• 沒有找到結果。

Structure of Cun and Co II Clusters of 7-Azaindolate: [Cu2(CTHsN2)4(dmf)2] (I), [Cu4(OCH3)4(CTHsN2)4(dmD2] (II) and [C040(CTHsN2)6].CHCI3 (III)

N/A
N/A
Protected

Academic year: 2021

Share "Structure of Cun and Co II Clusters of 7-Azaindolate: [Cu2(CTHsN2)4(dmf)2] (I), [Cu4(OCH3)4(CTHsN2)4(dmD2] (II) and [C040(CTHsN2)6].CHCI3 (III)"

Copied!
7
0
0

加載中.... (立即查看全文)

全文

(1)

O S W A L D B A U M G A R T N E R

1725

sind. Der mittlere C 1 - O Abstand und die O - C 1 - O

Winkel stimmen sehr gut mit jenen anderer Perchlorate

/iberein (Beveridge, Bushnell & Kirk, 1985; Dauter,

Hansen, Mawby, Probitts & Reynolds, 1985; Figgis,

Wadley & Graham, 1972; Garland, Le Marouille &

Spodine, 1985; International Tables f o r X-ray Crystal-

lography, 1968; Thompson, Calabrese & Whitney,

1985). Die Temperaturfaktoren der Perchloratsauer-

stoffatome sind relativ hoch. GroBe Beweglichkeiten

der Perchlorationen bis zu verschiedenen Disorder-

Ph~inomenen aufgrund der offensichtlich schwachen

Wechselwirkung der Perchlorationen mit den umgeben-

den Molekiilen sind auch in anderen Perchloraten zu

finden (Dauter et aL, 1985; Figgis et al., 1972; Garland

et al., 1985). Die Mobilit/it der C104-Gruppen ist in

[Fe(C3H7NS)6](C104) 2 wesentlich kleiner als in [Fe(C 3-

HTNO) 6](CIO4) 2 (Baumgartner, 1986), m6glicherweise

aufgrund der gr6f3eren Acidit/it der H-Atome der

Methylgruppen in der N/ihe der Perchlorationen im

D M T F und damit wegen der etwas st/irkeren D o n o r -

Akzeptor Wechselwirkung zwischen den Perchlorat-

sauerstoffatomen und den Liganden (kleinster C -

H . . . O Abstand: 3,39 A).

Herrn Doz. Dr. H. V611enkle danke ich f'tir wertvolle

Diskussionen, dem Interfakult~en Rechenzentrum der

Technischen Universit~it Wien f/Jr die Rechenzeit und

dem Fonds zur F6rderung der wissenschaftlichen

Forschung in Osterreich f/ir die finanzielle Unter-

st/itzung (Projekt-Nr. 2178).

Literatur

]]AUMGARTNER,

O. (1986). Z. Kristallogr. 174, 253-263.

BEWgtDGE, K. A., BUSHNELL, G. W. & KINK, A. D. (1985). Acta

Cryst. C41, 899-902.

DAUTER, Z., HANSEN, L. K., MAWaV, R. J., PRoma-rs, E. J. &

REYNOLDS, C. D. (1985). Aeta Cryst. C41, 850-855.

FIGGIS, B. N., WADLEY, L. G. B. & GRAHAM, J. (1972). Acta

Cryst. B28, 187-192.

GARLAND, M. T., LE MAROUmLE, J. Y. & SPODINE, E. (1985). Acta

Cryst. C41, 855-858.

GRrrZNER, G., LINERT, W. & GtrrMANN, V. (1981). J. lnorg. Nucl.

Chem. 43, 1193-1199.

International Tables for X-ray Crystallography (1968). Bd. III.

Birmingham: Kynoch Press. (Gegenw~tiger Verteiler D. Reidel,

Dordrecht.)

International Tables for X-ray Crystallography (1974). Bd. IV.

Birmingham: Kynoch Press. (Gegenw/irtiger Verteiler D. Reidel,

Dordrecht.)

KIRFEL,

A.

(1977). Acta Cryst.

B33,

2788-2790.

LINERT, W., GUTMAr~, V., BAUMGARTNER, O., WIESINGER, G. &

KIRCHMAVR, H. (1983). Inorg. Chim. Acta, 74, 123-130.

MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ,

J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of

Computer Programs for the Automatic Solution of Crystal

Structures from X-ray Diffraction Data. Univ. York, England.

MOTHERWELL,

W. D. S. &

CLEGG,

W. (1978). PLUTO. Program

for Plotting Molecular and Crystal Structures. Univ. Cambridge,

England.

SHELDRICK,

G. M. (1976). SHELX76. Program for Crystal

Structure Determination. Univ. Cambridge, England.

STEWART, J. M., KRUGER, G. J., AMMON, H. L., DICKINSON, C. &

HALL, S. R. (1972). XRA Y72 System - Version Juni 1972. Tech.

Ber. TR-192. Computer Science Center, Univ. Maryland,

College Park, Maryland.

THOMPSON,

J. S.,

CALABRESE,

J. C. & WHn'NEY, J. F. (1985). Acta

Cryst. C41, 890-892.

Acta Cryst. (1986). C42, 1725-1731

Structure of Cun and C o II

Clusters of 7-Azaindolate: [Cu2(CTHsN2)4(dmf)2] (I),

[Cu4(OCH3)4(CTHsN2)4(dmD2] (II) and [C040(CTHsN2)6].CHCI3 (III)

BY SHIE-MING PENG*

Department o f Chemistry, National Taiwan University, Taipei, Taiwan and Institute o f Chemistry, Academia

Sinica, Taipei, Taiwan

AND Yn-NAN LtN

Department o f Chemistry, National Taiwan University, Taipei, Taiwan

(Received 7 April 1986; accepted 8 July 1986)

Abstract.

(I)

Tetrakis (7-azaindolato)bis (dimethyl-

formamide)dicopper (II),

[Cu2(C 7HsNe)4(C3HTNO)2],

M r = 741.84, monoclinic, P2~/n, a = 9.377 (6), b =

13.854(3),

c = 1 2 . 9 2 8 ( 4 ) A, f l = 9 4 . 1 0 ( 4 ) ° ,

V =

1675.07 A 3, z = 2, D m = 1.48, D x = 1.47 Mg m -3,

* To whom correspondence should be addressed.

0108-2701/86/121725-07501.50

gt = 1-318 mm -l,

2(Mo Ka) = 0.7093 A,

F ( 0 0 0 ) - -

764, final R = 0 . 0 4 4

for 1712 observations. (II)

Tetrakis(7-azaindolato)bis(dimethylformamide)tetra-

(methanolato)tetracopper (II), [Cu4(C 7HsN2)4(CH30)4-

(C3HTNO)2], M r = 993.01, triclinic, P i , a = 9.189 (3),

b = 9 . 5 1 1 ( 2 ) ,

c = 1 2 . 7 0 4 ( 2 ) A ,

a = 8 8 . 0 9 ( 2 ) , f l =

83.26(3),

) , = 6 6 . 7 5 ( 3 ) °,

V = 1 0 1 2 . 9 1 A 3, Z = l ,

© 1986 International Union of Crystallography

(2)

1726

Cu u A N D Co n CLUSTERS OF 7 - A Z A I N D O L A T E

D m = 1.63,

D x = 1.63 Mg m -3,

# = 2.135 mm -1,

2(Mo Ks) = 0.7093 A, F(000) = 508, final R = 0.041

for 4217 observations. (III) Hexakis(7-azaindolato)-

oxotetracobalt(II)-trichloromethane

(1/1),

[Co4(C 7- Cu

H5N2)6OI.CHC13, M r = 1073"90, triclinic, P i , a =

N

N(IA)

10.165(3),

b = 1 0 . 3 8 9 ( 3 ) ,

c = 2 0 . 6 0 3 ( 3 ) A ,

a =

N(2A)

98.21 (2),

f l = 90-83 (2),

y = 96"04 (2) °,

V =

rq(IS)

N(2B)

2140.71A a, Z = 2 ,

D m = l . 6 6 , D x = 1 . 6 7 M g m -a, o

# = 1.567 mm -I,

;t(MoKs) = 0.7093 A,

F(000) =

C(l)

c(21

1080, final R = 0.062 for 2846 observations. All three

c(3)

C(IA)

of the title compounds exhibit ligand disorder. In (I), the

c(zA)

Cu-Cu distance is 2.782 (2) A; C u - O 2.325 A. In (II) c(4A)

C(5A)

Cu ions occur in square-pyramidal [ C u - N 1.993 (2), C(6A)

Cu-O(methoxide) 1.939 (2), C u - O ( d m f ) 2.422 (3) A]

c(7A)

C(1B)

and

square-planar

[ C u - N

1.966 (2),

C u -

c(2s)

O(methoxide) 1.926 A] coordination geometries. The c(3s)

C(4B)

C u - C u distances, 2.999 (1) and 3.014 A, are long. In c(ss)

C(6B)

(III), the C o - C o distance, 3.156 (1)A, is also long. c(7s)

The presence of superexchange magnetic interactions is

c(3A) (0.76)*

indicated in (H) and (III).

c(3A') (0.27)*

Introduction.

