• 沒有找到結果。

Water-soluble germanium nanoparticles cause necrotic cell death and the damage can be attenuated by blocking the transduction of necrotic signaling pathway

N/A
N/A
Protected

Academic year: 2021

Share "Water-soluble germanium nanoparticles cause necrotic cell death and the damage can be attenuated by blocking the transduction of necrotic signaling pathway"

Copied!
12
0
0

加載中.... (立即查看全文)

全文

(1)

ToxicologyLetters207 (2011) 258–269

ContentslistsavailableatSciVerseScienceDirect

Toxicology

Letters

j o ur na l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / t o x l e t

Water-soluble

germanium

nanoparticles

cause

necrotic

cell

death

and

the

damage

can

be

attenuated

by

blocking

the

transduction

of

necrotic

signaling

pathway

Yu-Hsin

Ma

a

,

Chin-Ping

Huang

b

,

Jia-Shiuan

Tsai

a

,

Mo-Yuan

Shen

b

,

Yaw-Kuen

Li

b,∗∗

,

Lih-Yuan

Lin

a,∗ aInstituteofMolecularandCellularBiology,andDepartmentofLifeScience,NationalTsingHuaUniversity,Hsinchu,Taiwan

bDepartmentofAppliedChemistry,NationalChao-TungUniversity,Hsinchu,Taiwan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received25May2011 Receivedinrevisedform 20September2011 Accepted21September2011 Available online 29 September 2011 Keywords:

Water-solublegermaniumnanoparticles Cytotoxicity

Calcium

Reactiveoxygenspecies

Mitochondrialmembranepotential Necrosis

a

b

s

t

r

a

c

t

Water-solublegermaniumnanoparticles(wsGeNPs)withallyamine-conjugatedsurfaceswerefabricated andemitbluefluorescenceunderultravioletlight.ThewsGeNPwasphysicallyandchemicallystable atvariousexperimentalconditions.CytotoxicityofthefabricatedwsGeNPwasexamined.MTTassay demonstratedthatwsGeNPpossessedhightoxicitytocellsandclonogenicsurvivalassayfurther indi-catedthatthiseffectwasnotresultedfromretardingcellgrowth.Flowcytometricanalysisindicatedthat wsGeNPdidnotalterthecellcycleprofilebutthesub-G1fractionwasabsentfromtreatedcells.Results fromDNAfragmentationandpropidiumiodideexclusionassaysalsosuggestedthatapoptoticcelldeath didnotoccurincellstreatedwithwsGeNP.Additionofanecrosisinhibitor,necrostatin-1,attenuatedcell damageandindicatedthatwsGeNPcausednecroticcelldeath.Cellsignalingleadstonecroticdeathwas investigated.Intracellularcalciumandreactiveoxygenspecies(ROS)levelswereincreaseduponwsGeNP treatment.TheseeffectscanbeabrogatedbyBAPTA-AMandN-acetylcysteinerespectively,resultingin areductionincelldamage.Inaddition,wsGeNPcausedadecreaseinmitochondrialmembranepotential (MMP)whichcouldberecoveredbycyclosporineA.ThecellularsignalingeventsrevealedthatwsGeNP increasethecellularcalciumlevelwhichenhancestheproductionofROSandleadstoareductionof MMP,consequentiallyresultsinnecroticcelldeath.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Germanium(Ge)isa metalloidwithsemiconductorproperty and is dispensablefor human health. Inorganic Ge compound, suchasGeO2, isgenerally non-toxic although renaland neural

damagesare reported after long-term,high-dose consumption. However,organicGecompound,suchasGe-132,isregardedasan elixirinseveralcountriessinceGe-132hasbeenshowntoinhibit cancerdevelopment(Kumanoetal.,1985),induceerythropoietic efficiency(Dozonoetal.,1996),exertantimicrobialactivity(Aso etal.,1989)ormodulateimmunopotency(Fukazawaetal.,1994). We have shown that GeO2 blocks cell cycle progression at G2

phaseandcausesradiosensitizingeffectdespitethechemicalitself isverylowincytotoxicity(Chiuetal.,2002).Highconcentrationof GeO2isrequiredtogeneratetheradiosensitizingeffect.However,

GeO2hasalowsolubilitywhichhindersitsbiologicalapplication.

Inaddition,GeO2cannotbedeliveredtoaspecifictargettoexert

∗ Correspondingauthor.Tel.:+88635742693. ∗∗ Correspondingauthor.

E-mailaddress:lylin@life.nthu.edu.tw(L.-Y.Lin).

its radiosensitizing effect. Alternatively, nano-sized germanium particlesmaybeutilizedforthispurpose.

Quantumdots(QDs)aregenerallydefinedasnanometer-sized crystalsfabricatedfrommaterialswithsemiconductorproperties. Duetotheiruniquephysicalproperties,QDsarecurrentlyutilized invarious photoelectronicand biomedicalresearches.Materials withdirectbandgap,suchasCdSe,CdSe/ZnS,InPandPbSe,have photonicproperty underdefined particlesize (Alivisatos, 2004; Michaletetal.,2005).Semiconductor materials(GroupIV)with indirectbandgap,i.e.,Si(0)orGe(0)arerarelycharacterizedsince theydonotemitphotonsorfluoresceeffectivelyatinfraredregion (WarnerandTilley,2006;Zhouetal.,2003).However,germanium nanoparticles(GeNP)withsizes lowerthan therelatively large excitationBohrradius(Rb=11.5nm)exertdirectbandgapand

pro-duceradiativerecombination.HenceGeNPfluorescesatthevisible region.Duetoquantumconfinementandnarrowsizedistribution, GeNPswerealsodefinedasquantumdots(Kauzlarichetal.,2004; WarnerandTilley,2006).

Withasemiconductorproperty,GeorGecompoundsarewidely used in industries. It has been applied to fiber-optic systems, infraredoptics,polymerizationcatalyst,variouselectronicdevices and solar cells (Bailey et al., 2002; Rieke, 2007; Thiele, 2001;

0378-4274/$–seefrontmatter © 2011 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.toxlet.2011.09.018

(2)

Y.-H.Maetal./ToxicologyLetters207 (2011) 258–269 259

Washio,2003).Withthedevelopmentofnanotechnology, nano-sizedparticlesofGeorGecompoundshavebeenfabricated.Owing tothedistinctphysicalandopticalproperties,GeNPcanpotentially beusedinavarietyoffields(Chiuetal.,2006;Singhetal.,2005; Xieetal.,2009).

FabricationsofGeNPhavebeendescribedusingphysicaland chemical approaches.Physically, GeNP canbeconstructed with reactivelaserablation(Riabininaetal.,2006)orpulselaserwith ionimplantation(Ngiametal.,1994).Chemically,severalmethods employinghightemperaturesandhighreducingenvironmenthave beenreported(ChiuandKauzlarich,2006;Foketal.,2004;Luetal., 2005).Thedrasticreactionconditionscomplicatedtheconcoction procedures.Furthermore,it isdifficulttocontrolthesizeofthe fabricatedparticlesormodifytheparticlesurfaces.Thevapor con-densationmethod(WarnerandTilley,2006)forthemanufacturing ofGeNP iseasy tofollowand withoutthehightemperatureor reducingenvironment.Nonetheless,thepreparedparticles aggre-gatedinaquaticphaseanddifficulttouseinbiologicalresearch(Lin etal.,2009).Recently,themethodofsynthesizingwater-soluble GeNP(wsGeNP)hasbeenreportedanditpotentiallyavoidedthe defectsofpreviousmethods(Lambertetal.,2007).GeNPproduced byvaporcondensationmethodhaslesstoxicitytocells(Linetal., 2009).ThetoxicityofGeNPfabricatedthroughothermethodshas notbeeninvestigated.

