• 沒有找到結果。

應用於微型陀螺儀之差動式電容感測電路

N/A
N/A
Protected

Academic year: 2021

Share "應用於微型陀螺儀之差動式電容感測電路"

Copied!
81
0
0

加載中.... (立即查看全文)

全文

(1)The Design, Simulation and Fabrication of Differential Capacitive Sensing Circuits of Micro Gyroscope. i.

(2) The Design, Simulation and Fabrication of Differential Capacitive Sensing Circuits of Micro Gyroscope. Student Chih-Chiang Mao Advisor. Dr. Jin-Chern Chiou. A Thesis Submitted to Department of Electrical and Control Engineering College of Electrical Engineering and Computer Science National Chiao Tung University in Partial Fullfilment of the Requirements for the Degree of Master in Electrical and Control Engineering July 2004 Hsinchu, Taiwan, Republic of China. ii.

(3) TSMC 0.35 m Mixed-Signal 2P4M Polycide 3.3/5V. i.

(4) The Design, Simulation and Fabrication of Differential Capacitive Sensing Circuits of Micro Gyroscope. Student Chih-Chiang Mao. Advisor Dr. Jin-Chern Chiou. Department of Electrical and Control Engineering National Chiao Tung University. ABSTRACT. The purpose of this dissertation is to discuss the structure and implementation of sensing circuits of capacitive micro gyroscope. First, the structure of ring-type vibrating gyroscope will be analyzed. Then we will introduce the synchronous detection, switched-capacitor sensing schemes, and fully-differential sensing circuit. As a result of the external mismatch and the natural restriction of structure of micro gyroscope, however, those sensing schemes will not be suitable for application discussed in this dissertation. Therefore, the differential sensing circuit based on differential charge amplifier is used in this thesis. From the post-layout simulation which uses TSMC 0.35 m Mixed-Signal 2P4M Polycide 3.3/5V process and HSPICE results the outputs have quite high linearity and sensitivity. It is good for integrating with micro gyroscope.. ii.

(5) 93. iii. 7.

(6) ......................................................................................................................i .....................................................................................................................ii .......................................................................................................................... iii ...........................................................................................................................iv .......................................................................................................................vii .........................................................................................................................x ...............................................................................................................1 1.1. .......................................................................................................1. 1.2. .......................................................................................................2. 1.3. .......................................................................................................3 .......................................................................................................4. 2.1. ...............................................................................................................4. 2.2. ...........................................................................................5 2.2.1. .........................................................................5. 2.2.2. ....................................................................................6. 2.2.3. .........................................................................7. 2.3. ...............................................................................................8 2.3.1 2.3.2 2.3.3. .............................................................................8 (Synchronous Detection) (Switched Capacitance). ..............................................9 ..................................12. 2.4. .................................................................................................14. 2.5. .............................................................................................................15. iv.

(7) ..........................................................................17 3.1. .............................................................................................................17. 3.2. ....................................................................................................17 3.2.1. ...........................................................................17. 3.2.2. ...............................................................18. 3.3. .........................................................................................20 3.3.1. ......................................................................................20. 3.3.2. ................................................21. 3.4. .....................................................................................................22. 3.5. .............................................................................................................26 ..........................................................................................28. 4.1. .............................................................................................................28. 4.2. (Pseudo-differential Sensing Circuit) ............................28. 4.3. .....................................................................................31 4.3.1. .............................31. 4.3.2. ....................................................32. 4.4. ............................................................................................................35 .....................................................................................................36. 5.1. .............................................................................................................36. 5.2. .....................................................................................................36. 5.3 OPS. OPA ................................................................................................38. 5.3.1. ..........................................................................................38. 5.3.2. ..........................................................................................38. 5.4. (Output Buffer)........................................................................44 5.4.1. ...........................................................................................44. 5.4.2. ...........................................................................................45 v.