Transition-metal complexes with un-

saturated electron-rich ligands are of interest, owing to

their unusual spectroscopic, magnetic, redox and

structural properties (Balch & Holm, 1966; Lauher &

Ibers, 1975; Peng & Goedken, 1976; Peng, Liaw,

Wang & Simon, 1985; Peng, Chen, Liaw, Chen &

Wang, 1985). The anion of 7-azaindole, which is similar

to the dpt (1,3-diphenyltriazene) and carboxylate ions,

has a potential capacity to coordinate on two metals to

form - M - L - M - links.

Ph... ~N-..NtPh

L = 7-azaindolate 1.3-diphenyltriszenate

R

I

M

carboxylate

A series of complexes containing L

(Co4OL6,

Ni2L 4

and Cu2L4L' 2 complexes) has been reported (Brookes

& Martin, 1974, 1975a,b). The three title compounds

were prepared and their structures were determined in

order to study the extent of n-electron delocalization of

the 7-azaindolate anion and the metal-metal inter-

action in the metal clusters.

Experimental. Crystals of compounds (I), (II) were

obtained by mixing Cu(OAc)2 , 7-azaindole and meth-

anolic K O H in dimethylformamide (dmf) solution.

X-ray analysis: CAD-4 diffractometer. D m measured

by flotation. Absorption correction according to the

experimental tD rotation. For (I)" crystal size 0.10 x

0.10 x 0.30 mm, 20ma x = 50 °, - 1 1 _< h _< 9, 0 < k ___

16, 0 < l < 15. Unit-cell parameters from 25 reflections

( 1 8 < 2 0 < 2 5 ° ) .

Three standard reflections, 2944

unique reflections measured, 1712 reflections con-

sidered observed with I > 3tr(/). R = 0 . 0 4 8 , wR =

Table 1. Atomic positional parameters and equivalent

isotropic temperature factors of ICu2(C 7H5 N 2)4(dmf)2]

x

y

z

Biso(A 2)

0-38762 (6) 0.05328 (5) 0.03546 (5) 3.74 (2) 0.0151 (5) 0.2226 (3) 0.1554 (4) 4.7 (2) 0.4941 (4) -0.0489 (3) 0.8285 (3) 4.6 (2) 0.3083 (4) 0.0458 (3) 0.8884 (3) 4.2 (2) 0.4956 (5) 0-1726 (3) -0.0034 (4) 4.2 (2) 0.6834 (4) 0.0786 (3) -0.0622 (4) 4.4 (3) 0.2027 (4) 0.1448 (3) 0.0954 (3) 6.3 (3) 0.0845 (7) 0.1477 (4) 0.1247 (5) 5.8 (4) 0.0780 (8) 0.3146 (5) 0.1527 (6) 8.5 (6) -0.1264 (7) 0.2176 (5) 0.1912 (6) 7.7 (5) 0.5347 (7) -0.0900 (5) 0.7411 (5) 6.0 (4) 0.4498 (8) -0.0787 (5) 0.6506 (6) 7.6 (5) 0.2915 (8) 0.0046 (5) 0.7163 (5) 7.6 (6) 0.1519 (6) 0.0722 (5) 0.7440 (5) 6.2 (4) 0.1853 (6) 0.0877 (4) 0.8488 (57 5.2 (4) 0.3715 (57 -0.0009 (4) 0.8154 (4) 3.7 (3) 0.4486 (6) 0.2623 (4) 0.0046 (5) 5.6 (4) 0.5239 (7) 0.3406 (4) -0.0264 (5) 6.1 (4) 0.6535 (6) 0.3308 (4) -0.0696 (5) 5.9 (4) 0.7059 (6) 0.2417 (4) -0.0783 (5) 5.1 (3) 0.8307 (6) 0.1966 (5) -0.1144 (6) 6.4 (5) 0.8098 (6) 0.1002 (4) -0.1033 (6) 6.5 (5) 0.6208 (5) 0.1631 (3) -0.0448 (4) 3.7 (3) 0.3297 (10) -0.0313 (7) 0.6388 (8) 8.0 (4) 0.1999 (20) 0.0321 (14) 0.6678 (151 5.7 (7) * O c c u p a n c y factors o f d i s o r d e r e d atoms.

0.044, S = 1.93 based on F. 218 variables refined.

w=I/[G2(Fo)+(O'O1Fo)2]. For

(II): crystal size

0.10 x 0.10 x 0. 30 mm,

20max=60 o,

- 1 2 < h <

12,

- 1 2

< k _< 13, 0 _< l < 17. Unit-cell parameters from 25

reflections (12 < 20 < 23°). Three standard reflections,

5885 unique reflections measured, 4217 reflections

considered observed with I > 2tr(/). R = 0 . 0 4 1 , wR

= 0.035, S = 3.11 based on F. 274 variables refined.

W = 1/[0"2(/'o) + (0.01Fo)2]. Structures were solved by

Patterson synthesis. H atoms found on difference

Fourier synthesis were fixed by least-squares process.

(A/tr)ma × =.0.13, peak on final difference Fourier map

< 0.51 e A -3 for (I). (A/G)max = 0"01, peak on final

difference Fourier map < 0 . 6 2 e A -3 for (II). Com-

pound (III) was prepared by mixing Co(OAc)2 ,

7-azaindole and K O H in MeOH solution. Crystal

(0.03 x 0.03 x 0.10mm) was obtained by dissolving

compound (III) in CHC13 solution followed by slow

evaporation. X-ray analysis: CAD-4 diffractometer.

D m measured by flotation. Absorption correction by tD

rotation.

20ma x = 50 °,

- 1 2 < h < 12, - 1 2 < k < 11,

0 < l < 24. Unit-cell parameters from 25 reflections

(14 < 2 0 < 21°). Three standard reflections, 7521

unique reflections measured, 2846 reflections con-

sidered observed with I > 20(/). R = 0 . 0 6 2 , wR =

0.0517, S = 2.04 based on F. 300 variables refined.

w = 1/[a2(Fo) + (0.01Fo)2]. Structure obtained by Pat-

terson synthesis. H atoms found on difference Fourier

synthesis

were

fixed

by

least-squares

process.

(A/a)max=O'02, peak on final difference Fourier map

< 0.66 e A -3. Atomic scattering factors calculated by

the

analytical

form

using

the

coefficients

in

International Tables f o r X-ray Crystallography (1974).

Programs from N R C C PDP-11 package (Gabe & Lee,

1981).

(3)

SHIE-MING PENG AND YII-NAN LIN

1727

Discussion. Atomic positional parameters and equiva-

lent isotropic temperature factors are listed in Table 1

for (I), Table 2 for (II), Table 3 for

(III).*

OR TEP

(Johnson, 1965) drawings and labeling schemes are

given in Fig. 1 for (I), Fig. 2 for (II), Fig. 3 for (III). The

bond lengths and angles are tabulated in Tables 4, 5, 6

respectively. All three structures suffer ligand disorder.

It was found that there were peaks ( 1 - 2 e A -3)

remaining between C(4) and C (5) atoms in some of the

ligands. They were assigned as C(3') atoms and the

occupancy factors of C(3) and C(3') atoms were

refined.

C(3L C(3') c(2} / ~c(4) c(s) c~5,) c(4,) ~ ~ c ( 2 ' )

I

I

I

I

I

I

C17'1 C11'1

C11'~

, ~ ( 7 ) / C ( 6 ) C(6')~ / ~ l N(1) N(2) N(2') N(I')

Another indication of the disorder of the ligands is

the temperature factors of the atoms. N(1), N(2) and

C(7) atoms have Bis o values around 3 to 4 A 2 and the

remaining atoms of the ligand have higher B~s o values

(5-8 ./k 2).

* Lists of anisotropic thermal parameters, structure factors and H-atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication N o . S U P 4 3 2 3 0 ( 1 1 4 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester C H 1 2 H U , England.

Table 2.