Withthesynthesis ofwsGeNP,thesurfacechemistrycanbe modified.Themodificationsmaybeusefulforpotential biologi-calapplications,suchascelltypespecifictargeting.Sincewehave demonstratedthatGeO2andGeNPareradiosensitizersinChinese

hamsterovary(CHO)K1cells,weexaminedwhetherwsGeNPhad thesame property.We therefore preparedwsGeNP for cellular studies. Thecytotoxicity of the wsGeNP wasexamined. Differ-entfromthatofGeO2 andGeNP, thewsGeNPdamagescells at

lowconcentration.Thetoxicologicalmechanismwasstudiedand chemicalsthatattenuatethetoxicityweresignified.

2. Materialsandmethods

2.1. Cellcultureandchemicals

CHOK1cellswereculturedasmonolayersat37◦CinMcCoy’s5Amedium

supplemented with 10% heat-inactivated fetal bovine serum, 0.22% sodium bicarbonate,100U/mlampicillin and 100␮g/ml streptomycin,in 5%CO2/95%

airand100% humidity.Reagentsfor cellculturewerepurchasedfromGIBCO (Invitrogen). BAPTA-AM [1,2-bis-(o-aminophenoxy)-ethane-N,N,N,N-tetraacetic

acid, tetraacetoxymethyl ester] was obtained from BIOMOL. Necrostatin-1 [5-(indol-3-ylmethyl)-(2-thio-3-methyl)hydantoin] was obtained from Merck. CyclosporinAandFluo-3/AM (1-[2-amino-5-(2,7-dichloro-6-hydroxy-3-oxo-3H-xanthen-9-yl)]-2-(2-amino-5-methylphenoxy)ethane-N,N,N,N-tetraacetic

acid pentaacetoxymethyl ester) were acquired from Kelowna. DiOC6

[3,3-dihexloxa-carbocyanine iodide] was a product of Calbiochem. MTT

[3-(4,5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide)] was purchased fromUSBCrop.ATPLite300assaykitwasaproductofBlossom.Otherchemicals werepurchasedfromSigmaunlessspecified.

2.2. FabricationofwsGeNP

GeNPwassynthesizedinreversemicellesbyreducingthesolution-phaseGeCl4

(WarnerandTilley,2006).Allreactionswereprocessedunderanitrogen atmo-spheretoslowdowntheoxidationofgermanium.Thereversemicellessolutionwas preparedbystirring100␮lofGeCl4(1.0M,anhydride)and1.5gof

tetraoctylam-moniumbromide(TOAB)in100mlofanhydroustoluenefor30min.GeNPwere formedbyrapidlyadding2mlofthereducingagent(1Mlithium triethylboro-hydride[Li(C2H5)3BH]intetrahydrofuran)tothereversemicellessolution,which

turnedfromcleartoatranslucentyellowcolor.Thesolutionwaslefttoreactfor afurther2hthenquenchedwith20mlofanhydrousmethanol.Inordertoadd aminogroupsontotheGeNPsurface,40␮lofaplatinumcatalyst(0.05MH2PtCl6in

isopropylalcohol)and10mlofallyamineweremixedwiththeGeNPsolutionand stirredfor30min.Aftersurfacecapping,themixturewasremovedfromthe nitro-genenvironmentanddriedinarotaryevaporator,leavingbehindtheTOAB(white powder)andtheGeNP.TheallyaminecappedGeNPwassolubilizedwith50mlof distilledwaterandtheTOABwasremovedbyfiltrationthrougha0.22␮mfilter.The productwasdesignatedaswsGeNP.

2.3. Fouriertransferinfrared(FTIR)spectrophotometricanalysis

Allyamineorallyamine-coatedGeNPwasmixedwithoven-driedFTIRgradeKBr toafinalconcentrationof1%(w/w).Themixturewasgroundedtoafinepowderthen flattenedintothinfilmsunder10tonsinahydraulicpressforFTIRmeasurements. FTIRspectrawereobtainedwithaNicoletAvatar320FTIRspectrometer(Nicolet. InstrumentCo.,Madison,WI,USA).Thirtytwoscanswerecollectedataspectral resolutionof1cm−1.

2.4. MTTassay

ThecytotoxicityofthesynthesizedwsGeNPwasevaluatedusingMTTassay. Briefly,CHOK1cellswereseededin96-wellplatesatadensityof3.5×103cells/well

andtreatedwithvariousconcentrationsofwsGeNPat37◦Cfor24h.Cellswerethen

incubatedwithMTT(finalconcentration0.4mg/ml)for4hbeforeharvesting.Cells werewashedwithphosphate-bufferedsaline(PBS)and200␮lDMSOwasaddedto eachwell.Theabsorbanceofformazanwasrecordedat565nmwithaThermoMax microplatereader(MolecularDevices,Sunnyvale,CA,USA).

2.5. Clonogenicsurvivalassay

Twohundredandfiftycellswereseededin60mmdishbeforetreatingwith variousconcentrationsofwsGeNPfor24h.ThewsGeNPwasremovedandcells wereculturedinfreshmediumfor7days,thenfixedandstainedwith1%(w/v) crystalvioletdissolvedin30%ethanol.Coloniescontainingatleast50cellswere counted.Thesurvivalfractionofeachtreatmentwasdeterminedbydividingthe numberofcoloniesinthetreatedsamplebythatofthenon-treatedcontrolsample. 2.6. Cellcycleanalysis

CellsweretreatedwithvariousconcentrationsofwsGeNPfor24h.Treated cellswereremovedbytrypsinizationandcollectedbycentrifugationat1500rpm for10min.Thecellpelletswereresuspendedin70%ethanolandstoredat4◦C

overnight.Cellswerethencentrifugedandresuspendedin1mlPBScontaining RNaseA(100␮g/ml).After30minatroomtemperature,thecellswerespundown andthepelletsstainedwith1mlofpropidiumiodide(PI,20␮g/mlinPBS)for30min. FlowcytometricanalysiswasthencarriedoutonaFACScalibur(BectonDickinson, FranklinLakes,NJ,USA).

2.7. DNAfragmentationassay

ForDNAladderanalysis,cellsweretreatedwith5␮MwsGeNPorirradiated with25J/m2UV.Afterfurtherincubatingat37Cfor24h,cellswerewashedtwice

withPBSandthelow-molecular-weightedDNAfragmentswereextractedwithTTE buffer(0.2%TritonX-100,10mMTris,15mMEDTA,pH7.6)for15minatroom temperature.Aftercentrifugingat12,000rpmfor15min,thesupernatantswere transferredtonewtubesbeforeRNAaseA(100␮g/ml)wasaddedandincubated at37◦Cfor1h.DNAwasextractedwith1volumeofphenol/chloroform/isoamyl alcoholandprecipitatedin0.1volumeof3Msodiumacetate(pH5.2)and1volume ofisopropylalcohol.Afterstandingat−70◦Cfor15min,theDNAwasspundownat

12,000rpmfor20min,andwashedwith70%alcohol.TheDNApelletwasdissolved inTEbufferandanalyzedelectrophoreticallyona2%agarosegel.