(8) 5.5. 5.6. .............................................................................................................50 5.5.1. ...........................................................................................50. 5.5.2. ...........................................................................................51. .............................................................................................................52 .....................................................................................................53. 6.1. .............................................................................................................53. 6.2. .................................................................................................53 6.2.1 OPS. OPA......................................................................................53. 6.2.2. .......................................................................................57. 6.2.3. ..................................................................................................60. 6.3. ..................................................................................62. 6.4. .............................................................................................................65 .............................................................................................................66. 7.1. .................................................................................................66. 7.2. ....................................................................................................67 ...................................................................................................................68. vi.

(9) 2-1. .....................................................................................................4. 2-2. ..................................................................................5. 2-3. ..................................................................................9. 2-4. .......................................................................................................10. 2-5. ....................................................................................... 11. 2-6. ....................................................................................... 11. 2-7. ...................................................................................12. 2-8. ....................................................................13. 3-1. ...............................................................................................18. 3-3. .......................................................................................20. 3-4. ........................................................21. 3-5. Range. 200fF ~ -200fF. Step. 10fF. CINT. 0.5pF .................................21. 3-6. Range. 400fF ~ -400fF. Step. 10fF. CINT. 1.0pF .................................22. 3-7. RC. ............................................................................23. 3-8. ...................................................................................23. 3-9. ...........................................................................................24. 3-10. .........................................................................................25. 3-11. C. VOUT. ...................................................................................26. 4-1. ...............................................................................................28. 4-2. .......................................................................................29. 4-3. ....................................................31 vii.

(10) 4-4. .......................................................................................32. 4-5. ...........................................................................................33. 5-1. .......................................................................................................37. 5-2. ................................................................................38. 5-3. .................................................39. 5-4. ...............................................................................................40. 5-5. ............................................................................40. 5-6. ...............................................................................................41. 5-7. ................................................................................42. 5-8. ....................................................44. 5-9. .......................................................................................45. 5-10. .....................................................................................46. 5-10. .........................................................................................49. 5-11. ..............................................................................51. 5-12. ..........................................................................52. 5-13. ..........................................................................52. 6-1 OPS. .................................................................................................54. 6-2 OPS. .............................................................................................55. 6-3. (CMRR) .....................................................................................56. 6-4. (PSRR).......................................................................................56. 6-5. (Slew Rate) ........................................................................................57. 6-6. ...................................................................................58 viii.

(11) 6-7. ...................................................................................58. 6-8. ...................................................................................59. 6-9. .......................................................................................60. 6-10. ...................................................61. 6-11. ......................................................................................61. 6-12. ..................................................................................62. 6-13. ..................................................................63. 6-13. CINT = 2.5pF C = 20 fF ~ -20fF ................................................................63. 6-14. CINT = 2.5pF C = 100 fF ~ -100fF ............................................................64. 6-15. CINT = 2.5pF C = 200 fF ~ -200fF ............................................................64. 6-16. CINT = 2.5pF C = 200 fF ~ -200fF. ix. 10fF ..................................65.

(12) 2-1. .............................................16. 3-1. ...................................................................................20. 5-1. ................................................................................42. 6-1 OPS. ....................................................................................................55. 6-2. .......................................................................................59. 7-1. ........................................................................66. x.

(13) 1.1. 1959. (Richard P.Feynman). (. There is a plenty of room at the bottom) [1]. ((Micro. Electro-Mechanical Systems, MEMS) 1960 MEMS. (Micro machining) (Micro Sensor). (Micro Actuator). (Micro Electronics)[2]. ( RF. ) ). (. (. ) ). (. ( ). 1. ( DNA. ).

(14) Global Positioning System, GPS. Inertial Navigation System, INS. 1.2. Coriolis Centrifugal. 2.

(15) 1.3. 3.

(16) 2.1. 2-1 4.

(17) 2.2 2.2.1. 2-1 [3]. 45 (Driving Mode) (Sensing Mode)[4]. 2-2. (a). (b) 2-2. 5.