Atomic positional parameters and equivalent

isotropic temperature factors of

[Cu4(CTHsN2) 4-

(OCH3)4(dmf)2]

x y z Blso(A') Cu(1) 0.39871 (5) 0.07936 (5) 0.17520 (4) 2.93 (2) Cu(2) 0.29301 (5) 0.03420 (5) -0.03234 (4) 2.95 (2) O(1) 0.3387 (3) -0.0622 (3) 0.1024 (2) 3.6 (1) 0(2) 0.3039 (3) 0.1900 (2) 0.0542 (2) 3.5 (I) 0(3) 0.1629 (3) 0.1755 (3) 0.3027 (3) 5-5 (2) N -0.0541 (4) 0.1381 (4) 0.3762 (3) 4.2 (2) N(IA) 0.5275 (3) 0.7632 (3) 0.7841 (2) 3.1 (1) N(2A) 0.2844 (3) 0.8552 (3) 0.9001 (2) 3.5 (2) N(IB) 0.5297 (3) 0.9273 (3) 0.2739 (2) 3.2 (1) N(2B) 0.7702 (3) 0.8350 (3) 0.1559 (2) 3.3 (I) C(I) 0.0715 (5) 0.1115 (5) 0-3064 (3) 4.3 (2) C(2) -0.1023 (6) 0.2578 (5) 0.4539 (4) 6. l (3) C(3) -0.1579 (5) 0.0581 (5) 0.3727 (4) 5.7 (3) C(4) 0.3625 (5) -0-2129 (4) 0.1329 (4) 5.1 (3) C(5) 0.2592 (5) 0.3468 (4) 0.0350 (4) 5.0 (3) C(IA) 0.6100 (4) 0.6515 (4) 0.7121 (3) 3.6 (2) C(2A) 0.5501 (6) 0.5460 (5) 0.6900 (4) 5.6 (3) C(3A) (0.76)* 0.5781 (7) 0.4631 (6) 0-2705 (5) 5.8 (4) C(4A) 0.3442 (6) 0.6410 (4) 0.7958 (4) 6.0 (3) C(5A) 0-1659 (5) 0.6879 (5) 0-8698 (4) 5.7 (3) C(6A) 0.1580 (5) 0.8140 (4) 0.9228 (3) 4.2 (2) C(7A) 0.3902 (4) 0.7565 (4) 0.8278 (3) 3.0 (2) C(1B) 0.4747 (5) 0.9072 (5) 0.3723 (3) 4.1 (2) C(2B) 0.5714 (6) 0.8036 (5) 0.4380 (4) 5.7 (3) C(3B) (0.79)* 0.7141 (7) 0.7186 (6) 0.4180 (4) 5.0 (3) C(4B) 0.7699 (5) 0.7361 (4) 0.3250 (3) 5.0 (3) C(5B) 0.9500 (5) 0.6572 (5) 0.2548 (4) 5.5 (3) C(6B) 0.9220 (5) 0.7306 (4) 0.1613 (3) 4-0 (2) C(7B) 0.6844 (4) 0.8378 (4) 0.2492 (3) 2.9 (2) C(3A') (0.33)* 0.7500 (15) 0.4056 (14) 0.1908 (11) 4.6 (4) C(3B') (0.34)* 0.8917 (14) 0.6467 (14) 0.3340 (10) 4.6 (4)

* Occupancy factors of disordered atoms.

The first, dimeric, structure, (I), which is similar to

that of [Cu2(OAc)4(H20)2], contains four 7-azain-

dolate bridges with two Cu ions and two coordinated

dmf molecules with Cu-Cu distance 2.782 (2)A,

C u - N bond length 2.003 (4)A, C u - O 2.325 (4)A.

The Cu-Cu

distance is longer than those of

[Cu2(dpt) 4] (2.40 A), [Cu2(OAc)4(H20)] (2.64 A), and

shorter than those of [Cu(aP)2(H20) 4] (2.95A),

Table 3.

Positional and thermal parameters of

[Co 4-

(C7HsN2)60].CHC13

X y z

Biso(A 2)

Co(l) 0-1489 (2) 0-2413 (2) 0-1856 (1) 3.2 (1) Co(2) 0.9093 (2) 0.3634 (2) 0-2584 (1) 3.5 (1) Co(3) 0.0369 (2) 0-1272 (2) 0.3126 (1) 3.3 (1) Co(4) 0.1926 (2) 0-4082 (2) 0.3275 (1) 3.8 (1) O 0.0735 (8) 0.2844 (8) 0.2713 (4) 2.9 (2) N(IA) 0.0961 (12) 0.5212 (12) 0.3929 (6) 4.4 (3) N(2A) --0-1071 (11) 0.5085 (12) 0.3311 (6) 3.9 (3) C(IA) 0.1545 (17) 0.5791 (17) 0.4498 (9) 5.8 (4) C(2A) 0.0936 (19) 0.6709 (19) 0.4922 (10) 7.1 (5) C(3A) (0.8)* -0.0162 (23) 0.7016 (23) 0.4815 (12) 6.7 (6) C(4A) -0.0828 (17) 0.6525 (17) 0.4305 (9) 5.6 (4) C(5A) -0.2209 (18) 0.6553 (18) 0.3970 (9) 6.2 (5) C(6A) -0.2217 (16) 0.5695 (17) 0.3411 (8) 5.3 (4) C(TA) -0.0253 (15) 0.5578 (15) 0.3845 (8) 4.3 (4) NOB) 0.3154 (1 l) 0.3206 (11) 0.3795 (6) 4.0 (3) N(2B) 0.1737 (ll) 0-1245 (11) 0.3839 (6) 3.8 (3) C(IB) 0-4342 (16) 0.3834 (16) 0-4026 (8) 5.0 (4) C(2B) 0.5140 (19) 0.3355 (19) 0.4430 (10) 7.4 (5) C(3B) 0.4762 (20) 0.2257 (20) 0.4642 (10) 8. l (6) C(4B) 0.3662 (16) 0-1503 (16) 0.4460 (8) 4.7 (4) C(5B) 0.2962 (17) 0.0290 (18) 0.4547 (9) 6.2 (5) C(6B) 0.1804 (16) 0-0131 (16) 0.4160 (8) 5.2 (4) C(7B) 0.2823 (14) 0.2058 (14) 0.4005 (7) 3.3 (3) N(IC) 0.0197 (ll) 0.2483(11) 0.1118(6) 3.7(3) N(2C) -0.0948 (12) 0.4158 (12) 0.1692 (6) 4.2 (3) C(IC) 0.0420 (16) 0.1913 (16) 0.0516 (8) 4.8 (4) C(2C) -0.0141 (17) 0.2307 (18) -0.0007 (9) 6.1 (5) C(3C) (0.8)* -0-0785 (22) 0.3297 (21) 0.13000 (11) 5-8 (6) C(4C) -0.1057 (18) 0.3891 (17) 0.0545 (9) 6.1 (5) C(5C) --0.1835 (17) 0.5003 (17) 0.0837 (9) 5.9 (5) C(6C) -0.1709 (16) 0.5089 (16) 0.1500 (8) 5.4 (4) C(7C) -0.0579 (14) 0.3459 (14) 0.1133 (7) 3.6 (3) N(ID) 0.0643 (11) 0.9676 (11) 0-2496 (6) 3.5 (3) N(2D) 0-2046 (11) 1.0623 (11) 0.1749 (6) 3.5 (3) C(ID) 0-0176 (15) 0.8517 (15) 0.2662 (8) 4.5 (4) C(2D) 0.0579 (18) 0.7352 (18) 0.2365 (9) 6.1 (5) C(3D) 0.1420 (18) 0.7313 (18) 0.1873 (9) 6-3 (5) C(4D) 0.1935 (15) 0.8381 (15) 0.1676 (8) 4.2 (4) C(5D) 0.2833 (16) 0.8798 (16) 0.1201 (8) 4.8 (4) C(6D) 0.2859 (15) 1.0119 (15) 0.1259 (7) 4.0 (4) C(7D) 0-1489 (14) 0.9599 (14) 0.2008 (7) 3.2 (3) N(IE) 0-7524 (11) 0.2341 (l 1) 0.2663 (6) 3.6 (3) N(2E) 0.8527 (12) 0.1120 (12) 0.3417 (6) 4.4 (3) C(IE) 0.6362 (15) 0.2464 (16) 0.2354 (8) 4.7 (4) C(2E) 0.5189 (16) 0.1774 (16) 0.2492 (8) 5.1 (4) C(3E) 0.5182 (16) 0.0891 (16) 0.2911 (8) 5.4 (4) C(4E) 0.6282 (16) 0.0696 (16) 0.3234 (8) 4.6 (4) C(5E) 0-6674 (16) -0.0071 (16) 0.3700 (8) 5-1 (4) C(6E) 0.7997 (15) 0.0227 (15) 0.3792 (8) 4.5 (4) C(7E) 0.7454 (14) 0.1441 (14) 0.3071 (7) 3-6 (3) N(IF) 0.3069 (12) 0.5206 (12) 0.2758 (6) 4.6 (3) N(2F) 0.2952 (12) 0.3788 (12) 0.1730 (6) 4.7 (3) C(IF) 0.3713 (19) 0.6383 (19) 0.3049 (10) 7.1 (5) C(2F) 0.4639 (22) 0.7011 (22) 0.2702 (11) 9.1 (6) C(3F) (0.8)* 0.4893 (30) 0-6642 (30) 0.2165 (16) 11.0 (10) C(4F) 0.4433 (18) 0.5648 (18) 0.1823 (9) 6.7 (5) C(5F) 0.4465 (22) 0.4832 (22) 0.1088 (1 I) 9.5 (7) C(6F) 0.3515(19) 0.3765(19) 0.1126(9) 7.0(5) C(7F) 0.3440 (14) 0.4866 (14) 0.2151 (7) 3.5 (3) C(3A') (0.2)* 0.8370 (73) 0.6944 (73) 0.4395 (37) 3.9 (17) C(3C') (0.2)* 0.8381 (80) 0.4457 (81) 0.0274 (41) 5.1 (21) C(3F') (0.2)* 0.4929 (56) 0.5732 (56) 0.1350 (28) 1.5 (12) C 0.6572 (19) 0.9540(19) 0.1031 (10) 7.1 (5) CI(1) 0.6804 (7) 1.0956 (7) 0.0713 (4) 11.6 (6) C1(2) 0-6150 (6) 0.8242 (6) 0.0456 (3) 9.0 (4) C1(3) 0.7856(6) 0.9348(8) 0.1535(3) 11.1 (6)