2.8. Caspase-3activityassay

Cellswerelysedin1%TritonX-100,1%NP-40,2␮g/mlaprotinin,2␮g/ml leupeptin,2mMPMSFandincubatedonicefor10min.Aftercentrifugationat 13,000rpmand4◦Cfor30min,thesupernatantsweretransferredtonewtubes. Proteinconcentrationsweredeterminedusingaproteinassaykit(Bio-Rad).50␮g ofproteinswereincubatedat37◦Cin100␮lreactionbuffer(10mMHEPES,2mM

EDTA,10mMKCl,1.5mMMgCl2,10mMDTT)containing50␮MAc-DEVD-AFCfor

1h.TheAFCfluorescencewasmeasuredatexcitationwavelengthof405nmand emissionwavelengthof505nmwithamicroplatereader(Wallac1420Multilabel Counter,PerkinElmer).

2.9. PIexclusionassay

Theintegrityofplasmamembranewasassessedbydeterminingtheabilityof cellstoexcludePI.Cellsweretrypsinized,collectedbycentrifugation,washedonce withPBSthensuspendedinPBScontaining10␮g/mlPI.Thecellswerestoodatroom temperatureinthedarkfor15min.ThelevelsofPIincorporationweredetermined byflowcytometry(FACScalibur,BectonDickinson,FranklinLakes,NJ,USA).The proportionofcellsstainedwithPIwasexpressedaspercentageofPIuptake. 2.10. DeterminationofintracellularCa2+,reactiveoxygenspecies(ROS)and

mitochondrialmembranepotential(MMP)

IntracellularCa2+,ROSandMMPweremeasuredbyFluo-3-AM,H

2DCF-DAand

(3)

260 Y.-H.Maetal./ToxicologyLetters207 (2011) 258–269

Fig.1.CharacterizationofthesyntheticwsGeNP.(A)ThefluorescenceemittedbythefabricatedwsGeNPwasanalyzedwithexcitationandemissionwavelengthsof350 and450nm,respectively.(B)TheFTIRspectrumofthewsGeNPwasanalyzedtoshowthepresenceofallyamineonthesurfaceoftheparticles.(C)Equivalentconcentration (0.1nM)ofwsGeNPwasincubatedatdifferenttemperaturesfor24or48handfluorescenceintensitywascomparedwiththatwithoutincubation.(D)Equivalentconcentration (0.1nM)ofwsGeNPwasincubatedatdifferentpHfor24hatroomtemperature.Fluorescenceintensitywasdeterminedaftertheincubationandcomparedwiththatofthe samplewithoutincubation.(E)Equivalentconcentration(0.5nM)ofwsGeNPwasdissolvedin8NHNO3andtheintensityofthefluorescencewasdetermined.Eachvalue

(4)

Y.-H.Maetal./ToxicologyLetters207 (2011) 258–269 261

Fig.2. AnalysisofcellviabilityandcellcycledistributionafterwsGeNPtreatment.CellsweretreatedwithvariousconcentrationsofwsGeNPfor24handcellviability wasexaminedbyMTT(A)andclonogenicsurvival(B)assay.Cellpopulationdistributedinthecellcyclewasdeterminedbyflowcytometry(C).Eachvaluerepresentsa mean±standarddeviationofthreesamples.*Significantdifference(p<0.05).

presenceorabsenceofinhibitorsfortheindicatedtimeintervals.Two␮M Fluo-3-AM,5␮MH2DCF-DAor40nMDiCO6wasadded30minbeforecellharvest.Cellular

fluorescencewasmeasuredusingflowcytometry(FACScalibur,Becton-Dickinson, FranklinLakes,NJ,USA)withexcitationandemissionwavelengthsof488nmand 530nm,respectively.

3. Results

3.1. Physicalpropertiesofthesynthesizedwater-solubleGeNP GeNP was fabricated by a reduction method. Transmission electronmicroscopicanalysisofthefabricatedGeNPrevealedan averageparticlesizeof4.2±1.2nmandislowerthantherelatively largeexcitationBohrradius(11.2nm,datanotshown).TheGeNP exhibitsbluephotoluminescenceat450nmwithafullwidthat halfmaximumof100nm(Fig.1A).Usinghydridereducingagents intheseexperimentsproducehydrogen-terminatedGeNPsurfaces (WarnerandTilley,2006),whichcanbetreatedwithcompounds containingC CbondandH2PtCl6catalysttoproduceavarietyof

surfacetypes.WemodifiedtheGeNPswithallyamine.FourierIR spectrumanalysisdetectedtheallyaminegroupsonthesurfaceof GeNP(Fig.1B).Thetransmittanceat2900and3500cm−1attribute toasymmetricandsymmetricvibrationofC–NH2andC–CH2bonds

of the allyamine while the peak at 1661cm−1 is attributedto theallyamine and clearlyindicative of itsattachment toGeNP.

Themodifiednanoparticlesaredesignatedaswater-solubleGeNP (wsGeNP)forthefollowingstudies.

Physical properties associate with subsequent experiments werealsoexaminedpriortoapplyingthewsGeNPtobiological samples.ThefluorescenceintensityofwsGeNPisstableas incu-batedatdifferenttemperatures(4,37or50◦C)foratleast48h (Fig.1C).SimilarcharacteristicwasalsoobservedwhenwsGeNP wasincubatedatdifferentpH(3–10)at37◦C for24h(Fig.1D). TheseresultsindicatethatthewsGeNPwasstableenoughunder variousexperimentalconditionsforsubsequentstudies.The emis-sion of blue fluorescence was diminished when wsGeNP was treatedwith8Nnitricacidat65◦Cfor12h,indicatingthecollapse oftheparticlestructure(Fig.1E).Thisconditionwasthenusedto estimatetheGecontentforthefabricatedparticlesbyinductively coupledplasma-massspectrometry.

3.2. CytotoxiceffectofwsGeNP

CytoxicityofthewsGeNPwasexamined.Gecontentinthe solu-tionwasdeterminedbyICP-MSbeforeaddingtocells.Cellviability wasinitiallymeasuredbyMTTassay.Cellsweretreatedwith vari-ousconcentrationsofwsGeNPfor24handsurvivalfractionswere determined.AsshowninFig.2A,cellviabilitydeclinedataslowas 1␮MofwsGeNPandtoxicityobservedathigherthan3␮M.Since

(5)

262 Y.-H.Maetal./ToxicologyLetters207 (2011) 258–269

Fig.3. CharacterizationofwsGeNP-inducedcelldeath.Cellsweretreatedwith5␮MwsGeNPfor24horirradiationwith25J/m2UV.ThelevelsofDNAfragmentation(A)

andcaspase3activity(B)wereanalyzed.Cellswereharvested24h(A)or12and24h(B)afterUV-irradiation.ATPlevelwasdeterminedincellsafter24hwsGeNPtreatment (C).Eachvaluerepresentsamean±standarddeviationofthreesamples.*Significantdifference(p<0.05).

germaniumoxide(GeO2)solutiondidnotcausesignificant

cytotox-icityevenatmillimolarlevel(Chiuetal.,2002),wespeculatedthat thetoxiceffectcamefromthechemicalreagentusedinproducing thewsGeNP.ThesameproceduresforwsGeNPsynthesiswerethen performedintheabsenceofgermaniumchloride.Theresulting solutionwasusedtoexaminethecytotoxiceffect.Notoxiceffect wasobservedforthesolvent(datanotshown).Chlorogenicsurvival assaywasusedtoconfirmthedecreaseviabilityobservedinMTT assay.AsshowninFig.2B,cellviabilitydroppeddose-dependently withtheincreaseofwsGeNPconcentration.Theresultsindicate thatGeNPsynthesizedinthisworkpossessestoxiceffect.

