• 沒有找到結果。

多項式作輾轉相除法所需次數的估計

N/A
N/A
Protected

Academic year: 2021

Share "多項式作輾轉相除法所需次數的估計"

Copied!
13
0
0

加載中.... (立即查看全文)

全文

(1)THE NUMBER OF STEPS IN THE POLYNOMIAL EUCLIDEAN ALGORITHM JIA-WEI GUO. Abstract. Let M be a monic polynomial over Fq of deg M ≥ 2. For polynomials a with deg a < deg M and (a, M ) = 1, the Euclidean Algorithm requires an average value of  deg M + O ln4 deg M ζA (2) divisions.. 1. Introduction Let a and N be positive integers, 1 ≤ a < N, (a, N ) = 1, and let a = N. 1 c1 +. ,. 1 c2 + .. .. +. 1 cl(a,N ). where c1 , c2 , · · · ,cl(a,N ) are positive integers, cl(a.N ) > 1. Put X L(N ) = l(a, N ). 1≤a<N (a,N )=1. Denote by r(N ) the number of solutions of the equation N = xx0 + yy 0 in positive integers x, x0 , y, y 0 , for which x > y, x0 > y 0 , (x, y) = (x0 , y 0 ) = 1. H. Heilbronn prove that if N > 2, then 3 L(N ) = φ(N ) + 2r(N ) 2 and  r(N ) =. ln 2 φ(N ) ln N + O N  ζ(2) 1. 3 .  X1 d|N. d.  ,.

(2) 2. JIA-WEI GUO. where φ(N ) is the Euler phi-function, which yields the following asymptotic ) formula for L(N φ(N ) :  L(N ) 2 ln 2 = ln N + O ln4 ln N . φ(N ) ζ(2) In this paper, let Fq denote the finite field with q elements. Let A = Fq [T ] be the polynomial ring with coefficients over Fq , A+ be the set of monic polynomials in A and p denote the irreducible polynomial in A. Given any 0 6= f ∈ A, the degree of f is denoted by deg f and the absolute value of f is denoted by |f | = q deg f . The notation X0 Y0 and denote respectively the sum and product over all monic polynomials in A and the notation µ(f ) denotes the polynomial m¨obius function of A+  1 if f = 1,    (−1)r if f = p p · · · p where p , p , · · · , p are the 1 2 r 1 2 r µ(f ) =  distinct monic irreducible polynomials in A+ ,    0 otherwise . Furthermore, let Q ∈ A+ , the polynomial Euler phi-function φ(Q) denote the order of (A/QA)× and we have  Y0  1 . φ(Q) = |Q| 1− |p| p|Q. The polynomial zeta-function is given by  X0 1 Y0  1 −1 1 ζA (s) = = 1− s = . s |f | |p| 1 − q 1−s p f. Hence, we immediatly have ζA (2) =. 1 . 1−q −1. Suppose A1 , . . . , An ∈ A with deg Ai ≥ 1 (1 ≤ i ≤ n). Define the continued fraction expansion of A1 , . . . , An by 1 A1 +. = [A1 , A2 , · · · , An ] .. 1 A2 + .. .. +. 1 An. Furthermore, define polynomials Pi , Qi by (1). P0 = 0, P1 = 1,. Pi = Ai Pi−1 + Pi−2 (1 < i ≤ n),. Q0 = 1, Q1 = A1 , Qi = Ai Qi−1 + Qi−2 (1 < i ≤ n),.