(18) qsense = 4 Ag ⋅. Q. ω0. ⋅ qdrive ⋅ Ω S. (2-1). qsense qdrive Ag. (Angular gain) Ag. Q. (Quality factor) 0 S. [3]. 2.2.2. (Electrostatic Actuation) Sensing). 6. (Capacitive.

(19) F=. 2 ∂E ∂ CVbias = 2 ∂x ∂x. (2-2). Vbias 2-2. (Fringing effect) C=. ε 0ε r A. (2-3). x. ε0. εr. A. x 2-3. x. 2.2.3. 2.2.1 2-2(a) 2-2(a) 0 135. 90 225. 180. 270. 45. 315 2-2(b) 45. 315. 0. 90. 45 180. 7. 270. 135. 225.

(20) 45. (. 135. 225. 315. CS,0) (CS,0+. C). (CS,0 - C). C. 2.3 2.3.1. 10-14. (Farad). (Relaxation Oscillator) (Impedance Bridge). (Charge Amplifier)[7] (Quality factor). (a). 8.

(21) (b). (c) 2-3. (Synchronous Detection) (Switched Capacitor). 2.3.2. (Synchronous Detection). 2-4. CS,0. C. VS. CP. 2-4 (CS+ , CS-) 9.

(22) C C VO =. 2∆C VS CINT. (2-4). 2-4. Vs (. ). Vx. (. 2-6). 1/f (Chopper Stabilization) (Virtual ground) (Buffer). 2-4. [8]. 10. 2-5.

(23) 2-5. 2-6. ν on2 ∆f. ν n2. =. 2CS ,0 + CINT + CP + CIP. CINT. 2. ν n2. 1 4kT ⋅ + ⋅ jω CINT RDC ∆f. (2-5). (Input-referred spectral density) CIP. ∆f. ν n2. CP. ∆f. CIP. CINT CINT( Range). 2-4). CINT. (Resolution). 11. (Sensing.

(24) 2.3.3. (Switched Capacitance). [9]. 2-7. (a). 12.

(25) (b) 2-8. 2-7. (. ). 2-8(a). VS. (CL). 2-6 ( VO =. 2-7. 2-4). 2∆C VS CINT. (2-6) S1. kT/C. ). ( kT/C. (Output-referred spectral density). 13.

(26) 2. ν kT2 C. CT 1 = ⋅ f S CINT ∆f. ⋅. kT CT. (2-7). CT = 2CS + CINT + CP + CIP. 2 ν opamp. ∆f ν n2. CT = CINT. fS. 2. ⋅. ν n2 f u π ∆f. ⋅. ⋅ fS 2. (2-8). (Input-referred spectral density). ∆f. fu. [8]. 2.4. (Brownian motion). (Signal to Noise Ratio). 2 vno = vo =. dvo ⋅ ∆Cmin dC. (2-9). 2-9. 2 vno. ∆Cmin =. 2 vno. dvo. (2-10). dC. 2.3.1 14.

(27) (RDC) (. 2-4). (. 2-5). ∆Cmin vn2 1 = ( 2CS + CINT + CP + CIP ) ⋅ ⋅ ∆f ∆f VS. (. (2-11). 2-6 ~ 2-8) 1 ∆Cmin = ⋅ ∆f VS. kTCT fS. kT C. +. CT2 vn2 f u fS. π 2. (2-12) OPAMP. CT = 2CS + CINT + CP + CIP. S1 (Micromachined). kT/C kT/C. kT/C. ∆Cmin, sw ∆Cmin, syn. =. π fu. (2-13). fS. 2-13. 2.5. 15.

(28) 2-1. 16.

(29) 3.1. (Offset Voltage) Noise). (Charge Inject Effect) (Correlated Double Sampling). 3.2 3.2.1. (Threshold Voltage). 17. (Flicker.

(30) 3-1. 3.2.2. 3-2. S1. CH 18.

(31) VS CH VOUT. (a). (b). (c) 3-2 19.