SincewehaveshownpreviousthatGeO2blockedcellcycle

pro-gression(Chiu etal.,2002),we examinedwhetherthewsGeNP processessimilarcharacteristic.Flowcytometricanalysiswas con-ducted to examine the cell distribution profile. After treating withvariousconcentrationsofwsGeNPfor24h,cellcycleprofile remainedsimilaramongthetreatments(Fig.2C).Nosignificantcell cyclearrestcouldbeobserved.

3.3. wsGeNPcausednecroticcelldeath

Cytometric analysis did not detect cells in sub-G1 fraction (Fig.2C).Thisresultsuggeststhat GeNPtreatmentdidnotlead to apoptotic cell death. To demonstrate this effect, DNA frag-mentation assay was conducted. As indicated in Fig. 3A, DNA fragmentationwasnotnotedinwsGeNP-treatedcells.However, cellsafterUVirradiationweresubjectedtoapoptoticdeathand

have fragmented DNA. Since caspase 3 is the effector enzyme thatcausescellapoptosis,weexamineitsactivityaftertreatment.

Fig.3Bshowsthatcaspase3activitydidnotincreasebutdecreased afterwsGeNPtreatment.Theresultwasagaincontrarytothatof UV-irradiatedcellswhichshowedanincreaseincaspaseactivity. Forapoptoticcells,ATPlevelremainsunchangedwithinaperiodof time(Zamaraevaetal.,2005).However,wsGeNPtreatmentaltered cellularATPleveldespitethatnocorrelationcouldbeestablished betweentheATPlevelanddosesofwsGeNP(Fig.3C).Theseresults suggestthatGeNPcausesnecroticcelldeathinCHOK1cells.

3.4. Necrostatin1rescuescellsfromnecroticdeath

Cellnecrosisleadstothelossofmembraneintegrityandallows PItodiffuseintocells.Relativecellviabilitycanthusbeanalyzedvia thelevelofPIuptake.Aftertreatingcellsfor24h,wsGeNPcauseda dose-dependentlossofcellmembraneintegrity(Fig.4A). Compa-rabletotheMTTassay,asignificantincreaseofcellularPIuptake wasnotedwhen2.5␮MwsGeNPwasadministeredtocells.A time-coursestudywassubsequentlyconductedandtheresultshows thatincreaseinPIuptakeoccurswithin12–24hafteradding5␮M wsGeNP(Fig.4B).PIexclusionassayisthususedtoestimatecell damageinsubsequentstudies.

Necrotic cell death is currently recognized to proceed in a programmedmanner.Interruptionofthesignaltransductioncan reducecelldamage.Aninhibitor,necrostatin-1(Nec-1),can atten-uatetheoccurrenceofnecroticcelldeath(Degterevetal.,2005).

(6)

Y.-H.Maetal./ToxicologyLetters207 (2011) 258–269 263

Fig.4.wsGeNPcausesnecroticcelldeathandcanberescuedbyNec-1.CellmembraneintegritywasestimatedwiththePIexclusionassaywith:(A)cellstreatedwith variousconcentrationsofwsGeNPfor24h;(B)cellstreatedwith5␮MwsGeNPforvarioustimeintervals;(C)cellstreatedwith5␮MwsGeNPinthepresenceofvarious concentrationsofNec-1for24h.Eachvaluerepresentsamean±standarddeviationofthreesamples.*Significantdifference(p<0.05).#Significant(p<0.05)difference

betweenthepairedgroups.(D)Morphologyofcellsreceived5␮MwsGeNPand/or300␮MNec-1wasrecorded.Magnitudeofamplification:400×.

Nec-1wasthereforeusedtoverifythedamagingeffect.Asshown inFig.4C,Nec-1isabletoreducethewsGeNP-inducedcytotoxic effect.Therescueofcelldamagecanbecorrelatedwiththe morpho-logicalchangesofcells.CellstreatedwithwsGeNPhavearound-up morphology.WiththeadditionofNec-1,cellmorphologyreturned tothatofuntreatedcells(Fig.4D).Theseresultsdemonstrate fur-therthatwsGeNPcausesnecroticcelldeathandthedamagecanbe blockedbyNec-1.

3.5. Signalingfactorsinvolvedinthecelldamageinducedby wsGeNP

Since wsGeNP-treated cells subjected to necrotic cell death, signalingfactorsinvolvedinthedamagewereinvestigated. Intra-cellular calcium concentration was examined initially because elevationofcalciumcontentisfrequentlyobservedincellsexposed tometal.Cellsweretreatedwith3or5␮MwsGeNPfor24hand calciumcontentwasestimatedbyflowcytometry.Fig.5Ashows thatcalciumcontentincreaseswiththetreatment.Atime-course studywassubsequently conductedand showedthat intracellu-larcalciumcontentincreased12hafterthetreatment(Fig.5B). Toanalyzewhethertheelevatedcalciumcontentisrelatedtocell damage,intracellularcalciumchelator(BAPTA-AM)wasaddedto GeNP-treatedcellsandreducedthecellularcalciumlevel(Fig.5C). Thisreductioncorrelatestotheprotectiveroleofthechelatorsince thelevel of PI uptake dropped withthe incrementsof BAPTA-AM(Fig.5D).BAPTA-AMdidnotrecoverthecellmorphologyof

thewsGeNP-treatedcellssincethecalciumchelatoritselfaltered thecellmorphology(Fig.5D).ThisresultsuggeststhatwsGeNP stimulatestherelease ofintracellular calciumthat leadstocell damage.

Reactiveoxygenspecies(ROS)canbeproducedbymetal chal-lenge andstimulatedby elevatingcellularcalciumcontent.We thereforeestimatetheROSlevelafterwsGeNPtreatment.Asshown inFig.6A,adose-dependentincreaseofROSlevelwasobserved in cells after 24h of GeNP exposure. Time-course study shows that theincrease ofROS occurredat15hafterGeNP treatment (Fig.6B).Anantioxidant,N-acetylcysteine(NAC),wasaddedto examine whether the ROS can be removed and consequently reducescelldamage.Fig.6CshowsthattheROSwaseffectively diminishedbytheantioxidantinadose-dependentmanner. Addi-tion of NAC towsGeNP-treated cells alsoabrogated cellular PI uptake (Fig.6D)andrecoveredcellmorphology(Fig.6E).These resultsindicatethatNACpreventscellsfromdamagescausedby wsGeNP.