(3) THE NUMBER OF STEPS IN THE POLYNOMIAL EUCLIDEAN ALGORITHM. 3. where Pi = Pi (A1 , A2 , · · · , Ai ) and Qi = Qi (A1 , A2 , · · · , Ai ). It is clear that (2). Pi (A1 , · · · , Ai ) = Qi−1 (A2 , · · · , Ai ), deg Pi−1 < deg Pi , 0 ≤ deg Qi−1 < deg Qi , (Qi−1 , Qi ) = 1 for 1 ≤ i ≤ n.. By [2] corollaries 5.55 and 5.58 we know that Pi and Qi are the numerator and the denominator, respectively, of the ration function in reduced form represented by [A1 , A2 , · · · , Ai ]. Let a and M be two polynomials over Fq with 0 ≤ deg a < deg M and (a, M ) = 1. The usual polynomial Eculidean algorithm for computing the greatest common divisor will give a series of equations (3). r0 = M, r1 = a and ri−1 = Ai ri + ri+1 (1 ≤ i ≤ s),. where 0 ≤ deg ri+1 < deg ri , i = 1, 2, . . . , s − 1 and rs+1 = 0. Furthermore, A1 , A2 , . . . , As ∈ A with each deg Ai having positive degree and a = [A1 , A2 , · · · , As ] . M Suppose M ∈ A+ and define l(a, M ) = s as above. Put X L(M ) = l(a, M ). 0≤deg a<deg M (a,M )=1 ) The purpose of this paper is to estimate the value L(M φ(M ) , where deg M ≥ 2 and φ(M ) is the polynomial Euler phi-function. In theorem 3.3, we obtain.  L(M ) deg M = + O ln4 deg M , φ(M ) ζA (2) where the implied constant does not depend on q and M . 2. Continued Fractions Lemma 2.1. Suppose [A1 , A2 , · · · , An ] and [B1 , B2 , · · · , Bm ] are two continued fractions, deg Ai ≥ 1 for 1 ≤ i ≤ n, deg Bi ≥ 1 for 1 ≤ i ≤ m. If [A1 , A2 , · · · , An ] = [B1 , B2 , · · · , Bm ], then n = m, Ai = Bi for 1 ≤ i ≤ n. Proof. Suppose m ≥ n, we proceed by induction on n. If n = 1 and m ≥ 2, then A11 = B1 +[B21,··· ,Bm ] . It follows A1 − B1 = [B2 , · · · , Bm ]. Since deg Bi ≥ 1 for 2 ≤ i ≤ m, we have deg[B2 , · · · , Bm ] < 0. It is impossible to the above equality. Suppose that the result is true for n = k. When n = k + 1, we have 1 1 = . A1 + [A2 , · · · , Ak+1 ] B1 + [B2 , · · · , Bm ].

(4) 4. JIA-WEI GUO. It follows A1 − B1 = [B2 , · · · , Bm ] − [A2 , · · · , Ak+1 ]. Since deg Ai ≥ 1 for 2 ≤ i ≤ k + 1 and deg Bi ≥ 1 for 2 ≤ i ≤ m, we have deg[A2 , · · · Ak+1 ] < 0 and deg[B2 , · · · , Bm ] < 0. Therefore, we obtain A1 = B1 and [A2 , · · · Ak+1 ] = [B2 , · · · , Bm ]. By induction hypothesis, we have m = k + 1 and Ai = Bi for 2 ≤ i ≤ k + 1. This completes the induction and so proves the lemma.  Lemma 2.2. Suppose n ≥ 2 and A1 , · · · , An ∈ A. For 1 ≤ i ≤ n − 1, we have Qn (A1 , · · · , An ) =Qi (A1 , · · · , Ai )Qn−i (Ai+1 , · · · , An ) + Qi−1 (A1 , · · · , Ai−1 )Qn−i−1 (Ai+2 , · · · , An ). Proof. By the definition of Qn (A1 , · · · , An ) in (1), the conclution is true for all n ≥ 2 and i = n − 1. Suppose the conclution is true for all n ≥ k + 1 and i = n − k. By induction hypothesis, we have Qk+1 (An−k , · · · , An ) = An−k Qk (An−k+1 , · · · , An ) + Qk−1 (An−k+2 , · · · , An ) and Qn (A1 , · · · , An ) =Qn−k (A1 , · · · , An−k )Qk (An−k+1 , · · · , An ) + Qn−k−1 (A1 , · · · , An−k−1 )Qk−1 (An−k+2 , · · · , An ) for any n ≥ k + 2. By above equality and (1) again, we have Qn (A1 , · · · , An ) ={An−k Qn−k−1 (A1 , · · · , An−k−1 ) + Qn−k−2 (A1 , · · · , An−k−2 )}Qk (An−k+1 , · · · , An ) + Qn−k−1 (A1 , · · · , An−k−1 )Qk−1 (An−k+2 , · · · , An ) =Qn−k−1 (A1 , · · · , An−k−1 ){An−k Qk (An−k+1 , · · · , An ) + Qk−1 (An−k+2 , · · · , An )} + Qn−k−2 (A1 , · · · , An−k−2 )Qk (An−k+1 , · · · , An ) =Qn−k−1 (A1 , · · · , An−k−1 )Qk+1 (An−k , · · · , An ) + Qn−k−2 (A1 , · · · , An−k−2 )Qk (An−k+1 , · · · , An ) =Qi (A1 , · · · , Ai )Qn−i (Ai+1 , · · · , An ) + Qi−1 (A1 , · · · , Ai−1 )Qn−i−1 (Ai+2 , · · · , An ) for any n ≥ k + 2 and i = n − (k + 1). This completes the induction and so proves the lemma.. . Lemma 2.3. Suppose n ≥ 0 and A1 , . . . , An ∈ A. Then we have Qn (A1 , · · · , An ) = Qn (An , · · · , A1 ). Proof. The conclution is immediate by lemma 2.2 with i = 1 and induction on n. .