(4)

1728

C u ll

A N D

C o I1

C L U S T E R S OF 7 - A Z A I N D O L A T E

[CUE(ad)a(H20)2]

(2.95 ,/~),

[Cu2(OAc)4(P-tol) 2]

(3.2 A) (Table 7). The direct magnetic interaction of

this complex is comparable to those in Table 7.

I •

C2 C3

Fig. 1.

ORTEP

(Johnson, 1965) plot of the [Cu2(CTHsNz)4(dmt')2]

molecule with labeling scheme. The thermal ellipsoids are drawn

at the 50% probability level.

C 2 ~ N C3

01 Nt~ c2~ C

3A(

C/d

;SA C58

C2B

Fig. 2.

ORTEP

plot of the

[ C u 4 ( C v H s N 2 ) 4 ( O C H 3 ) a ( d m 0 2]

molecule

with labeling scheme, The thermal ellipsoids are drawn at the

50% probability level.

C3A "

CIA~~~~i~

c2 a '-

I

c 3 F - * - ~

T ~ U / " N , ~

"~c4c

' Ct, F r ~ C~" C2C

Fig. 3. OR TEP plot o f the [ C o 4 ( C v H s N 2 ) 6 0 ] m o l e c u l e with labeling

s c h e m e . T h e t h e r m a l ellipsoids are d r a w n at the 5 0 % p r o b a b i l i t y

level.

Table

4.

Bond

Cu-Cu Cu-N(IB) N - C ( I ) N(IA)-C(IA) N(2A)-C(7A) N(2B)-C(6B) C(IA)-C(2A) C(4A)-C(7A) C(SA)-C(6A) C(2B)-C(3B) C(4B)--C(7B) Cu-N(IA) Cu-N(2B) N-C(2) N(IA)-C(7A) N(IB)-C(IB) Cu-Cu-N(1A) C u - C u - N ( I B ) C u - C u - O N(1A)--Cu-N(1B) N(IA)--Cu--O N(2A)-Cu-N(2B) N(l B)-Cu-N(2B) N(2B)-Cu-O C ( I ) - N - C ( 3 ) 2.782 2.021 1.303 1.345 1.319 1.367 1.377 1.439 1.384 1.380 1.435 2.012 1.984 1.405 1.328 1.325

lengths

[Cu(C 7H5N2)4(dmf)2]

(A) and bond angles (o)for

(!) N(2B)-C(TB) (4) C(2A)-C(3A) (7) C(4A)-C(3A)

(7)

C(SA)-C(3A')

(6) C(3B)--C(4B) (7) C(5B)--C(6B) (9) Cu-N(2A) (8) C u - O (9) N-C(3) (8) N(2A)-C(6A) (7) N(1B)-C(TB) (4) O--C(1) (4) C(4A)--C(5A) (8) C(4A)-C(3A') (6) C(1B)-C(2B) (6) C(4B)--C(5B) 83.6 (1) Cu-Cu-N(2A) 87.0 (1) Cu-Cu-N(2B) 178.9 (1) N(1A)--Cu-N(2A) 89.3 (1) N(IA)-Cu-N(2B) 95.9 (1) N(2A)--Cu-N(1B) 90.7 (1) N(2A)-Cu-O 167.8 (1) N(1B)-Cu-O 100-2 (1) C ( I ) - N - C ( 2 ) 123.5 (5) C(2)-N-C(3) 1.335 (6) 1.30 (l)

1.20(1)

1.24 (2) 1.337 (8) 1.359 (8) 1.994 (4) 2.325 (3) 1.438 (7) 1.358 (6) • 331 (6) • 197 (7) .67(1) • 09 (2) • 369 (8) -433 (8) 84.1 (1)

80.8

(i) 167-6 (1) 89.5 (1) 88.0(1) 96.3 (1) 92-0 (1) 119.7

(5)

116.8 (5) Cu-N(IA)--C(IA) 123.4 (3) C(1A)-N(IA)-C(TA) 113.6 (4) Cu-N(2A)-C(7A) 123.4 (3) Cu-N(IB)-C(1B) 125.0 (3) C(1B)-N(IB)-C(7B) 115.6 (4) Cu-N(2B)-C(TB) 128.4 (3) C u - O - C ( I ) 148.5 (4) N(IA)-C(1A)-C(2A) 119.0 (5) C(5A)-C(4A)-C(7A) 101.9 (4) C(5A)-C(4A)-C(3A') 48. (l) C(7A)-C(4A)-C(aA') 150. (1) C(4A)-C(5A)-C(6A) 99.9 (4) C(6A)-C(5A)-C(3A') 141. (1) N(IA)-C(7A)-N(2A) 125.7 (4) N(2A)-C(7A)-C(4A) 112.2 (4) C(IB)--C(2B)--C(3B) 121.9 (5) C(3B)-C(4B)---CC5B) 138.0 (5) C(5B)-C(4B)-V(7B) 104.6 (4) N(2B)-C(6B)--C(5B) 113.1 (5) N(IB)-C(7B)-C(4B) 124.9 (4) C(2A)-C(3A)-C(4A) 114.8 (9) Cu-N(IA)--C(TA) 123.0 (3) Cu-N(2A)-C(6A) 125.9 (3) C(6A)--N(2A)---C(TA) 110.7 (4) Cu-N(1B)-C(TB) 119-4 (3) Cu-N(2B)-C (6B) 125-5 (3) C(6B)--N(2B)-C(TB) 106-1 (4) N - C ( I ) - O 128. I (5) C(1A)-C(2A)--C(3A) 126.8 (7) C(5A)-C(4A)--C(3A) 134.4 (7) C(7A)--C(4A)--C(3A) 123.7 (8) C(3A)--C(4A)--C(3A') 86. (1) C(4A)---C(5A)-C(3A') 41.0 (9) N(2A)--C(6A)-C(5A) 115-4 (5) N(IA)--C(TA)--C(4A) 122.1 (5) N(1B)--C(1B)-C(2B) 122.6 (5) C(2B)--C(3B)--C(aB) 117.7 (5) C(3B)-C(4B)--C(7B) 117.4 (5) C(4B)-C(5B)---C(6B) 105.5 (4) N(IB)---C(TB)-N(2B) 124.4 (4) N(2B)-C(7B)--C(4B) 110.7 (4) C(4A)-C(3A')--C(5A) 91. (1)

Table

5.