Alternationofmitochondrialmembranepotential(MMP)can be foundin cells subjected tovarious stresses resultingin cell deaththrougheitherapoptotic ornecroticpathway.Theroleof MMPinwsGeNP-induceddamageistheninvestigated.A reduc-tion in MMP was noted in cells treated with more than 3␮M wsGeNPfor 24h(Fig.7A). Dropin MMP became significantat 21hinthepresenceof3␮MwsGeNP(Fig.7B).Tolinkthe alter-nation of MMP with cell damage, cyclosporin A (CsA), which inhibits the openingof the mitochondria membrane transition

(7)

264 Y.-H.Maetal./ToxicologyLetters207 (2011) 258–269

Fig.5. wsGeNPtreatmentelevatedintracellularCa2+andcausedcelldamage.(A)Cellsweretreatedwith3or5␮MwsGeNPfor24handintracellularCa2+levelwas

determined.(B)Cellsweretreatedwith5␮MwsGeNPforvarioustimeintervalsandintracellularCa2+levelwasdetermined.Cellsweretreatedwith5␮MwsGeNPfor24h

inthepresenceofvariousconcentrationsofBAPTA-AM.IntracellularCa2+(C)orPIuptake(D)levelwasdetermined.Eachvaluerepresentsamean±standarddeviationof

threesamples.*Significantdifference(p<0.05).#Significant(p<0.05)differencebetweenthepairedgroups.(D)Cellmorphologyinthepresenceof5␮MwsGeNPand/or

60␮MBAPTA-AMwasrecorded.Magnitudeofamplification:400×.

pore,wasusedtoblockthereduction ofMMP. Employmentof theinhibitorcanrecoverthewsGeNP-inducedreductionofMMP (Fig.7C).Moreover,theblockageofMMPreductioncorrelatedwith thelevelofcelldamagesinceCsAreducedalsoPIuptakeincells treatedwithwsGeNPfor24h(Fig.7D).TheeffectivenessofCsA inprotectingcellfromwsGeNPdamagecanalsobenotedbythe alternationofcellmorphology.WiththeadditionofCsA,the mor-phologyofwsGeNP-treatedcellsreturnedtothatofuntreatedcells (Fig.7E).

3.6. SequenceofthesignalingeventsafterGeNPexposure

Itisevidentfromtheaboveresultsthatintracellularcalcium, ROS and MMP are involved in the signaling pathway for the wsGeNP-inducedcelldamage.Thealternationsofthesesignaling factorsoccurrespectivelyat12,15and21h,implyingasequence ofeventoccursfromintracellularcalcium,ROStoMMP.To demon-stratethissequence,calciumchelatorwasfirstapplied,thenROS and MMP levels were determined. Fig. 8 shows that ROS was

(8)

Y.-H.Maetal./ToxicologyLetters207 (2011) 258–269 265

Fig.6.wsGeNPtreatmentincreasedROSlevelandcausedcelldamage.(A)CellsweretreatedwithvariousconcentrationsofwsGeNPfor24handROSlevelwasdetermined. (B)Cellsweretreatedwith5␮MwsGeNPforvarioustimeintervalsandROSlevelwasdetermined.Cellsweretreatedwith5␮MwsGeNPfor24hinthepresenceof variousconcentrationsofNAC.ROS(C)orPIuptake(D)levelwasdetermined.Eachvaluerepresentsamean±standarddeviationofthreesamples.*Significantdifference (p<0.05).#Significant(p<0.05)differencebetweenthepairedgroups.(D)Cellmorphologyinthepresenceof5␮MwsGeNPand/or100␮MNACwasrecorded.Magnitude

ofamplification:400×.

reduced(Fig.8A)whileMMPwaselevated(Fig.8B)afteradding BAPTA-AMtowsGeNP-treatedcells.ThisresultindicatesthatROS andMMParethedownstreamsignalsfortheincreasedcalcium content.Secondly,NACwasadministratedtowsGeNP-treatedcells

toreduceROS,thencalciumcontentandMMPwereestimated.An elevationinMMPwasnoted,butthecalciumlevelremainedhigh withthetreatment(Fig.8CandD).ThisfindingshowsthatROS isdownstreamofcalciumsignalingbutupstreamofMMP.Thirdly,

(9)

266 Y.-H.Maetal./ToxicologyLetters207 (2011) 258–269

Fig.7.GeNPtreatmentreducedMMPlevelandcausedcelldamage.(A)CellsweretreatedwithvariousconcentrationsofwsGeNPfor24handMMPlevelwasdetermined. (B)Cellsweretreatedwith3␮MwsGeNPforvarioustimeintervalsandMMPlevelwasdetermined.Cellsweretreatedwith3␮MwsGeNPfor24hinthepresenceofvarious concentrationsofCsA.MMP(C)orPIuptake(D)levelwasdetermined.Eachvaluerepresentsamean±standarddeviationofthreesamples.*Significantdifference(p<0.05).

#Significant(p<0.05)differencebetweenthepairedgroups.(D)Cellmorphologyinthepresenceof3␮MwsGeNPand/or5␮MCsAwasrecorded.Magnitudeofamplification:

400×.

CsAwasgiventoattenuatethereductionofMMPbywsGeNP. Intra-cellularcalcium(Fig.8E)andROSlevels(Fig.8F)werenotaffected bytheadditionofCsA,indicatingthatreductionofMMPderives fromanincreaseinintracellularcalciumcontentandthe subse-quentaugmentedROSlevelbythewsGeNPtreatment.Asummary ofthesignalingpathwayofwsGeNP-inducedcelldeathandthe chemicalsprotectingthecellsfromdamagesareshowninFig.9.

4. Discussion

GeNP can beproduced using differentapproaches. Whether GeNPs fabricated by different methods have similar biological propertiesremaintobeinvestigated.Inthisstudy,wefoundthat GeNPpreparedwithdifferentmethodologiesprocesseddissimilar biologicaleffects.WereportedpreviouslythatGeNPfabricatedby

(10)

Y.-H.Maetal./ToxicologyLetters207 (2011) 258–269 267

Fig.8.DeterminationofthesignalsequenceforwsGeNP-inducedcelldamage.(A)ROSand(B)MMPlevelsweredeterminedincellstreatedwith5␮MwsGeNPfor24h inthepresenceorabsenceof60␮MBAPTA-AM;(C)intracellularCa2+and(D)MMPlevelsweredeterminedincellstreatedwith5␮MwsGeNPfor24hinthepresenceor

absenceof50or100␮MNAC;(E)intracellularCa2+and(F)ROSlevelsweredeterminedincellstreatedwith3␮MwsGeNPfor24hinthepresenceorabsenceof2.5or5␮M

CsA.Eachvaluerepresentsamean±standarddeviationofthreesamples.*Significantdifference(p<0.05).#Significant(p<0.05)differencebetweenthepairedgroups.

vaporcondensationmethoddidnotexertcytotoxicitytoCHOK1 cells(Linetal.,2009).Additionally,itretardscellcycleprogression andenhancesradiosensitizingactivityofcells.These characteris-ticsaresimilartothatofGeO2.However,wefoundinthisstudy

that wsGeNP has toxicity to cells. This finding is unexpected. Weexaminedthephysicalpropertiesofvapor-condensed GeNP (vpGeNP)and observedthat the nanoparticlesform aggregates

afterincubatinginwater.ThevpGeNPcanevenbedecomposed anddissolvedinwaterafterstandinginroomtemperaturewithin 2weeks.ThesolubilizedvpGeNPmayshowthesamepropertyas GeO2solution.Ontheotherhand,wsGeNPisphysicallystable.The

fluorescenceintensityofwsGeNPremainsthesameafterstoring atroomtemperaturefor morethan2 months.Itcansustainat elevatedtemperature(50◦C)oracidity(pH3)forprolongedperiod

(11)

268 Y.-H.Maetal./ToxicologyLetters207 (2011) 258–269

Fig.9.AschematicillustratingthewsGeNP-inducedsignalingpathwaywith chem-icalsprotectingthecellsfromdamageslisted.

without affecting the fluorescence intensity. The wsGeNP may beeasiertoenterandremainintactincells.Thesedifferencesin physicalpropertiesmayattributetoitscytotoxiceffectoncells.