(5) THE NUMBER OF STEPS IN THE POLYNOMIAL EUCLIDEAN ALGORITHM. 5. 3. Main Theorem Suppose M ∈ A+ and define r(M ) as the number of solutions of the equation M = f f 0 + gg 0 in polynomials f, f 0 , g, g 0 ∈ A, for which deg f > deg g ≥ 0, deg f 0 > deg g 0 ≥ 0, (f, g) = (f 0 , g 0 ) = 1 and we further define R(M ) as the number of solutions of the equation subject to deg f > deg g ≥ 0, deg f 0 > deg g 0 ≥ 0. Theorem 3.1 below shows that r(M ) L(M ) = + φ(M ). q−1 By the definition of R(M ), we have X0 r(M (hh0 )−1 ) (4) R(M ) = hh0 |M. and comparing deg f with deg f 0 in R(M), we have (5). R(M ) = 2R1 (M ) + R2 (M ),. where R1 (M ) is the number of solutions of the equation M = f f 0 + gg 0 in polynomials f, f 0 , g, g 0 ∈ A, for which deg f > deg g ≥ 0, deg f 0 > deg g 0 ≥ 0, deg f < deg f 0 and R2 (M ) is the number of solutions of the equation subject to deg f > deg g ≥ 0, deg f 0 > deg g 0 ≥ 0, deg f = deg f 0 . By a repeated application of the m¨obius inversion formula to (4), we get X0 (6) r(M ) = µ(h)µ(h0 )R(M (hh0 )−1 ). hh0 |M. For integer n ≥ 0, define %0 (M, n) as the number of solutions of the equation M = f f 0 + gg 0 in polynomials f, f 0 , g, g 0 ∈ A, for which deg f > deg g ≥ 0, deg f 0 > deg g 0 ≥ 0, (f, g) = 1, n + deg f = deg f 0 and we further define %(M, n) as the number of solutions of the equation subject to deg f > deg g ≥ 0, deg f 0 > deg g 0 ≥ 0, (f, g) = 1, n + deg f < deg f 0 . By (5) and the definition of R1 (M ) and R2 (M ), we obtain X0 X0 R(M ) = 2 %(M u−1 , deg u) + %0 (M u−1 , deg u). u|M. u|M. Hence, by (6) and above equality, we have (7) X0 X0 r(M ) = 2 µ(h)µ(h0 )%(M (uhh0 )−1 , deg u)+ µ(h)µ(h0 )%0 (M (uhh0 )−1 , deg u). uhh0 |M. uhh0 |M.

