.Boheren, “Multiple Scattering of Color-matching . Light and Some of its Observable  Consequences,” Am.J.Phys. 55(6):524-533, 1987.   7/! Born, Wolf, ”Principles of Optics,”  Pergamon Press,5th edition, 1975. ^_ÃÄÀLâ㔕Ïú+ b Atmosphere L™.0§µ À 8/! S.Chandrasekhar, “Radiative Transfer,” Oxford University Press, 1950. ­®3L™ Particle System. $âãh. 3.

(11) 9/! W.M.Cornette,. J.G.Shanks, “Physical Reasonable Analytic Expression for the Single-Scattering Phase Function,” Applied Optics, 31(16):3152-3160, 1992. :/! R.L.Cook, K.E.Torrance, “A Reflectance Model for Computer Graphics,” ACM Computer Graphics, 15(3):307-316, 1981. 21/!Y.Dobashi, T.Nishita, K.Kaneda, H.Yamashita, “A Fast Display Method of Sky Color Using Basis Functions,” Proc. Of Pacific Graphics’94, pp.194-208, 1994. 22/!D.S.Ebert, R.E.Parent, “Rendering and Animation of Gaseous Phenomena by Combining Fast Volume and Scanline A-buffer Technique,” Computer Graphics, 24(4):357-366, 1990.. Atmosphere on Light,” ACM Transaction on Graphics, 6(3):215-237, 1987. 29/!N.Max, “Light Diffusion through Clouds and Haze,” Graphics and Image Proceeding, 33(3):280-292, 1986. 2:/!N.Max, “Efficient Light Propagation for Multiple Anisotropic Volume Scattering,” Proc. Of the 5th EUROGRAPHICS Workshop on Rendering, pp.87-104, 1994. 31/!N.Max, “Atmospheric Illumination and Shadows,” Computer Graphics, 20(4):117-122, 1986. 32/!T.Nishita, and E.Nakamae, “Continuous Tone Representation of Three-Dimensional Objects Illuminated by Sky Light,” Computer Graphics, 20(4):125-132, 1986.. 23/!X.D.He,. 33/!T.Nishita, Y.Miyawaki, E.Nakamae, “A. K.E.Torrance, F.X.Sillion, D.P.Greenberg, “A Comprehensive Physical Model for Light Reflection,” Computer Graphics, 25(4):165-173, 1991. 24/!P.Hanrahsn, W.Krueger, “Reflection from Layered Surfaces due to Subsurface Scattering,” SIGGRAPH’93, pp.165-174, 1994. 25/!M.Inakage, “Volume Tracing of Atmospheric Environments,” The Visual Computer, pp.25-30, 1991. 26/!J.T.Kajiya, B.V.Herzen, “Ray Tracing Volume Densities,” Computer Graphics, 18(3):165-174, 1984. 27/!K.Kaneda, T.Okamoto, E.Nakamae, T.Nishita, “Photorealistic Image Synthesis for Outdoor Scenery Under Various Atmospheric Conditions,” The Visual Computer, 7:247-258, 1991. 28/!R.V.Klassen, “Modeling the Effect of the. Shading Model for Atmospheric Scattering Consideration Distribution of Light Sources,” Computer Graphics, 21(4):303-310, 1987. 34/!T.Nishita, T.Shirai, K.Tadamura, E.Nakamae, “Display of The Earth Taking into Account Atmospheric Scattering,” SIGGRAPH’93, pp.175-182, 1993. 35/!T.Nishita, Y.Dobashi, E.Nakamae, “Display of Clouds Taking into Account Multiple Anisotropic Scattering and Sky Light,” SIGGRAPH’96, pp.379-386, 1996. 36/!T.Nishita, Y.Dobashi, K.Kaneda, H.Yamashita, “Display Method of the Sky Color Taking into Account Multiple Scattering,” Proc. Of the 4th Pacific Conference on Graphics and Applications, pp.66-79, 1996.. 4.

(12) 37/!H.E.Rushmeier,. K.E.Torrance, “The Zonal Method for Calculating Light Intensities in The Presence of a Participating Medium,” Computer Graphics, 21(4):293-302, 1987. 38/!G.Sakas, M.Gerth, “Sampling and Anti-Aliasing of Discrete 3D Volume Density Textures,” EUROGRAPHICS’91, pp.87-102, 1991. 39/!S.Sekine, “Corrected Color Temperature of Daylight(2): Characteristics on Clear Sky and Overcast Sky,” J.Illumination Engineering Inst. Japan, 79(11):621-627, 1995..  20. 3:/!K.Tadamura,. E.Nakamae, K.Kaneda, M.Baba, H.Yamashita, T.Nishita, “Modeling of Skying and Rendering of Outdoor Scenes,” Computer Graphics forum, 12(2):189-200, 1993. 41/!P.J.Wills, “Visual Simulation of Atmospheric Haze,” Computer Graphics forum, 6(6):35-42, 1987. 42/!D.Jackel, B.Walter, “Modeling and Rendering of the Atmosphere Using Mie-Scattering,” Computer Graphics forum, 16(4):201-210, 1997. 43/!E.Nakamae, K.Kaneda, T.Okamoto, T.Nishita, “A Lighting Model Aiming at Drive Simulators,” Computer Graphics, 24(4):395-404, 1990..  40. . 

(13)  . 5.

(14)

參考文獻

相關文件

A factorization method for reconstructing an impenetrable obstacle in a homogeneous medium (Helmholtz equation) using the spectral data of the far-field operator was developed

A factorization method for reconstructing an impenetrable obstacle in a homogeneous medium (Helmholtz equation) using the spectral data of the far-eld operator was developed

The disadvantage of the inversion methods of that type, the encountered dependence of discretization and truncation error on the free parameters, is removed by

“ Tongming guan” i s a ve r y uni que meditation method, as most of the meditation techniques mentioned in the Cidi Chanmen follow Dazhi dulun, but Tongming guan follows another

In Paper I, we presented a comprehensive analysis that took into account the extended source surface brightness distribution, interacting galaxy lenses, and the presence of dust

For the primary section, the additional teaching post(s) so created is/are at the rank of Assistant Primary School Master/Mistress (APSM) and not included in calculating the

Experiment a little with the Hello program. It will say that it has no clue what you mean by ouch. The exact wording of the error message is dependent on the compiler, but it might

• Also known as glossy, rough specular and directional diffuse reflection. directional