(32) 3.3 3.3.1. 3-2. 3-3. 3-3 3-1 Open-loop gain. 55 dB. Slew Rate. 80V/us. Phase Margin. 75°. Output Swing. 3.3 ~ -3.28 V. Gain Margin. 33 dB. CMRR. 72 dB. Bandwidth. 190 kHz. PSRR+. 77 dB. Unity gain freq.. 117 MHz. PSRR-. 57 dB. Offset Voltage. 14.78mV. Power Dissipation. 6.3 mW. 20.

(33) 3.3.2. 3-2. PAD 3-4. 3-4. 3-5. 3-6. CINT. 2-6 CINT. C. 3-5 Range. 200fF ~ -200fF. 21. Step. 10fF. CINT. 0.5pF.

(34) 3-6 Range. 400fF ~ -400fF. Step. 10fF. CINT. 1.0pF. 3.4. 0.5pF. 1.0pF. (a ) R = 3.3M 22. C = 0.5pF. RC.

(35) (b) R = 3.3M 3-7. 3-6. C = 0.5pF. RC. 3-7. 3.69pF 3pF. (Unit-gain Buffer). 3-8. 23. 4.13pF.

(36) (a) R1/R2 = 0.5. (b) R1/R2 = 0.1 3-9. 3-8 3-9 R1. R2. 24.

(37) (a) CS1 = 3.3 pF. CS2 = 2.7 pF. (b) CS1 = 2.7 pF. CS2 = 3.3 pF. (c) CS1 = 2.7 pF. CS2 = 3.6 pF. 3-10 25.

(38) CS,0. 3-11. CS,0. 3.18pF. C. C. VOUT. C. 400fF 3-11. 3-8. 3.5. 3.4. 26. 3-10.

(39) 27.

(40) 4.1. 4.2. (Pseudo-differential Sensing Circuit). (Fully-differential) (Noise Couple). (Harmonic Distortion). (Power-Supply Rejection Ratio, PSRR). 4-1. 28.

(41) (Micro-machined) (CS+, CS-). 4-2. 4-1. VS. [9]. 4-2. (Input Common-mode Level). (Virtual Ground). 1. 2.. (Virtual Short) (Common-mode Feedback, CMFB). 29.

(42) 3. CS + = CS ,0 + ∆CS. CP1 = CP ,0 + ∆CP. C S − = C S ,0 − ∆CS. C P 2 = C P ,0 − ∆C P. VS. VS. (Vicm-ini). Vicm −ini = α ⋅ VS. α=. CS. (4-1). C C CS + CP + CIP + INT L CINT + CL. Vicm-ini. Vocm −ini = β ⋅ Vicm−ini. β=. CINT CINT + CL. (4-2). Vicm − final = Vicm −ini − γ Vocm −ini. γ=. CINT. (4- 3). = α (1 − βγ ) ⋅ V S. (4-4). = δ ⋅VS. (4-5). CINT C = INT CT + CS + CP + CIP. Vicm − final =. δ = α (1 − βγ ) < 1. CINT. CS ⋅VS CT. CL. CT. (4-6). VO = −∆CS ( CINT + CP + CIP ) + ∆CP ⋅ CS ⋅. 30. VS CI CT. (4-7).

(43) 2-4 CP. 2-6. 4-7 ∆C P. CP. ∆CS. (Input Common-Mode Feedback, ICMFB). 4-3 [1]. 4-3. 4.3 4.3.1. 31.

(44) [7]. 4-4. 4-4. (Virtual Short). 4.3.2. (Offset Voltage). 32. (Flicker Noise).

(45) 4-5. 2-4 4-5 VO = −. CS + C ⋅V1 − S − ⋅V2 CINT CINT. (4-8) V1 = VS. ( V1 ≠ V2 ) V2 = − (VS + ∆V ). 4-8. VO = − ( 2VS + ∆ VS ) ⋅. C ∆C S + ∆ VS ⋅ S ,0 C INT C INT. (4-9). 4-9. 180 V1 = VS sin (ω t ). V2 = −VS sin(ω t − Ψ ). VO = −. Ψ. CS + C ⋅ VS ⋅ sin (ωt ) − S − ⋅ VS ⋅ sin(ωt − Ψ ) CINT CINT. 4-10 33. 4-8. (4-10).