(6) 6. JIA-WEI GUO. Theorem 3.1. Suppose M ∈ A+ . Then we have L(M ) =. r(M ) + φ(M ). q−1. Proof. If deg M ≤ 1, then r(M ) = 0. Hence the equality is trivial by direct calculation. Now we can suppose deg M ≥ 2 and given a ∈ A with a 1 ≤ deg a < deg M , (a, M ) = 1. Develop M as a continued fraction a = [A1 , · · · , As ], deg Ai ≥ 1, i = 1, . . . s. M We have M = αQs (A1 , · · · , As ) × for some α ∈ Fq and s = l(a, M ) > 1. Choose i in the interval 1 ≤ i ≤ s − 1 in s − 1 different ways. For any β ∈ Fq× , put (8). f = βQi (A1 , · · · , Ai ), g = βQi−1 (A1 , · · · , Ai−1 ), f 0 = β −1 αQs−i (Ai+1 , · · · , As ), g 0 = β −1 αQs−i−1 (Ai+2 , · · · , As ).. These polynomials, by virture of lemma 2.2, satisfy the quation M = f f 0 + gg 0 and by lemma 2.3 we have f 0 = β −1 αQs−i (As , · · · , Ai+1 ), g 0 = β −1 αQs−i−1 (As , · · · , Ai+2 ). By (2) we have deg f > deg g ≥ 0, deg f 0 > deg g 0 ≥ 0, (f, g) = (f 0 , g 0 ) = 1. Moreover, by lemma 2.3, (2) and [2] corollary 5.55, we have (9) Qi−1 (Ai−1 , · · · , A1 ) Pi (Ai , · · · , A1 ) g = = = [Ai , · · · , A1 ] f Qi (Ai , · · · , A1 ) Qi (Ai , · · · , A1 ) and g0 Qs−i−1 (Ai+2 , · · · , As ) Ps−i (Ai+1 , · · · , As ) = = = [Ai+1 , · · · , As ]. f0 Qs−i (Ai+1 , · · · , As ) Qs−i (Ai+1 , · · · , As ) 0. a For any a0 ∈ A, 1 ≤ deg a0 < deg M , (a0 , M ) = 1 and M = [B1 , · · · , Br ], we have M = α0 Qr (B1 , · · · , Br ) for some α0 ∈ Fq× and r > 1. As (8), there are (q − 1)(r − 1) corresponding (f1 , f10 , g1 , g10 ). If one of them is equal to some (f, f,0 g, g 0 ), by (9) and lemma 2.1, we have a = a0 . Hence we know that when a is different, no corresponding (f, f 0 , g, g 0 ) are equal. Conversely, given a representation of M , deg M ≥ 2, by M = f f 0 + gg 0 with. deg f > deg g ≥ 0, deg f 0 > deg g 0 ≥ 0, (f, g) = (f 0 , g 0 ) = 1. Suppose. g g0 = [Bj , · · · , B1 ] and 0 = [Bj+1 , · · · , Br ] f f.

(7) THE NUMBER OF STEPS IN THE POLYNOMIAL EUCLIDEAN ALGORITHM. 7. with deg Bi ≥ 1 (1 ≤ i ≤ r). By [2] corollary 5.55, lemma 2.3 and (2), we have f = γ1 Qj (Bj , · · · , B1 ) = γ1 Qj (B1 , · · · , Bj ), g = γ1 Pj (Bj , · · · , B1 ) = γ1 Qj−1 (Bj−1 , · · · , B1 ) = γ1 Qj−1 (B1 , · · · , Bj−1 ), f 0 = γ2 Qr−j (Bj+1 , · · · , Br ), g 0 = γ2 Pr−j (Bj+1 , · · · , Br ) = γ2 Qr−j−1 (Bj+2 , · · · , Br ) for some γ1 , γ2 ∈ Fq× . By lemma 2.2 we have M = f f 0 + gg 0 = γ1 γ2 Qr (B1 , · · · , Br ). Putting a = γ1 γ2 Pr (B1 , . . . , Br ). Since r ≥ 2, by (1), [2] corollaries 5.55 and 5.58, we have deg a ≥ 1 and a = [B1 , · · · , Br ], M where (a, M ) = 1 and deg a < deg M . To sum up, we have a one-to-one correspondence between all suitably restricted representation of M by the blinear form in the definition of r(M ), and all of the sequences βQi (A1 , . . . , Ai ), i = 1, . . . , s − 1, a = [A1 , · · · , As ], (a, M ) = 1 and 1 ≤ where β is any element in Fq× , M deg a < deg M . Hence X r(M ) = (q − 1) (l(a, M ) − 1) 1≤deg a<deg M (a,M )=1.  = (q − 1)  . X 1≤deg a<deg M (a,M )=1.   (q − 1) + − (q − 1) l(a, M ) + (q − 1)  . by l(a, M ) = 1 for all a ∈ Fq× X = (q − 1) l(a, M ) − (q − 1) 0≤deg a<deg M (a,M )=1. . . . . X. X 1≤deg a<deg M (a,M )=1. 1. 0≤deg a<deg M (a,M )=1. = (q − 1)L(M ) − (q − 1)φ(M ). We have L(M ) =. r(M ) + φ(M ). q−1. Therefore we prove the theorem.. . Theorem 3.2. Suppose M ∈ A+ and deg M ≥ 1. Then we have   3  0 X (q − 1)φ(M ) deg M 1   r(M ) = + O q |M |  , ζ(2) |h| h|M. where the implied constant does not depend on q and M ..  1 .