Cu(l)-Cu(2)

Cu(1)-o(2)

Cu(I)-N(1B) Cu(2)--N(2A) O(2)-C(5) N-C(2) N(IA)-C(7A) N(1B)-C(1B) N(2B)-C(7B) C(3A)-C(4A) C(4A)-C(3A') C(IB)-C(2B) C(4B)-C(5B) C(5B)-C(6B) Cu(l)-Cu(2) Cu(l)-O(3) Cu(2)-O(1) Cu(2)-N(2B) O(3)-C(1) N-C(3) N(2A)-C(6A)

Bond lengths

(A)

and angles

[Cu4(OCH3)2(C 7HsN2)a(dmf)2]

3.0141 (8) N(IB)--Ct7B) 1.342 (4) 1.927 (2) C(IA)--C(2A) 1.371 (5) 1.993 (2) C(4A)-C(5A) 1.691 (7) 1.965 (2) C(5A)-C(6A) 1.368 (5) !.403 (4) C(2B)-C(3B) 1.239 (7) 1.428 (5) C(4B)-C(7B) 1.413 (4) 1.342 (4) C(5B)-C(3B') I. 10 (l) 1.330 (4) Cu(1)-O(1) 1.939 (2) 1.339 (4) Cu(I)-N(IA) 1.976 (2) 1.248 (7) Cu(2)-O(2) 1.915 (2) l . l l (1) O(l)-C(4) 1.410 (4) 1.373 (5) N - C ( I ) 1.315 (5) 1.678 (6) N(IA)-C(1A) 1.344 (4) 1.357 (6) N(2A)-C(7A) 1.340 (4) 2.999 (1) N(2B)-C(6B) 1.363 (4) 2.422 (3) C(2.4)-C(3A) 1.260 (7) 1.926 (2) C(4A)-C(7A) 1.410 (4) 1.966 (2) C(5A)--C(3A') 1.16 (1) 1.212 (4) C(3B)--C(4B) 1.264 (7) 1.440 (5) C(4B)-C(3B') I. 12 (1) 1.363 (4) 77.97 (3) Cu(2)-Cu(l)-O(l) 38.59 (7) 38.18 (6) Cu(2)-Cu(l)-O(3) 107.22 (7) 129.18 (8) Cu(2)-Cu(I)-N(IB) 130.61 (8) 87.78 (8) Cu(2)-Cu(l)-O(2) 86.02 (8) 174.76 (7) Cu(2)-Cu(I)-N(1A) 83.52 (9) 82.60 (9) O(l)--Cu(l)-O(2) 75.30 (9) Cu(2)-Cu(l)-Cu(2) Cu(2)-Cu(1)-O(2) Cu(2)-Cu(1)-N(IA) Cu(2)-Cu(l)-O(1) Cu(2)-Cu(l)-O(3) Cu(2)-Cu(I)-N(IB)

(o) for

(5)

SHIE-MING PENG A N D YII-NAN LIN

1729

Table 5

(cont.)

Table 6

(cont.)

O(l)-Cu(l)-O(3) 96.8 (1) O(l)-Cu(1)-N(1B) 96.3 (1) O(2)-Cu(I)-N(1A) 94.2 (1) O(3)-Cu(1)-N(IA) 92.4 (I) N(IA)-Cu(1)-N(IB) 92.4 (I) Cu(l)--Cu(2)-O(1) 38.92 (6) Cu(1)-Cu(2)-N(2A) 132.78 (9) Cu(l)-Cu(2)-O(l) 106.69 (8) Cu(I)-Cu(2)-N(2A) 78.57 (9) O(1)-Cu(2)-O(2) 75.88 (9) O(I)-Cu(2)-N(2B) 170.3 (1) O(2)-Cu(2)-N(2B) 95.4 (1) Cu(l)-O(1)-Cu(2) 102.5 (l) Cu(2)-O(1)-C(4) 129.4 (2) Cu(1)-O(2)-C(5) 127.2 (2) Cu(1)-O(3)-C(I) 117.4 (2) C(1)--N-C(3) 122.0 (3) Cu(1)-N(IA)--C(IA) 123.8 (2) C(IA)-N(IA)--C(7A) 113.5 (2) Cu(2)-N(2A)-C(TA) 129.5 (2) Cu(I)-N(IB)-C(IB) 123.6 (2) C(IB)-N(IB)-C(7B) 112.8 (2) Cu(2)-N(2B)-C(TB) 128.8 (2) O(3)--C(I)-N 126.1 (3) C(IA)-C(2A)-C(3A) 128.3 (4) C(3A)-C(4A)-C(5A) 133.0 (4) C(3A)-C(4A)-C(3A') 90.1 (7) C(5A)-C(4A)-C(3A') 43.0 (7) C(4A)-C(5A)-C(6A) 100.2 (3) C(6A)-C(5A)-C(3A') 141.0 (7) N(1A)-C(7A)-N(2.4) 125.7 (2) N(2A)--C(TA)--C(4A) 114.2 (3) C(1B)-C(2B)-C(3B) 127.9 (4) C(3B)-C(4B)-C(5B) 134.1 (3) C(3B)-C(4B)-C(3B') 93.4 (7) C(5B)-C(4B)-C(3B') 40.7 (6) C(4B)-C(5B)-C(6B) 101.3 (3) C(6B)-C(5B)-C(3B') 142.8 (7) N(IB)-C(7B)-N(2B) 125.4 (3) N(2B)-C(7B)-C(4B) 114.6 (3) O(l)-Cu(l)-N(IA) 166.8 (1) O(2)-Cu(1)-O(3) 97.6 (1) O(2)-Cu(1)-N(IB) 166.1 (1) O(3)-Cu(1)-N(IB) 94.3 (1) Cu(l)-Cu(2)-Cu(l) 102.03 (3) Cu(l)-Cu(2)-O(2) 38.46 (7) Cu(1)-Cu(2)-N(2B) 133.30 (8) Cu(1)-Cu(2)-O(2) 104.96 (8) Cu(I)-Cu(2)-N(2B) 79.42 (9) O(1)-Cu(2)-N(2A) 94.9 (1) O(2)--Cu(2)-N(2A) 170.7 (1) N(2A)-Cu(2)-N(2B) 93.6 (I) Cu(l)-O(l)-C(4) 126.4 (2) Cu(1)-O(2)-Cu(2) 103.4 (1) Cu(2)-O(2)-C(5) 129.4 (2) C ( I ) - N - C ( 2 ) 121.3 (3) C(2)-N-C(3) 116.5 (3) Cu(I)-N(IA)--C(7A) 122.7 (2) Cu(2)-N(2A)-C(6A) 121.8 (2) C(6A)-N(2A)-C(7A) 108.7 (2) Cu(I)-N(IB)-C(7B) 123.6 (2) Cu(2)-N(2B)-C(6B) 122.7 (2) C(6B)-N(2B)--C(7B) 108.3 (3) N(IA)-C(IA)-C(2A) 119-6 (3) C(2A)-C(3A)-C(4A) 112.3 (4) C(3A)-C(4A)-C(7A) 126.1 (4) C(SA)-C(4A)-C(7A) 100.8 (3) C(7A)-C(4A)-C(3A') 143.8 (8) C(4A)-C(5A)-C(3A') 40.9 (6) N(2A)-C(6A)-C(5A) 116.1 (3) N(IA)-C(7A)-C(4A) 120.1 (3) N(IB)--C(IB)-C(2B) 121.2 (3) C(2B)-C(3B)-C(4B) 112.2 (4) C(3B)-C(4B)-C(TB) 125.9 (4) C(5B)-C(4B)-C(TB) 100.0 (3) C(7B)-C(4B)-C(3B') 140.6 (7) C(4B)-C(5B)--C(3B') 41.5 (6) N(2B)-C(6B)-C(5B) 115.8 (3) N(IB)-C(7B)-C(4B) 119.9 (3) C(4A)-C(3A')-C(5A) 96.1 (9)

Table 6.

Co(l)-O Co(1)-N(2F) Co(2)-N(2C) Co(3)-N(2B) Co(4)-O Co(4)--N(IF) N(2A)-C(6A) C(2A)-C(3A) C(4A)-C(7A) C(SA)-C(3A') N(2B)-C(6B) C(2B)-C(3B) C(4B)-C(7B) N(IC)-C(7C0 C (1C)-C (2C-") c ( 4 c ) - c ( 5 c ) C(5C)-C(6C) N(ID)-C(7D) C ( 10)--C (2D) C(4D)-C(5D) N(IE)-C(IE) N(2E)-C(7E) C(3E)-C(4E) C(5E)-C(6E) N(2F)-C(6F) C(2F)-C(3F) C (4F)-C (7F) C(5F)-C(3F') C-C1(3) Co(l)-N(IC) Co(2)-O Co(2)-N(IE) Co(3)-N(ID) Co(4)-N(IA)