(46) VO = −. VS CS ,0 ( sin ω t − sin (ωt − Ψ ) ) − ∆CS ( sin ωt + sin (ωt − Ψ ) ) C INT. (4-11) sin A − sin B = 2sin ( ( A − B ) / 2 ) cos ( ( A + B ) / 2 ). VO = −. Ψ Ψ 2VS ⋅ CS ,0 sin cos (ωt − Ψ ) + ∆CS cos sin (ωt − Ψ ) CINT 2 2. 4-11. (4-12). 4-12. VO = − A. 2V S ⋅ A cos (ω t − B ) C INT. B. 4-12. A=. (4-13) 4-13. Ψ2 CS ,0 + ∆CS 4 sin 2 B. Ψ ( CS ,0 − ∆CS ). B = tan −1. (4-14). Ψ 2CS ,0 + 2∆CS 2 Ψ∆CS. VO. (−. (4-15) 2VS ⋅A) CINT. B. ∆ CS. [2]. 4-13. 4-15. 34.

(47) 4.4. 35.

(48) 5.1. 5.2. 5-1. VS. OPS. OPS. OPA OPA. OPA OPS OPA. OPA. VS. (Sample and Hold Circuit). PAD. (Bonding) 36. OPS.

(49) OPS. PAD. 5-1. 37. OPA.

(50) 5.3 OPS. OPA. 5.3.1. (. 5-2. 5-2. 5.3.2. OPS. OPA. (Folded-cascode) 38. ).

(51) (a). (b). 5-3. (Telescopic). 5-4 IBIAS (MOSFET). 39. 5-3.

(52) 5-4. (Wide-swing Current Mirror) (Constant Transconductance). [17]. (Output Buffer). 5-5 40.

(53) VOUT Region). Q2. (Active. IOUT=IIN Vov = Vov 2 = Vov 3 =. Q1 Q4 n2. 2 I IN µnCox (W L ). Q5. (5-1) Q2 Q3. (n+1)2. n2. (n+1)2. 5-1. Vov 5 = ( n + 1) Vov. (5-2). Vov1 = Vov 4 = nVov. (5-3). VDS 2 = VG 5 − VGS 1 = VDS2. Q1. ( n + 1)Vov + Vtn. − ( nVov + Vn ) = Vov. (5-4). Q2. Vout > Vov1 + Vov 2 = ( n + 1) Vov n=1. VOUT > 2Vov[17]. (5-5) 0.5V. 1V. 5-6. 41.

(54) 5-1. 5-6. Q1. Q2. Q3. Q4. Q5. W L n2. W L. W L. W L n2. W L. ( n + 1). 2. 5-7. 5-7. VIN. VOUT. AV = g m1 ⋅ ( RO 6 || RO8 ) RO 6 = g m 4 ⋅ ro 4 ⋅ ro 6. (5-6). RO 8 = g m10 ⋅ ro10 ⋅ ro 8. g m ⋅ ro M4. M6 M8. M10. M4 VDS 4 = VDS 6 = Vov. M6. 42.

(55) VOUT ( MAX ) = VDD − 2Vov M8. M10. M7. (5-7). M9. V D 8 ( MIN ) = 2Vov 8. VOUT ( MIN ) = VD8( MIN ) = 2Vov8. (5-8) M1~M4. M11. VICM ( MAX ) = VDD −Vov3 − Vt1. (5-9). VICM ( MIN ) = Vov1 + Vt1 + Vov11. (5-10) (2-stages Op Amp). CC. p1 ≈ −. ωu =. CC. 1 1 ≈− ROUT ⋅ CL ( RO 6 || RO8 ) ⋅ CL. (5-11). g m1 CL. (5-12) (Slew Rate). SR =. ID4 CL. OPS. (5-13). 43.