Becauseofthepromptdevelopmentinnanotechnology,a vari-etyofnanoparticles(NPs)weresynthesized.Attemptsweremade toutilizetheseNPsforbiomedicalapplications.Oneofthemajor concernsabouttheapplicationisthetoxicitytoorganisms.Cell damagingeffectsinducedbyNPswerereportedinseveral stud-ies.QuantumdotswithCd–Secoreareknowntobetoxictocells duetothereleaseofhazardousmetalions(Medintzetal.,2004). TreatingRAW264.7cellswithAgNPresultedinareductionof cel-lularGSHcontent,increasedNOproductionandTNF-␣synthesis andsubsequentapoptoticcelldeath(Parketal.,2010).CuNPand MnNPincreaseoxidativestressviaROSproductionafterentering cells,andleadtocelldeath(Vanwinkleetal.,2009).Thesestudies indicatethatcytotoxicityoftheNPscanbederivedfromtherelease oftheconstituentsand/orNP-activatedsignalingpathway(s).Since thedissolvedGeexertslowcelltoxicity(Chiuetal.,2002),the dam-agingeffectofwsGeNPcomesfromtheactivatedsignalcascade. Blockingthetransductionofthesignalsrescuescellsfromnecrotic death.ThisfindingindicatesthatentranceofforeignNPsstimulates variouscellularresponses.Damagesmayoccurifthecellsarenot abletomanageandmodulatethepassageofsignals.

The degree of cell damage may also be associated with the entrance rate of the NPs. For example, AuNP enters cells rapidlythroughreceptor-mediatedendocytosisandactivates pro-inflammatorygenessuchasinterleukinI(IL-1),IL-6andTNF-␣(Yen etal.,2009).Owingtohigherlevelofaccumulationincells,AuNP hasmoresignificantcytotoxicand immuneresponsesthanthat inducedbyAgNP,whichenteredcellsthroughnon-specific endocy-tosis.Presently,wedonotknowtheexactmechanismforwsGeNP cellentry.WespeculatethatwsGeNPsentercellsthrough endocy-tosisandtransientlysequesteredinlysosomes.AlthoughthepHof lysosomecanbelowerthan4,GeNPisstableatpHlowerthan3 (Fig.2).ItisunlikelythatthewsGeNPsaredissolvedinlysosome andtheGeionsleakouttothecytoplasmtoproducethetoxic effects.ConsideringthatGeO2athigherthan20mMdoesnotexert

cellularcytotoxicityafter24htreatment(Chiuetal.,2002),cell damagesshouldbeverylimitedevenifwsGeNPdecomposedand releasesfromlysosomes.Remarkably,damagetothesametypeof cellscanbedetectedatlessthan3␮MofwsGeNP.Becausethe fluorescenceofwsGeNPcouldnot bedetectedin thecells, cel-lularlocalization ofthewsGeNPcannot beidentifiedpresently. However,intracellularcalciumlevelelevated12hafterwsGeNP exposure(Fig.5B).Thisresultimpliesthattheeffectwasproduced afterwsGeNPenteredcells,butnotaftertheimmediateexposure ofwsGeNPtocells.

Cellssubjectedtochemicaltreatmentsusuallycauseadefined type of cell death. However, different types of cell deathmay occursimultaneouslybyatreatment.Thetypeofcelldeathalso variesunderdifferentconditions;evencellsaretreatedwiththe samechemical.Cellsmaysubjecttoapoptoticdeathunderlower chemicalconcentration,butswitchestonecroticdeathwhenthe doseishigh(MajnoandJoris,1995).Studieshaveindicatedthat apoptoticandnecroticcelldeathscanberegulatedbycommon sig-nalingfactors.AlternationsinintracellularCa2+,ROSandMMPare

frequentlyfoundineitherapoptoticornecroticcelldeath. Intracel-lularCa2+contentwasreportedlytodeterminethecellfate(Zong andThompson,2006).Moderateelevationofcalciumcontentleads toapoptotic death(McConkeyand Orrenius,1996).However,a greatincreaseofcalciumionsresultsinmitochondrialCa2+

over-loadandcausesnecroticdeath(RichterandSchlegel,1993).For wsGeNP-treatedcells,a5-foldincreaseinintracellularCa2+

con-tentwasnotedat5␮M treatment.Thisraisein Ca2+contentis

apparentlysufficienttoinitiatethesignalfornecrosis.Studyalso showedthatATPleveldeterminedthetypeofcelldeath. Reduc-tioninATPcontentmayleadtonecrotic celldeath(Leistetal., 1997).Inourstudy,wedidnotobserveapoptoticcelldeatheven athighwsGeNPconcentration.Althoughwehavedemonstrated thatwsGeNPcausednecroticcelldeath,theATPleveldidnotshow adose-dependentreductionafterthetreatment.Thisresponseis similartothatofperoxynitrite-treatedU931orTHP-1monocytes. Thistreatmentcausednecroticcelldeathbutdidnotaltercellular ATPlevel(Cantonietal.,2005).

ThecytotoxicresponsesofwsGeNPtoCHOK1cellsaresimilarto thatofCd(Yangetal.,2007).Cd-treatedcellsalsorenderednecrotic celldeath.WeshowedthattheCd-inducedcelldamagebeganwith elevationofintracellularCa2+ions,followedbyanincreaseinROS

levelthenreductionofMMP;asignalingpathwayexactlythesame asthatofwsGeNP.However,theelevatedCa2+contentalso

stim-ulatescalpainactivityinparallelwiththeROSincrease.Calpain activitywasnotalteredinwsGeNP-treatedcells(datanotshown). Thisvariationisanexampleofdifferentchemicaltreatment stim-ulates apartially overlappingpathway andleadstosimilarcell fate.

Reporthasindicatedthatdifferentsizesofnanoparticlesmay producedifferentcytotoxiceffects(Frohlichetal.,2009).For exam-ple,treatingcellswith1.4nmAuNPresultedinnecroticcelldeath. However,thetoxicity canbereducedbyincreasingtheparticle sizes(Panetal.,2007).SincethevpGeNPaggregatesinwaterand isnotcytotoxic,wespeculatethatthesizeoftheGeNPmayplay rolesindeterminingcytotoxicity.SincethesizeofNPcanbe mod-ulatedbysurfactantinthefabricationprocess(Dungetal.,2009; Natarajanetal.,1996), weincreasedtheconcentrationofTOAQ togeneratewsGeNPwithlargersizes(50and150nmdiameterin average).Areductionincytotoxicity(determinedbyPIexclusion assay)wasnotedwhenthelargersizewsGeNPwasexamined. Sig-nificantincreaseofPIuptakewasobservedafteradding100␮M ofthe150nmwsGeNPfor24h(datanotshown).However,the toxicityisnotreducedinasize-dependentmanner.Nevertheless, theresultsuggeststhatthesizeofwsGeNPattributesinpartthe toxicitytocells.