(8) 8. JIA-WEI GUO. Proof. If deg M = 1, then r(M ) = 0. Hence the equality is trivial by direct calculation. Now we can suppose deg M ≥ 2. By (7), lemma 4.4 (b) and lemma 4.4 (a), we have (10) r(M ) =2. X0. µ(h)µ(h0 )%0 (M (uhh0 )−1 , deg u). uhh0 |M. uhh0 |M. X0. X0. µ(h)µ(h0 )%(M (uhh0 )−1 , deg u) +.

(9)  q − 1

(10)

(11) M (uhh0 )−1

(12) deg(M (uhh0 )−1 ) − deg u 2ζ(2) uhh0 |M     0 X X0

(13)

(14)

(15)

(16)

(17) M (uhh0 )−1

(18)

(19) M (uhh0 )−1

(20)  + O q + O 2q. =2. µ(h)µ(h0 ). uhh0 |M. uhh0 |M.

(21)

(22) −1  (q − 1) |M | X0 = µ(h)µ(h0 )

(23) uhh0

(24) deg M − deg(u2 hh0 ) ζ(2) uhh0 |M   3  X0 1  . + O q|M |  |h| h|M. Since X0 X0 X0

(25) −1

(26) µ(h) |h|−1 |m|−1 µ(h0 ) µ(h)µ(h0 )

(27) uhh0

(28) =. X0 uhh0 |M. m|M h−1. h|M. =. (11). X0. h0 |m. µ(h) |h|−1. h|M. = and (12) X0. φ(M ) |M |.

(29)

(30) −1 µ(h)µ(h0 )

(31) uhh0

(32) deg(u2 hh0 ). uhh0 |M. =. X0. X0

(33)

(34) −1

(35)

(36) −1 µ(h)µ(h0 )

(37) uhh0

(38) deg(uh0 ) µ(h)µ(h0 )

(39) uhh0

(40) deg(uh) + uhh0 |M. uhh0 |M. X. =2. 0.

(41)

(42) −1 µ(h)µ(h0 )

(43) uhh0

(44) deg(uh0 ). uhh0 |M. =2. X0 h|M. µ(h) |h|−1. X0 m|M h−1. |m|−1 deg m. X0. µ(h0 ). h0 |m. = 0, combining (10) with (11) and (12), the proof is complete.. .

(45) THE NUMBER OF STEPS IN THE POLYNOMIAL EUCLIDEAN ALGORITHM. 9. Theorem 3.3. Suppose M ∈ A+ and deg M ≥ 2. Then we have  L(M ) deg M = + O ln4 deg M , φ(M ) ζ(2) where the implied constant does not depend on q and M . Proof. By theorem 3.1 and theorem 3.2, we have. (13). L(M ) r(M ) = +1 φ(M ) (q − 1)φ(M )  3   0 X 1  deg M |M |  + 1 . = +O ζ(2) φ(M ) |h| h|M. By lemma 4.2, lemma 4.3 and deg M ≥ 2, we have  3 0 X 1  |M |  + 1  (ln deg M )(ln deg M )3 + 1 φ(M ) |h| (14) h|M.  ln4 deg M. Combining (13) with (14), the proof is complete.. . Given M, a ∈ A with deg M ≥ deg a. As (3), we can suppose r0 = M, r1 = a and ri−1 = Ai ri + ri+1 (1 ≤ i ≤ s), where 0 ≤ deg ri+1 < deg ri , i = 1, 2, . . . s − 1 and rs+1 = 0. Suppose deg ri = ti , i = 0, 1, . . . , s. We define sequence P (M, a) = {ti }si=0 and N (t0 , t1 , . . . , ts ) = #{(M, a)| deg M = t0 , deg a = t1 , P (M, a) = {ti }si=0 }. By division alogorithm and induction, we have N (t0 , t1 , . . . , ts ) = q t0 (q − 1)s+1 . This is obvious if s = 1. We now suppose s ≥ 2. For any fixed r1 , r2 ∈ A with deg r1 = t1 and deg r2 = t2 , there are exactly q t0 −t1 (q − 1) number of r0 with deg r0 = t0 satisfies r0 = A1 r1 + r2 , where A1 depends on r0 . Hence, N (t0 , t1 , . . . , ts ) = q t0 −t1 (q − 1) × N (t1 , t2 , . . . , ts ) = q t0 −t1 (q − 1) × q t1 (q − 1)s = q t0 (q − 1)s+1 . Thus, we have an easy method to estimate an average value of the Euclidean algorithm in another way by the following theorem: Theorem 3.4. We have q −(m+n) (q − 1)−2. X deg M =m deg a=n m≥n. l(a, M ) =. n + 1. ζA (2).