Bond lengths

(A)

and angles ( o ) f o r

[ C o 4 ( C T H 5 N 2 ) 6 0 ] . C H C 1 3 1.917 (8) C(2C)-C(3C) 2.00 (1) C(4C)-C(7C) 1.96 (I) C(5C)-C(3C') 1.99 (1) N(2D)-C(6D) 1.905 (8) C(2D)-C(3D) 1-98 (1) C(4D)-C(TD) 1.39 (2) N(1E)--C(7E) 1.22 (2) C(IE)-C(2E) i.43 (2) C(4E)-C(5E) 1.04 (7) N(1F)-C(IF) 1.4 ! (2) N(2F)-C(7b0 1.30 (2) C(3F)-C(4F) 1.46 (2) C(4F)-C(3F') 1.35 (I) C-Cl(1) 1.33 (2) Co(I)-N(2D) 1.52 (2) Co(2)-N(2A) 1.33 (2) Co(3)-O 1.32 (I) Co(3)-N(2E) 1.38 (2) Co(4)-N(1B) 1.42 (2) N(IA)-C(7A) 1.35 (i) C(IA)-C(2A) 1.38 (1) C(4A)-C(5A) 1.34 (2) C(5A)-C(6A) 1.35 (2) N(IB)--C(TB) 1.35 (2) C(IB)--C(2B) 1.14 (3) C(4B)-C(5B) 1.46 (2) N(IC)-C(IC) 1.07 (6) N(2C)-C(7C) 1.69 (1) C(3C)-C(4C) 1.99 (1) C(4C)-C(3C') 1.965 (8) N(ID)-C(ID) 2.00 (1) N(2D)-C(TD) 1.99 (1) C(3D)-C(4D) 1.98 (1) C(5D)-C(6D) 1.28 (2) 1.42 (2) 1.23 (8) 1.38(1) 1.32 (2) 1.46 (2) 1.33(1) 1.38 (2) 1.4o (2) 1.37 (2) 1.35(1) 1.20 (3) I. I0 (6) 1.68 (2) 1.98 (1) 1.97 (1) 1.942 (8) 1.97 (1) 1.99 (1) 1.34 (1) 1.39 (2) !.56 (2) 1.33 (2) 1.33(1) 1.32 (2) 1.42 (2) • 31 (I) • 33 (l) • 23 (2) • 06 (8) .34(1) .33(1) • 29 (2) • 36 (2) N(IA)-C(IA) 1.32 (2) N(2A)-C(7A) 1.36 (1) C(3A)-C(4A) 1.24 (2) C(4A)-C(3A') 0.97 (7) N(IB)-C(IB) 1-35 (1) N(2B)-C(7B) 1-33 (1) C(3B)-C(4B) 1.31 (2) C(5B)-C(6B) 1.39 (2) N(2C)-C(6C) 1.39 (2) O-Co(1)-N(IC) I l l .3 (4) O-Co(1)-N(2F) 109.4 (4) N(1C)-Co(I)-N(2F) 103.8 (5) O-Co(2)-N(2A) ll0.1 (4) O-Co(2)-N(IE) I I0. I (4) N(2A)-Co(2)-N(IE) 104.9 (4) O-Co(3)-N(ZB) 109.6 (4) O-Co(3)-N(2E) 109.9 (4) N(2B)-Co(3)-N(2E) 115.3 (4) O--Co(4)-N(1A) 111.2 (4) O-Co(4)-N(IF) 112.1 (4) N(IA)-Co(4)-N(1F) 108.7 (5) Co(1)-O-Co(2) 108.5 (4) Co(1)-O-Co(4) 110.1 (4) Co(2)-O-Co(4) 108.6 (4) Co(4)-N(IA)-C(IA) 121. (1) C(1A)-N(1A)-C(7A) 112. (I) Co(2)-N(2A)-C(7A) 130.5 (9) N(IA)-C(1A)-C(2A) 121. (1) C(2A)-C(3A)-C(4A) 122. (2) C(3A)-C(4A)-C(TA) 117. (1) C(5A)-C(4A)-C(7A) I02. (1) C(7A)-C(4A)-C(3A') 143. (4) C(4A)-C(5A)---C(3A') 38. (4) N(2A)-C(6A)-C(5A) 115. (1) N(IA)--C(7A)-C(4A) 124. (1) Co(4)-N(1B)--C(1B) 121- (l) C(1B)-N(IB)-C(7B) ll5. (1) Co(3)-N(2B)-C(7B) 129.2 (9) N(IB)--C(IB)-C(2B) 123. (I) C(2B)-C(3B)-C(4B) 126. (1) C(3B)-C(4B)-C(7B) 113. (1) C(4B)-C(5B)-C(6B) 108. (1) N(IB)-C(7B)-N(2B) 127- (1) N(2B)-C(TB)-C(4B) 110. (1) Co(1)-N(IC")--C(7C) 121.8 (9) Co(2)-N(2C)--C(6C) 125. (1) C(6C)-N(2C)-C(7C) 107. (1) C(IC)-C(2C)-C(3C) 127. (1) C(3C)-C(4C)-C(5C) 140. (1) C(3C)-C(4C)-C(3C') 87. (4) C(5C)-C(4C)-C(3C') 53. (4) C(4C)-C(5C)-C(6C) 106. (1) C(6C)-C(5C)-C(3C') 150. (4) N(IC)-C(7C)-N(2C) 124. (1) N(2C)-C(7C)-C(4C) 113- (1) Co(3)-N(ID)-C(7D) 126.3 (9) Co(I)-N(2D)-C(6D) 125.3 (9) C(6D)-N(2D)-C(7D) 106. (1) C(ID)-C(2D)-C(3D) 121. (1) C(3D)-C(4D)--C(5D) 140. (1) C(5D)-C(4D)-C(7D) 104. (l) N(2D)-C(6D)-C(5D) l l 3 - ( l ) N(ID)-C(7D)-C(4D) 125. (I) Co(2)-N(IE)-C(IE) 119.5 (9) C(1E)-N(IE)-C(7E) 115. (1) Co(3)-N(2E)-C(7E) 125.3 (9) N(IE)-C(1E)-C(2E) 122. (1) C(2E)-C(3E)-C(4E) 122. (1) C(3E)-C(4E)-C(7E) 115. (1) C(4E)-C(SE)-C(6E) 106- (1) N(1E)-C(7E)-N(2E) 124. (1) N(2E)-C(7E)-C(4E) 110. (I) Co(4)-N(IF)-C(7F) 125. (1) Co(I)-N(2F)-C(6F) 119. (1) C(6F)-N(ZF)-C(VF) 111. (1) C(IF)-C(ZF)-C(3F) 124- (2) C(3F)-C (4F)--C(5F) 143. (2) C(3F)-C(4F)---C(3F') 101. (3) C(5F)-C(4F)-C(3F') 41. (3) C(4F)-C(5F)-C(6F) 102. (1) C(6F)-C(5F)-C(3F') 145. (3) N(IF)-C(7F)-N(2F) 126. (1) N(2F)-C(7F)-C(4F) II0. (I) C(4C)-C(3C')-C(5C) 83. (5) Cl(1)-C-Cl(2) 114. (i) N(2E)-C(6E) 1.35 (2) C (2E)-C(3E) 1.33 (2) C(4E)-C(7E) 1.42 (2) N(1F)-C(7F') 1.30 (1) C(IF)-C(2F) 1.35 (3) C(4F)-C(5F) 1.60 (2) C (5F)-C(6F) 1.40 (2) C-C1(2) 1.66 (1) O - C o ( I ) - N ( 2 D ) 111.0 (4) N(IC)-Co(I)-N(2D) 107.8 (4) N(2D)--Co(I)-N(2F) 113-3 (4) O-Co(2)--N(2C) 109.3 (4) N(2A)-Co(2)-N(2C) 113.4 (4) N(2C")---Co(2)-N(I,E') 108.9 (4) O-Co(3)-N(ID) 111.5 (4) N(2B)--Co(3)-N(ID) 101.6 (4) N(ID)-Co(3)-N(2E) 108.7 (4) O-Co(4)-N(IB) 111.6 (4) N(1A)-Co(4)-N(IB) 107.2 (4) N(IB)--Co(4)-N(IF) 105.7 (5) Co(1)-O-Co(3) 109.7 (4) Co(2)-O-Co(3) 110.4 (4) Co(3)-O-Co(4) 109.6 (4) Co(4)-N(1A)-C(7A) 127- (1) Co(2)-N(2A)-C(6A) 123.1 (9) C(6A)-N(2A)---C(7A) 106. (1) C(IA)-C(2A)-C(3A) 124. (I) C(3A)-C(4A)-C(5A) 140. (l) C(3A)-C(4A)-C(3A') 99. (4) C(5A)--C(4A)-C(3A') 41. (4) C(4A)--C(5A)-C(6A) 104. (1) C(6A)--C(5A)-C(3A') 142. (4) N(IA)-C(7A)-N(2A) 123. (1) N(2A)-C(7A)--C(4A) 113. (I) Co(4)-N(IB)-C(7B) 123.5 (9) Co(3)-N(2B)-C(6B) 121.2 (9) C(6B)-N(2B)-C(7B) 108. (1) C(IB)-C(2B)-C(3B) 119. (1) C(3B)-C(4B)-C(5B) 142. (1) C(5B)-C(4B)-C(7B) 105. (1) N(2B)--C(6B)--C(5B) 109- (I) N(1B)-C(TB)-C(4B) 123. (I) Co(I)-N(IC")-C(1C) 119.0 (9) C(1C")-N(1C~C(7C) 114- (1) Co(2)-N(2C)--C(7C) 125.4 (9) N(1C)-C(1C)-C(2C) 119. (I) C(2C)-C(3C)-C(4C) 119. (2) C(3C)-C(4C)-C(7C) 118. (1) C(5C)-C(4C)-C(7C) 102. (1) C(7C)-C(4C)-C(3C') 155. (4) C(4C)-C(5C)-C(3C') 44. (3) N(2C)-C(6C)--C(5C) 112. (1) N(IC)-C(7C)-C(4C) 123. (1) Co(3)-N(ID)-C(1D) 117.9 (9) C(ID)-N(ID)--C(7D) 114. (1) Co(1)-N(2D)-C(7D) 127.2 (9) N(ID)-C(ID)-C(2D) 123. (l) C(2D)-C(3D)-C(4D) 121. (1) C(3D)-C(4D)-C(7D) 116. (I) C(4D)-C(5D)-C(6D) 107- (l) N(ID)-C(7D)-N(2D) 124- (l) N(2D)-C(7D)-C(4D) ! 1 I- (I) Co(2)-N(IE)-C(7E) 125-3 (9) Co(3)-N(2E)-C(6E) 125.0 (9) C(6E)-N(2E)-C(TE) 104. (l) C(IE)-C(2E)-C(3E) 120. (l) C(3E)-C(4E)-C(5E) 139. (l) C(5E)-C(4E)-C(7E) 106. (1) N(2E)--C(6E)-C(5E) l l4. (1) N(1E)-C(7E)-C(4E) 126- (1) Co(4)-N(I F)-C(IF) 122. (1) C(IF)--N(IbO-C(7bO 112. (1) Co(I)-N(2F)-C(7F) 130. (1) N(IF)--C(IPO--C(2F) I19. (I) C (2F)-C(3F)-C (4F) 127. (3) C(3F)-C(4F)-C(7F) 114. (2) C(5F)-C(4F)-C(TF) 103. (1) C(7F).-C(4F)-C(3F') 144- (3) C(4F)--C(5F)-C (3F') 43. (3) N(2F)---C(6F)-C(5F) 114. (1) N(IF)-C(TF)-C(4F) 123. (1) C(4A)-C(3A')-C(5A) 101. (6) C (4F)-C(3F')-C(5F) 96. (4) C](I)-C-CI(3) 112. (1)