Besidestoparticlesizes,thecytotoxicityofwsGeNPmayvary indifferentcelltypes.WehaveexaminedthetoxicityofwsGeNP inHEK293cellsandfoundasignificantincreaseinPIuptakewhen theconcentrationreached20␮M.Thisresultindicatesacell spe-cificdamagingeffectofthewsGeNP.Cell-typespecifictoxicityhas beenreportedin severalstudies.ZnONPproduced varied cyto-toxiceffecttohumanimmunecells;lymphocytesaremostresistant whilemonocytesaremostsusceptibletothetoxicity(Kauzlarich etal.,2004).CytotoxicityofsilicaNPalsoshowedastrong depen-denceoncelltypeandparticlesizewhenhumanepithelialcellsand mousemonocyteswerecompared(Diazetal.,2008;Warnerand

(12)

Y.-H.Maetal./ToxicologyLetters207 (2011) 258–269 269

Tilley,2006).WeusedCHOK1cellsinthisstudysuchthattheGe effectcanbecomparedwithourpreviousworks.AlthoughwsGeNP exertslesstoxiceffectinhumankidneycell(HEK293),thetoxicity isstillpresent.

Weestablishedinthisworkthesignalingpathwayof wsGeNP-induced cell damage. A variety of metallic compounds have reportedtotransducecytotoxicityviatheCa2+/ROS/MMPpathway.

ThispathwaymayalsobecommontoNP-activatedcelldamages. Signalsthroughthiscommonpathwaycauseeitherapoptoticor necroticdeathdependingonthecelltypeandthepropertyofthe NP.We showherethat wsGeNPcausesnecrotic celldeathand Nec-1canattenuateNP-induced necrotic celldeath. Thisisthe firststudytoindicatetheeffectivenessofNec-1andthusprovides apotentialantagonisttocounteractthehazardofNP exposure. WehavesuggestedpreviouslythatreductioninMMPafter chem-icaltreatmentmaybeaprerequisiteforNec-1toreducenecrotic celldeath(Hsuetal.,2009).SincewsGeNPtreatmentcausesMMP reduction andleadsto necroticcell death, Nec-1is effectivein rescuingdamagedcells.

In summary, we reported here the toxicological study of wsGeNP.IncontracttoGeO2andvpGeNP,wsGeNPshowedhigh

toxicitytocells.Itcausedcellnecrosisthroughelevating intracellu-larcalciumconcentrationwhichresultsinanincreaseinROSlevel. ROSstimulatesthereductionofMMPandleadscellstonecrotic death.Thisdamagingeffectcanbeattenuatedbyaddingcalcium chelator,ROSscavenger,MPTporeinhibitororNec-1.

Acknowledgements

Thisworkwassupported bygrants NSC95-2627-M-007-006 andNSC96-2627-M-007-006 fromtheNationalScienceCouncil, Taiwan,RepublicofChina.TheauthorsthankDr.M.F.Tamfor crit-icalreadingofthemanuscript.

References

Alivisatos,P.,2004.Theuseofnanocrystalsinbiologicaldetection.Nat.Biotechnol. 22,47–52.

Aso,H.,Suzuki,F.,Ebina,T.,Ishida,N.,1989.Antiviralactivityof carboxyethyl-germaniumsesquioxide(Ge-132)inmiceinfectedwithinfluenzavirus.J.Biol. ResponseMod.8,180–189.

Bailey,S.G.,Raffaelle,R.,Emery,K.,2002.Spaceandterrestrialphotovoltaics:synergy anddiversity.Prog.Photovoltaics10,399–406.

Cantoni,O.,Guidarelli,A.,Palomba,L.,Fiorani,M.,2005.U937cellnecrosismediated byperoxynitriteisnotcausedbydepletionofATPandispreventedby arachi-donateviaanATP-dependentmechanism.Mol.Pharmacol.67,1399–1405. Chiu,H.W.,Kauzlarich,S.M.,2006.Investigationofreactionconditionsforoptimal

germaniumnanoparticleproductionbyasimplereductionroute.Chem.Mater. 18,1023–1028.

Chiu,H.W.,Kauzlarich,S.M.,Sutter,E.,2006.Thermalbehaviorandfilm forma-tionfromanorganogermaniumpolymer/nanoparticleprecursor.Langmuir22, 5455–5458.

Chiu,S.J.,Lee,M.Y.,Chen,H.W.,Chou,W.G.,Lin,L.Y.,2002.Germaniumoxideinhibits thetransitionfromG2toMphaseofCHOcells.Chem.Biol.Interact.141, 211–228.

Degterev,A.,Huang,Z.,Boyce,M.,Li,Y.,Jagtap,P.,Mizushima,N.,Cuny,G.D., Mitchi-son,T.J.,Moskowitz,M.A.,Yuan,J.,2005.Chemicalinhibitorofnonapoptoticcell deathwiththerapeuticpotentialforischemicbraininjury.Nat.Chem.Biol.1, 112–119.

Diaz,B.,Sanchez-Espinel,C.,Arruebo,M.,Faro,J.,Miguel,E.d.,Magadan,S.,Yague,C., Fernandez-Pacheco,R.,Ibarra,M.,Santamaria,J.,Gonzalez-Fernandez,A.,2008. Assessingmethodsforbloodcellcytotoxicresponsestoinorganicnanoparticles andnanoparticleaggregates.Small4,2025–2034.

Dozono,H.,Ikeda,K.,Onishi,T.,1996.EffectivenessofGe-132torelievepainand smoothhomecareadministrationfortheterminalcancerpatient.GanToKagaku Ryoho23(Suppl.3),291–295.

Dung,T.T.N.,Buu,N.Q.,VietQuang,D.,ThiHa,H.,Bang,L.A.,HoaiChau,N.,ThiLy,N., Trung,N.V.,2009.Synthesisofnanosilverparticlesbyreversemicellemethod andstudyoftheirbactericidalproperties.J.Phys.:Conf.Ser.187,012054. Fok,E.,Shih,M.,Meldrum,A.,Veinot,J.C.,2004.Preparationofalkyl-surface

func-tionalizedgermaniumquantumdotsviathermallyinitiatedhydrogermylation. Chem.Commun.,386–387.

Frohlich,E.,Samberger,C.,Kueznik,T.,Absenger,M.,Roblegg,E.,Zimmer,A.,Pieber, T.R.,2009.Cytotoxicityofnanoparticlesindependentfromoxidativestress.J. Toxicol.Sci.34,363–375.

Fukazawa,H.,Ohashi,Y.,Sekiyama,S.,Hoshi,H.,Abe,M.,Takahashi,M.,Sato,T., 1994.MultidisciplinarytreatmentofheadandneckcancerusingBCG,OK-432, andGE-132asbiologicresponsemodifiers.HeadNeck16,30–38.

Hsu,T.S.,Yang,P.M.,Tsai,J.S.,Lin,L.Y.,2009.Attenuationofcadmium-induced necroticcelldeathbynecrostatin-1:potentialnecrostatin-1actingsites.Toxicol. Appl.Pharmacol.235,153–162.

Kauzlarich,S.M.,Zou,J.,Baldwin,R.K.,Pettigrew,K.A.,2004.Solutionsynthesis ofultrastableluminescentsiloxane-coatedsiliconnanoparticles.NanoLett.4, 1181–1186.

Kumano,N.,Ishikawa,T.,Koinumaru,S.,Kikumoto,T.,Suzuki,S.,Nakai,Y.,Konno,K., 1985.AntitumoreffectoftheorganogermaniumcompoundGe-132ontheLewis lungcarcinoma(3LL)inC57BL/6(B6)mice.TohokuJ.Exp.Med.146,97–104. Lambert,T.N.,Andrews,N.L.,Gerung,H.,Boyle,T.J.,Oliver,J.M.,Wilson,B.S.,Han,

S.M.,2007.Water-solublegermanium(0)nanocrystals:cellrecognitionand near-infraredphotothermalconversionproperties.Small3(4),691–699. Leist,M., Single, B., Castoldi,A.F., Kuhnle, S.,Nicotera, P., 1997. Intracellular

adenosinetriphosphate(ATP)concentration:aswitchinthedecisionbetween apoptosisandnecrosis.J.Exp.Med.185,1481–1486.