(46) 10. JIA-WEI GUO. Proof. Suppose t0 = m and t1 = n. We have X. l(a, M ) =. tX 1 +1. X. N (t0 , t1 , . . . , ts )s. s=1 t1 >t2 >···>ts ≥0. deg M =m deg a=n m≥n. =. tX 1 +1. X. q t0 (q − 1)s+1 s. s=1 t1 >t2 >···>ts ≥0 tX 1 +1 .  t1 q t0 (q − 1)s+1 s = s−1 s=1 t1   X t1 t0 2 (q − 1)s (s + 1) = q (q − 1) s s=0. = q (q − 1) {(1 + q − 1)t1 + t1 (q − 1)(1 + q − 1)t1 −1 } t0. 2. = (t1 + 1)q t0 +t1 (q − 1)2 − t1 q t0 +t1 −1 (q − 1)2 = (n + 1)q m+n (q − 1)2 − nq m+n−1 (q − 1)2 . By dividing q m+n (q − 1)2 in both sides, we complete the proof.. . 4. Auxiliary Lemmas Lemma 4.1. We have X. φ(M ) = q 2m−1 (q − 1)2 .. deg M =m. Proof. See [3] Proposition 2.7.  Lemma 4.2. Suppose M ∈ A+ and deg M ≥ 2. Then we have |M |  ln deg M, φ(M ) where the implied constant does not depend on q and M . Proof. See [4] Lemma 2.1.. . Lemma 4.3. Suppose M ∈ A+ and deg M ≥ 2. Then we have X0 1  ln deg M, |h| h|M. where the implied constant does not depend on q and M ..

(47) THE NUMBER OF STEPS IN THE POLYNOMIAL EUCLIDEAN ALGORITHM. 11. Proof. Suppose M = pe11 pe22 · · · pet t , where each pi is monic irreducible, pi 6= pj for i 6= j and each ei is a positive integer. We have t X0 1 Y 1 1 ) = + ··· + (1 + |h| |pi | |pi |ei i=1. h|M. <. t Y ( i=1. =. 1 ) 1 − |p1i |. |M | φ(M ). by lemma 4.2  ln deg M.. . Lemma 4.4. Suppose M ∈ A+ and deg M ≥ 2. Then we have (a) (b). %0 (M, n)  q |M | , q−1 %(M, n) = |M | (deg M − n) + O (q |M |) , 2ζA (2). where the implied constants do not depend on q and M . Proof. Suppose deg M = m and fix a pair of f , g∈ A with m ≥ deg f > deg g ≥ 0 and (f, g) = 1. 2 We have to count the number of pairs of f 0 , g 0 ∈ A which satisfy the equation M = f f 0 + gg 0 , deg f 0 > deg g 0 ≥ 0. 0. f This restrictions imply deg f 0 = m − deg f and g 0 = M −f . g 0 0 It is easy to check that the number of pairs of f , g ∈ A is equivalent to the number of polynomials f 0 which satify the equation. ff0 ≡ M (15). (mod g), deg f 0 = m − deg f,. deg f 0 > deg. M − ff0 ≥ 0. g. Since (f, g) = 1, the congruence ff0 ≡ M. (mod g). has a unique solution f0 with deg f0 < deg g and we can suppose f 0 = f0 +gh with h ∈ A. Since deg f 0 = m−deg f ≥ deg f and deg f > deg g > deg f0 , we.