(56) 5.4. (Output Buffer). 5.4.1. OPS. OPA. (2-stages Op Amp) (. ). 5-8[17] (Common Source Amplifier) CC (Miller Effect). (Phase Margin). 5-8. 44. (Zero).

(57) 5.4.2. 5-9. (Constant Transconductance). (W L )1 = (W L )2. 5-9. Vt 5 = Vt 6. Vov 6 = Vov 5 + I D 5 RB. (5-14). 5-14 2I D6 2 I D5 = + I D 5 RB kn (W L )6 kn (W L )5. kn = µnCox. (5-15). I D5 = I D6. 2I D6 2I D6 = + I D 6 RB kn (W L )6 kn (W L )5. 5-16. 45. (5-16).

(58) 2 2kn (W L )6 I D 6. 1−. (W L )6 (W L )5. = RB. (5-17). g m 6 = 2kn (W L )6 I D 6. 2 1− gm6 = 5-18. gm. (5-18). RB. gm6. Mi. (W L )6 (W L )5 M5. M6. M6. [17]. 5-10. M5 ID5 ID5. (CMRR) 46.

(59) (Slew Rate). A1 = g m1 ( ro 2 || ro 4 ) g m = 2 k (W L ) I D. ro =. VA. (5-19). I D VA. (Early Voltage). ID5. VGS VGS. P. M6. A2 = − g m 7 ( ro 6 || ro 7 ). (5-20) M10. (Source Follower) M10. (Body Effect). M10 n-well. Twin-well. p-well. P M10. A3 =. g m10 GL + g m10 + g o10 + g o9. (5-21). A3 =. g m10 GL + g m10 + g s10 + g o10 + g o 9. (5-22). M10. GL GL. go go. gs. gm gm/5. M10 5-21. gs. 0.83 47.

(60) AV = − g m1 ( ro 2 || ro 4 ) ⋅ g m 7 ( ro 6 || ro 7 ) ⋅. 5-23. G L + g m10. g m10 + g s10 + g o10 + g o 9. (5-23). gmro. g m ro =. 2VA Vov. (5-24) (VA). Vov. Vov. 5-9. VOUT ( MAX ) = VDD − Vov 6 − VGS 10. (5-25). VOUT ( MIN ) = Vov 9. (5-26). 5-10. VICM ( MAX ) = VDD − Vov1 − Vt1 − Vov5. (5-27). VICM ( MIN ) = Vov 3 + Vt1. (5-28). 5-10. RC. M11. RC = rds11 =. 1 k n (W L )11 Vov11 48. (5-29).

(61) M11. RC = 0. 5-10. ω p1 ≈ (. 5. ω p2 ≈ ωz ≈. -. 1 g m 7 R1 R2CC. 3. 0. ). g m7 C1 + C2. (5-31). − gm7 CC. (5-32) 5-32 (Phase Delay). 5-10. RC 5-29. ωz =. RC. 0. 5-30. −1 CC (1 g m 7 − RC ). (5-33) RC. RC = 1 g m 7 49.

(62) RC = 1. gm7. 1+. ( C1 + C2 ). RC. CC. SR =. I D 5 2 I D1 = CC CC. ωu = g m1 CC. 5-34. (5-34). SR = Vov1 ⋅ ωu (. 5. -. 3. 5. ). Vov P. P. P. Vov. N. (Thermal Noise). 5.5 5.5.1. (NSC Chip Implementation Center, CIC). TSMC 0.35 m Mixed-Signal. 2P4M Polycide 3.3/5V (Overetching) (Oxide-thickness variation)[17] 5.5.2. 50.

(63) 5.5.2. 5-11. (Dummy Cell). (Edge Effect) 51.

(64) 5-12. 5-13. 5.6. 52.