Lin,M.H.,Hsu,T.S.,Yang,P.M.,Tsai,M.Y.,Perng,T.P.,Lin,L.Y.,2009.Comparisonof organicandinorganicgermaniumcompoundsincellularradiosensitivityand preparationofgermaniumnanoparticlesasaradiosensitizer.Int.J.Radiat.Biol. 85,214–226.

Lu,X.,Korgel,B.A.,Johnston,K.P.,2005.Highyieldofgermaniumnanocrystals syn-thesizedfromgermaniumdiiodideinsolution.Chem.Mater.17,6479–6485. Majno,G.,Joris,I.,1995.Apoptosis,oncosis,andnecrosis.Anoverviewofcelldeath.

Am.J.Pathol.146,3–15.

McConkey,D.J.,Orrenius,S.,1996.Theroleofcalciumintheregulationofapoptosis. J.Leukoc.Biol.59,775–783.

Medintz,I.L.,Trammell,S.A.,Mattoussi,H.,Mauro,J.M.,2004.Reversible modula-tionofquantumdotphotoluminescenceusingaprotein-boundphotochromic fluorescenceresonanceenergytransferacceptor.J.Am.Chem.Soc.126,30–31. Michalet,X.,Pinaud,F.F.,Bentolila,L.A.,Tsay,J.M.,Doose,S.,Li,J.J.,Sundaresan,G., Wu,A.M.,Gambhir,S.S.,Weiss,S.,2005.Quantumdotsforlivecells,invivo imaging,anddiagnostics.Science307,538–544.

Natarajan,U.,Handique,K.,Mehra,A.,Bellare,J.R.,Khilar,K.C.,1996.Ultrafinemetal particleformationinreversemicellarsystems:effectsofintermicellarexchange ontheformationofparticles.Langmuir12,2670–2678.

Ngiam,S.-T.,Jensen,K.F.,Kolenbrander,K.D.,1994.SynthesisofGenanocrystals embeddedinaSihostmatrix.J.Appl.Phys.76,8201.

Pan,Y.,Neuss,S.,Leifert,A.,Fischler,M.,Wen,F.,Simon,U.,Schmid,G.,Brandau,W., Jahnen-Dechent,W.,2007.Size-dependentcytotoxicityofgoldnanoparticles. Small3,1941–1949.

Park,E.J.,Yi,J.,Kim,Y.,Choi,K.,Park,K.,2010.Silvernanoparticlesinducecytotoxicity byaTrojan-horsetypemechanism.Toxicol.InVitro24,872–878.

Riabinina,D.,Durand,C.,Chaker,M.,Rowell,N.,Rosei,F.,2006.Anovelapproachto thesynthesisofphotoluminescentgermaniumnanoparticlesbyreactivelaser ablation.Nanotechnology17,2152–2155.

Richter,C.,Schlegel,J.,1993.Mitochondrialcalciumreleaseinducedbyprooxidants. Toxicol.Lett.67,119–127.

Rieke,G.H.,2007.Infrareddetectorarraysforastronomy.Annu.Rev.Astron.Astr. 45,77–115.

Singh,A.K.,Kumar,V.,Kawazoe,Y.,2005.Designofaverythindirect-band-gap semiconductornanotubeofgermaniumwithmetalencapsulation.Phys.Rev. 71,75312.

Thiele,U.K.,2001.Thecurrentstatusofcatalysisandcatalystdevelopmentfor theindustrialprocessofpoly(ethyleneterephthalate)polycondensation.Int.J. Polym.Mater.50,387–394.

Vanwinkle,B.A.,deMesyBentley,K.L.,Malecki,J.M.,Gunter,K.K.,Evans,I.M.,Elder, A.,Finkelstein,J.N.,Oberdorster,G.,Gunter,2009.Nanoparticle(NP)uptakeby typeIalveolarepithelialcellsandtheiroxidantstressresponse.Nanotoxicology 3,307–318.

Warner,J.H.,Tilley,R.D.,2006.Synthesisofphotoluminescencewater-soluble ger-maniumnanocrystals.Nanotechnology17,3745–3749.

Washio,K.,2003.SiGeHBTandBiCMOStechnologiesforopticaltransmissionand wirelesscommunicationsystems.IEEETrans.Electron.Dev.50,656–668. Xie,P.,Hu,Y.,Fang,Y.,Huang,J.,Lieber,C.M.,2009.Diameter-dependentdopant

locationinsiliconandgermaniumnanowires.Proc.Natl.Acad.Sci.U.S.A.106, 15254–15258.

Yang,P.M.,Chen,H.C.,Tsai,J.S.,Lin,L.Y.,2007.CadmiuminducesCa2+-dependent necroticcelldeaththroughcalpain-triggeredmitochondrialdepolarizationand reactiveoxygenspecies-mediatedinhibitionofnuclearfactor-kappaBactivity. Chem.Res.Toxicol.20,406–415.

Yen,H.J.,Hsu,S.H.,Tsai,C.L.,2009.Cytotoxicityandimmunologicalresponseofgold andsilvernanoparticlesofdifferentsizes.Small5,1553–1561.

Zamaraeva,M.V.,Sabirov,R.Z.,Maeno,E.,Ando-Akatsuka,Y.,Bessonova,S.V.,Okada, Y.,2005.CellsdiewithincreasedcytosolicATPduringapoptosis:a biolumines-cencestudywithintracellularluciferase.CellDeathDiffer.12,1390–1397. Zhou,Z.,Brus,L.,Friesner,R.,2003.Electronicstructureandluminescenceof

1.1-and1.4-nmsiliconnanocrystals:oxideshellversushydrogenpassivation.Nano Lett.3,163.

數據

Fig. 1. Characterization of the synthetic wsGeNP. (A) The fluorescence emitted by the fabricated wsGeNP was analyzed with excitation and emission wavelengths of 350 and 450 nm, respectively
Fig. 2. Analysis of cell viability and cell cycle distribution after wsGeNP treatment
Fig. 3. Characterization of wsGeNP-induced cell death. Cells were treated with 5 ␮M wsGeNP for 24 h or irradiation with 25 J/m 2 UV
Fig. 4. wsGeNP causes necrotic cell death and can be rescued by Nec-1. Cell membrane integrity was estimated with the PI exclusion assay with: (A) cells treated with various concentrations of wsGeNP for 24 h; (B) cells treated with 5 ␮M wsGeNP for various
+6

參考文獻

相關文件

Consistent with the negative price of systematic volatility risk found by the option pricing studies, we see lower average raw returns, CAPM alphas, and FF-3 alphas with higher

bility of the mobile system is the same as the call blocking For example, for a hexagonal planar layout with reuse dis- probability in a cell, Because traffic in

A factorization method for reconstructing an impenetrable obstacle in a homogeneous medium (Helmholtz equation) using the spectral data of the far-eld operator was developed

You are given the wavelength and total energy of a light pulse and asked to find the number of photons it

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =&gt;

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix

incapable to extract any quantities from QCD, nor to tackle the most interesting physics, namely, the spontaneously chiral symmetry breaking and the color confinement.. 