(6)

1730

Cu ll A N D Co II C L U S T E R S O F 7 - A Z A I N D O L A T E

Table 7.

Comparison of the structure and magnetic interaction of dinuclear copper complexes

Structure Cu-Cu Magnetism type distance BM* 2J(cm-~) [Cu(dpt)212 dimer 2.44 A diamagnetism ICu(CsH4NO)2(dmso)l 2 dimer 2.588 ICu(DMB)(OAc)(H20)] 2 dimer 2.597 -325 ICu(DMB°)2(H20)]2 dimer 2-620 -250 ICu(2-BrC6H4COO)(H20)I 2 dimer 2.624 ICu(OAc)2(H20)I 2 dimer 2.64 1.39 -286 ICu(OAc)2pyl 2 dimer 2-64 -325 [Cu(CH3CONHCOO)(H20)]2 dimer 2.666 1.4 [Cu(CTHsNz),(dmf)] 2 dimer 2.782 1.27 [Cu (adHa)2(H,O)212(CIO4)4 dimer 2.95 1.45

ICu(ad02(H20)212 dimer 2.95 -257 [Cu(apa)2(H20)4]2 dimer 2.95 -185 [CuClz(hpHe)2(H20)12 dimer 3.024 1.38 -200 ICuCI(apW)2½(H20)I 2 dimer 3.066 1.39 -206 I Cu2(adeb)4CI2lCl2.6 H20 dimer 3.066 1.45 [Cu(OAc)vp-toll 2 chain 3.2 -105 Reference

Harris, Hoskins & Martin (1959); Martin & Waterman (1959) Peng, Liaw & Yeh (1986)

Erre, Micera, Piu, Cariati & Ciani (1985) Erre, Micera, Piu, Cariati & Ciani (1985) Harrison, Rettig & Trotter (1972)

Van Niekerk & Schoening (1953); Figgis & Martin (1956) Kokot & Martin (1964); Barclay & Kennard (1961); Hanic.

Stempelova & Hanicova (1964) Udupa & Krebs (1979) Present work

Terzis, Beauchamp & Rivest (1973) Goodgarne & Price (1968); Sletten (1967. 1969)

Weiss & Venner (1963); Asakawa. Inoue, Hara & Kubo (1972) Weiss & Venner (1963); Asakawa, Inoue, Hara & Kubo (1972) Weiss & Venner (1963); Asakawa, Inoue, Hara & Kubo (1972) de Meester & Sk apski ( 1971)

Yawney, Moreland & Doedens (1973)

Notes: a DMB = 2,6-methoxybenzoato, b adH =adenine=ade, c ad=adeninato, d a p = 6-aminopurinato, e apH = 6-aminopurine, f hpH = 6-hydroxypurine.

* 1BM-- 9.27 x 10-24JT -t.

The second, tetrameric, structure, (II), contains four

methoxide bridges, four 7-azaindolate bridges and two

coordinated dmf molecules. Two kinds of Ca ions were

found in the structure; one has square pyramidal

coordination geometry with C u ( 1 ) - N 1.993 (2)A,

Cu(1)-O(methoxide)

1.939 (2)A,

Cu(1)-O(dmf)

2.422 (3) A, the other has square planar geometry with

C u ( 2 ) - N

1.966 (2) A,

Cu(2)-O (methoxide)

1.926 (2)A. The geometry and long Cu(1)-Cu(2)

distances, 2.999 (1) and 3.014(1)A, of this complex

indicate the presence of a superexchange magnetic

interaction.

The third, tetrameric, structure, (III), contains six

7-azaindolate bridges, four tetrahedral Co ions, and an

O ion. The central O atom is tetrahedrally surrounded

by the four Co atoms and each Co is tetrahedrally

coordinated by one O and three N atoms of 7-

azaindolate. The structure is similar to those of

[Be40(OOCR) 6] and [Zn40(OOCR)6] but is the first

structure of this type observed for a cobalt complex.

The average C o - C o distance, 3.156 (1) A, is long and

indicates the superexchange interaction of this cluster.

In the ligand moiety, the C - N and C - C bond

lengths of azaindolate are between those of single-bond

and double-bond values. The three structures suffer

ligand disorder. It is not possible to estimate quanti-

tatively the extent of n-electron delocalization in the

7-azaindolate ligand.

The authors would like to express their appreciation

for the support of this work by the National Science

Council.

References

ASAKAWA, T., INOUE, M., HARA, K. & KUBO, M. (1972).

Bull.

Chem. Soc. Jpn,

45, 1054-1057.

BALCH, A. L. & HOLM, R. H. (1966).

J. Am. Chem. Soc.

88,

5201-5209.

BARCLAY, G. A. & KE~,~ARO, C. H. L. (1961).

J. Chem. Soc.

pp. 5244-5251.

BROOKES, R. W. & MARTIN, R. L. (1974).

Aust. J. Chem.

27, 1569-1571.

BROOKES, R. W. & MARTIN, R. L. (1975a).

Aust. J. Chem.

28, 1363-1366.

BaooKEs, R. W. & MARTIN, R. L. (1975b).

Inorg. Chem.

14, 528-536.

EgRE, L., MICERA, G., PItJ, P., CAmATI, F. & CLAM, G. (1985).

lnorg. Chem.

24, 2297-2300.

FmGlS, B. & MARTIN, R. L. (1956).

J. Chem. Soc.

pp. 3837-3846. GABE, E. J. & LEE, F. L. (1981).

Acta Cryst.

A37, $399.

GOODGAME, D. M. L. & PmCE, K. A. (1968).

Nature (London),

220, 783-784.

HANtC, K., STEMPELOVA, D. & HANICOVA, K. (1964).

Acta Cryst.

17, 633-639.

HAmUS, C. M., HOSKINS, B. F. & MAaTrN, R. L. (1959). J.

Chem.

Soc.

pp. 3728-3837.

HARmSON, W., RE'rnG, S. & TROTTER, J. (1972).

J. Chem. Soc.

Dalton. Trans.

pp. 1852-1856.

International Tables for X-ray Crystallography

(1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

JOHNSON, C. K. (1965).

ORTEP.

Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.

KOKOT, E. & MARTIN, R. L. (1964).

lnorg. Chem.