(65) 6.1. (NSC Chip Implementation Center, CIC). TSMC 0.35 m Mixed-Signal LAKER®. 2P4M Polycide 3.3/5V Hspice®. Synopsys. 6.2 6.2.1 OPS. OPS. OPA. OPA. 6-1 5.3. 6-1 OPS OPS. 53. 6-2.

(66) 6-1 OPS. 6-1. (Guard Ring). (Start-up Circuit). 54.

(67) 6-1 OPS Open-loop Gain. 59dB. Slew Rate. 100V/us. Phase Margin. 77. Output Swing. 3V ~ 1mV. Gain Margin. 30dB. CMRR. 105dB. Bandwidth. 100kHz. PSRR+. 125dB. Unit-gain freq.. 91MHz. Power Dissipation. 920uW. Offset Voltage. 4mV. 6-2 OPS. 55.

(68) 6-3. (CMRR). 6-4. (PSRR). 56.

(69) 6-5. (Slew Rate). 6.2.2. 6-1. 6-2. OPS M11 (Source Follower). OPS CC. 0.5 pF. 57.

(70) 6-6. 6-7 58.

(71) 6-8. 6-2 Open-loop Gain. 51.8 dB. Slew Rate. 90V/us. Phase Margin. 97. Output Swing. 2.5V ~ 0V. Gain Margin. 35dB. CMRR. 70.46 dB. Bandwidth. 208kHz. PSRR+. 70.1 dB. Unit-gain freq.. 85MHz. Power Dissipation. 1.7 mW. Offset Voltage. 1mV. 59.

(72) 6.2.3. 1. 2.. 6-9. 6-9. 60.

(73) 6-10. 45 6-11. 45 288. 6-11. 6-10. 6-11 61.

(74) 6-12. 6.3. VO =. 2∆C ⋅VS CINT. VS. (6-1). CINT C=10 fF. C 6-1. 62.

(75) VO =. 6-2. 2∆C 2 ⋅10 fF ⋅ VS = ⋅ 3 = 0.024 CINT 2.5 pF. (6-2). 6-14. 6-17. 6-16. 6-13. 6-13 CINT = 2.5pF C = 20 fF ~ -20fF 63.

(76) 6-14 CINT = 2.5pF C = 100 fF ~ -100fF. 6-15 CINT = 2.5pF C = 200 fF ~ -200fF. 64.

(77) 6-16 CINT = 2.5pF C = 200 fF ~ -200fF. 10fF. 6.4. C. 200fF. OPA. 65.

(78) 7.1. (Micro Electro-Mechanical Systems, MEMS). 7-1. 7-1 CS,0. 3.18 pF. 1.2 fF @ 1 /sec S. C 120 fF @ 100 /sec. 3V. 4 mW. 1 fF. 200 fF. 66.

(79) CS,0. C. S. 7.2. OPA. PAD. (Bonding Wire) OPA. OPS P. OPA (Body Effect). (Bonding Wire) (Flip Chip) 67.