(48) 12. JIA-WEI GUO. have deg f 0 > deg f0 and deg f 0 = deg(gh). Thus deg h = m − deg f − deg g. By (15), we have M − f f0 m − deg f > deg( − f h) ≥ 0. g f0 = deg(f h) = Since m − deg f = (m − deg g) − (deg f − deg g) and deg M −f g m − deg g, the first deg f − deg g + 1 coefficients of f h are fixed. Thus the first deg f −deg g +1 coefficients of h are fixed. By the last inequality above, we have ( f0 q m−2 deg f − 1 if f | M −f , g m−2 deg f q otherwise ,. solutions of h, which is exactly the number of solutios of f 0 in (15). By the definition of %0 (M, n), we get X (q m−2 deg f + O (1)) %0 (M, n) = 0≤deg g<deg f = m−n 2 (f,g)=1. X. . φ(f )q n. deg f = m−n 2. by lemma 4.1 = q m−n−1 (q − 1)2 q n  q |M | . This proves part (a). Similarly, we have X. %(M, n) =. (q m−2 deg f + O (1)). 0≤deg g<deg f < m−n 2 (f,g)=1. =. [ m−n−1 ] X 2 X k=1. φ(f )(q m−2k + O (1)). deg f =k. by lemma 4.1 =. [ m−n−1 ] 2 X. q 2k−1 (q − 1)2 (q m−2k + O (1)). k=1.  =.   [ m−n−1 ]  2 m−n  X  + O (1) q m−1 (q − 1)2 + O  q 2k+1  2 k=1. = This proves part (b).. q−1 |M | (deg M − n) + O (q |M |) . 2ζA (2) .

(49) THE NUMBER OF STEPS IN THE POLYNOMIAL EUCLIDEAN ALGORITHM. 13. References [1] H. Heilbronn, On the average length of a class of finite continued fractions, Abhandlungen aus Zahlentheorie und Analysis, VEB Deutsher Verlag, Berlin 1968. [2] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press (1997). [3] M. Rosen, Number Theory in Function Fields, Springer-Verlag, GTM 210 (2002). [4] Chih-Nung, Hsu, A Polynomial Additive Divisor Problem. [5] J. D. Dixon, The number of steps in the Euclidean algorithm, J. Number Theory 2 (1970), 414–422. [6] T. Tonkov, On the average length of a class of finite continued fractions, Acta Arith. 26 (1974), 47–57. [7] J. W. Porter, On a theorem of Heilbronn, Mathematika. 22 (1975), 20–28. [8] H. Davenport, Multiplicative Number Theory, Springer-Verlag, GTM 74 (1980). [9] G. H. Norton, On the asymptotic analysis of the Euclidean algorithm, J. Symbolic Computation 10 (1990) 53–58. [10] G. W. Effinger and D. R. Hayes, Additive Number Theory of Polynomials Over a Finite Field, Clarendon Press Oxford (1991).. Department of Mathematics National Taiwan Normal University 88 Sec. 4 Ting-Chou Road Taipei, Taiwan E-mail address: swordsad@yahoo.com.tw.

(50)

參考文獻

相關文件

“ Numerical studies of hyperbolic IBVP with high-order finite difference operators satisfying a summation by parts rule.”.. “High-order finite difference methods,

(A) 重複次數編碼(RLE, run length encoding)使用記録符號出現的次數方式進行壓縮 (B) JPEG、MP3 或 MPEG 相關壓縮法採用無失真壓縮(lossless compression)方式

Take a time step on current grid to update cell averages of volume fractions at next time step (b) Interface reconstruction. Find new interface location based on volume

A finite group is nilpotent if and only if it’s a direct product of Sylow

We explicitly saw the dimensional reason for the occurrence of the magnetic catalysis on the basis of the scaling argument. However, the precise form of gap depends

/** Class invariant: A Person always has a date of birth, and if the Person has a date of death, then the date of death is equal to or later than the date of birth. To be

The min-max and the max-min k-split problem are defined similarly except that the objectives are to minimize the maximum subgraph, and to maximize the minimum subgraph respectively..

Experiment a little with the Hello program. It will say that it has no clue what you mean by ouch. The exact wording of the error message is dependent on the compiler, but it might