3, 1306-1312. LAUHER, L. W. & IBERS, J. A. (1975).

Inorg. Chem.

14, 640-645. MARTIN, R. L. & WATERMAN, H. (1959). J.

Chem. Soc.

pp.

1359-1370.

MEESTER, P. DE & SKAPSKI, A. C. (1971).

J. Chem. Soc. A,

pp. 2167-2169.

PEYG, S., CHEN, C., LIAW, D., CHEY, C. & WANG, Y. (1985).

Inorg. Chim. Acta.

pp. L 3 1 - L 3 3 .

PENG, S. & GOEDKEY, V. L. (1976). J.

Am. Chem. Soc.

98, 8500-8510.

PENG, S., LIAW, D., WAYG, Y. & SIMON, A. (1985).

Angew. Chem.

Int. Ed. Engl.

24, 210-211.

PENG, S., LIaw, D. & YEH, S. (1986). Unpublished results. SLErT~N, E. (1967).

Chem. Commun.

pp. 1119-I 120. SLE'rrEY, E. (1969).

Acta Cryst.

25, 1480-1491.

TERZIS, A., BEAUCHAMP, A. L. & RIVEST, R. (1973).

Inorg. Chem.

(7)

SHIE-MING P E N G A N D YII-NAN LIN

1731

UDUPA, M. R. & KREBS, B. (1979).

Inorg. Chim. Acta, 37, 1-4.

VAN NIEKERK, J. N. & SCHOENING, F. R. L. (1953).

Acta Cryst. 6,

227-237.

WEXSS, R. & VENNER, H. (1963).

Z. Physiol. Chem. 333, 169-178.

YAWNEY, D. B. W., MORELAND, J. A. & DOEDENS, R. T. (1973). J.

Am. Chem. Soc. 95, 1164-1170.

Acta Cryst. (1986). C42, 1731-1733

Structure of Acetato(benzenethiolato)mereury(II)

BY CLAES ST/~LHANDSKE* AND FRANK ZINTL

Division o f Inorganic Chemistry, Chemical Center, PO Box 124, S-221 00 Lund, Sweden

(Received 17 June 1986; accepted 8 July 1986)

Abstract. [Hg(C2H302)(C6H5S)] , M r -- 368"80, mono-

clinic,

P 2 J n ,

a = 1 8 . 3 6 2 ( 2 ) ,

b = 7 . 4 8 5 ( 1 ) ,

c =

14.292 (2)/~, f l = 104.72 (1) °, V = 1900.0 (3) ,/k 3, Z

= 8,

D x = 2.58 g cm -3, 2(Mo Ka) = 0.71069 ,/k, /t =

164 cm -~, F(000) = 1344, T = 295 K, R = 0.034 for

2326 unique observed reflections. The structure is built

up of infinite - S - H g - S -

chains linked

via acetate

groups into sheets. The two independent Hg atoms,

five- and six-coordinated, are in addition to the two

thiolate groups also bonded to two and three acetate

ligands, respectively.

Introduction. It has been known for a long time that

Hg I~ forms extremely stable, water insoluble com-

pounds with organic sulfur ligands of the thioalcohol

RSH (R = alkyl, aryl) type. Solid complexes between

these thiols and Hg Ix have been isolated with thiol/

mercury (Th/Hg) ratios varying from 1 to 4. Many of

these complexes have been the subject of intense

spectroscopic investigations and the crystal structures

of some of them have been determined. For Th/Hg

ratios 3 or 4, thiophenols have mostly been used as

ligands,

e.g. by Christou, Folting & Huffman (1984)

and Choudhury, Dance, Guerney & Rae (1983). For

structure determinations of the neutral compounds

Hg(SR) 2 and for the 1:1 complexes Hg(SR)X, however,

alkyl thiols have so far been preferred as ligands,

e.g. by

Wells (1937), Bradley & Kunchur (1963, 1964),

Kunchur (1964), Taylor & Carty (1977), Perchard,

Zuppiroli,

Gouzerh,

Jeannin

&

Robert

(1981),

Perchard, Baron & De Loze (1984), Barrera

et al.

(1982), Biscarini, Foresti & Pradella (1984), Canty,

Raston & White (1978, 1979a,b), Johansson (1939)

and Puff, Sievers & Eisner (1975). The crystal

structures of the 1:1 complexes so far studied (Canty,

Raston & White, 1979a) have been found to be

dependent on the donicity of the anion X; the chloride,

bromide and acetate anions have been used earlier. In

* To whom correspondence should be addressed.

0108-2701/86/121731-03501.50

this study acetate and thiophenolate anions were chosen

to allow a direct comparison with the previous work.

Experimental. Crystals grown from an acetonitrile

solution of mercury acetate and mercury thiophenolate.

Plate-shaped

transparent

crystal,

0.25 x 0.20 x

0.09 mm,

CAD-4

diffractometer,

graphite-

monochromatized M o K a radiation, variable speed,

w--2/? scans, width (0.80 + 0.60 tanO)°, max. recording

time 150 s. Three standard reflections, no significant

variations. Lattice parameters based on 40 diffrac-

tometer 0 values. 3585 reflections, 0 < 25 °, 0 < h < 17,

0 < k < 7, - 1 3 < l < 13, 2327 with I > 3a(/). Lp and

absorption corrections, transmission factors 0.06-0.22.

Structure solved by direct methods with

M U L T A N 8 0

(Main

et al., 1980). Full-matrix least-squares refinement

minimizing

~w(AF) 2,

w = [o'2(Fo) + (0.030Fo) 2 +

2.5] -1, anisotropic temperature factors for non-C

atoms and phenyl-H atoms included with fixed

parameters in calculated positions [ d ( C - H ) = 1.00 A].

Final refinement with 2326 reflections, 138 variables,

R = 0 . 0 3 4 ,

w R - 0 . 0 4 1 ,

S - 1 . 0 .

Corrections for

secondary extinction (Zachariasen, 1967), g = 0.19 (2)

x 10 -4.

(A/a)ma x = 0"02,

final

Ap

excursions

<11.31 e A -3. Scattering factors and anomalous-disper-

sion factors from

International Tables for X-ray

Crystallography (1974). Program used: see Lundgren

(1982).

Discussion. Final atomic coordinates and temperature

factors are listed in Table l'f and selected interatomic

distances and angles in Table 2. The present structure

may be described as built up of endless ( - H g - S R - - ) n

chains running in the y direction, linked

via the acetate

"t" Lists of structure factors, anisotropic thermal parameters and

phenyl-H-atom parameters have been deposited with the British

Library Document Supply Centre as Supplementary Publication

No. SUP 43226 (23 pp.). Copies may be obtained through The

Executive Secretary, International Union of Crystallography, 5

Abbey Square, Chester CH 1 2HU, England.

數據

Table  1.  Atomic  positional  parameters  and  equivalent  isotropic  temperature factors  of ICu2(C 7H5 N 2)4(dmf)2]
Table  3.  Positional  and  thermal parameters  of  [Co 4-  (C7HsN2)60].CHC13  X  y  z  Biso(A 2)  Co(l)  0-1489  (2)  0-2413  (2)  0-1856 (1)  3.2 (1)  Co(2)  0.9093  (2)  0.3634  (2)  0-2584 (1)  3.5  (1)  Co(3)  0.0369 (2)  0-1272 (2)  0.3126  (1)  3.3
Fig. 2.  ORTEP  plot of the  [ C u 4 ( C v H s N 2 ) 4 ( O C H 3 ) a ( d m 0   2]  molecule  with  labeling scheme, The  thermal ellipsoids are  drawn at  the  50% probability level
Table 7.  Comparison of the structure and magnetic interaction  of dinuclear copper complexes

參考文獻

相關文件

Graduate Masters/mistresses will be eligible for consideration for promotion to Senior Graduate Master/Mistress provided they have obtained a Post-Graduate

- Informants: Principal, Vice-principals, curriculum leaders, English teachers, content subject teachers, students, parents.. - 12 cases could be categorised into 3 types, based

The MNE subject, characterised by its (i) curriculum structure; (ii) curriculum aims; (iii) learning and teaching strategies; and (iv) curriculum contents, can enhance the

identify different types of tourist attractions and examine the factors affecting the development of tourism in these places;.4. recognize factors affecting tourist flows and the

&#34;Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values,&#34; Data Mining and Knowledge Discovery, Vol. “Density-Based Clustering in

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

(i) spectral factorization associated with circular cones; (ii) smooth and nonsmooth analysis for f L θ given as in (7); (iii) the so-called L θ -convexity; and (iv) L θ

mathematical statistics, statistical methods, regression, survival data analysis, categorical data analysis, multivariate statistical methods, experimental design.