(80) [1]. ,. ,. ,. 90. [2] B. Minhang, W. Weiyuan, “Future of microelectromechanical systems(MEMS),” Sensors and Actuators, A56, pp.135-141, 1996.. [3] Farrokh Ayazi, Khalil Najafi, “A HARPSS Polysilicon Vibrating Ring Gyroscope,” IEEE Journal of MEMS, Vol. 10, No. 2, Jun 2001.. [4] Farrokh Ayazi, Khalil Najafi, “Design and Fabrication of A High-Performance Polysilicon Vibrating Ring Gyroscope,” IEEE/ASME International Workshop on. MEMS, Jan. , pp 25-29, 1998.. [5] Bernhard E. Boser, Roger T. Howe, “Surface Micromachined Accelerometers,” IEEE Journal of Solid-State Circuits, Mar. , pp 366-375, 1996.. [6] B. N. Lee, H.D. Park, “A Signal Conditioning Circuitry for Capacitive Accelerometers,” AP-ASIC 2000, Aug. 29th, 2000. [7] Zsolt Kádár, “Integrated Resonant Magnetic Field Sensor,” Delft Univ., Ph.D. Dissertation, 1997 [8] W. Yun, “A Surface Micromachined Accelerometer with Integrated CMOS Detection Circuitry,” Univ. of California at Berkeley, Ph.D. Dissertation, 1992 [9] Naiyavudhi Wongkomet, “Position Sensing for Electrostatic Micropositioners,” Univ. of California at Berkeley, Ph D. Dissertation, 1998 [10] R.F.Wolffenbuttel and P.P.L.Regtien, “Capacitance-to-Phase Angle Conversion for the Detection of Extremely Small Capacities,” IEEE Trans. Instr. Meas., Vol.. IM-36, 1987, pp. 868-872. [11] H. Maarefi, A. Parsa, H. Hatamkhami, D. Shiri, “A Wide Swing 1.5V Fully Differential OP-AMP Using A Rail-to rail Analog CMFB Circuit,” Circuits and. Systems, 4-7 Aug, 2002.. [12] Mohamad Adnan Al-Alaoui, “A Differential Integrator with a Built-In High-Frequency Compensation,” IEEE Transaction on Circuit and System I, Vol.. 45, No. 5, May. 1998.. 68.

(81) [13] Amit Burstein, W.J. Kaiser, “Mixed Analog-Digital Highly-sensitive Sensor Interface,” The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers ’95. Vol 1, June 25-29, 1995 [14] B.. Boser. “Capacitive. Interfaces. for. Monolithic. Integrated. Sensors,”. http://www-bsac.eecs.berkeley.edu/~boser/publications/aacd97kap.pdf [15] Haluk Kulah, Navid Yazdi, Khalil Najafi, “A CMOS Switched-Capacitor Interface Circuit for an Integrated Accelerometer,” Proc. 43rd IEEE Midwest. Symp. on Circuits and Systems, Lansing MI, pp 244-247, Aug. 8-11, 2000.. [16] Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, Analysis and. Design of Analog Integrated Circuits, Fourth Ed., John Wiley & Sons, INC.,. 2001. [17] David Johns, Ken Martin, Analog Integrated Circuit Design, John Wiley & Sons,. INC., 1997. [18] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001 [19] Hirokazo Yoshizawa, Yunteng Huang, Gabor C. Temes, “MOSFET-Only Switched-Capacitor Circuits in Digital CMOS Technologies,” IEEE International. Symp. on Circuits and Systems, pp 457-460, Jun. 9-12, 1997.. [20] C. C. ENZ, C. G. Temes, “Circuit Techniques for Reducing the Effects of OP-AMP Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization,” Proceedings of the IEEE, 84, pp 1584-1614, 1996.. [21] G. Wegmann, E. A. Vittoz, Foulad, Rahali, “Charge Injection in Analog MOS Switches,” IEEE Journal of Solid-State Circuit, pp 1091-1097, 1987.. [22] R. Jacob Baker, Harry W. Li, David E. Boyce, CMOS Circuit Design, Layout,. and Simulation, John Wiley & Sons,INC., 1998.. 69.

(82)

參考文獻

相關文件

 develop a better understanding of the design and the features of the English Language curriculum with an emphasis on the senior secondary level;..  gain an insight into the

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

dimensional nanomaterials for photodetectors with ultrahigh gain and wide spectral response. II.  Photon down conversion and light trapping in hybrid ZnS nanopartcles/Si

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix

2 Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan.. 3 Department of Materials Science and Engineering, National Tsing Hua

The differential mode of association: Understanding of traditional Chinese social structure and the behaviors of the Chinese people. Introduction to Leadership: Concepts

Microphone and 600 ohm line conduits shall be mechanically and electrically connected to receptacle boxes and electrically grounded to the audio system ground point.. Lines in

engineering design, product design, industrial design, ceramic design, decorative design, graphic design, illustration design, information design, typographic design,