• 沒有找到結果。

電子資訊產業供應鏈管理---子計畫III:IC製造業前置時間管理之研究

N/A
N/A
Protected

Academic year: 2021

Share "電子資訊產業供應鏈管理---子計畫III:IC製造業前置時間管理之研究"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

(2)  IC 

(3) II The Study of Lead Time Management for IC Industry NSC88-2213-E009-023 87  08  01  88  7  31   !"#$%&''() &*+,  -./012#3456789 :(5;<=-.>?@ABCDEF GH>?IJDKLMN5OD' JPQRSD'JPQTMU V  DPWXYZZ8[\-.]5^_` abcdOef0ghPWijklm 45nop78q0r

(4) stu-/: (vw3xKLMNO;< yM U5z]{:(vwb|}~vw5 €f‚ƒ„8 \†‡cdOefˆ‰W12 54Šbr

(5) ‹-./5:(v wŒ3xŽXY5‘’‚v wb|“”-./5•P‚):(ƒ „b9–—˜™šPW‚ƒSD:( ‚ƒSDGH›JIJƒSZœƒS8 ™šPW‚žjŸp7 ¡¢£¤l¥ ¦gh§PQ¨ ©j]{8:(‚ª «¬­vw–5®¯ ¡¢)I°  ¡¢b“”±² ¡¢b|0³Svw. ¡¢5no8GH›JIJƒS´“ ” µ=:(¶·¸¹5GH›JIJV º¢8 »¼½br

(6) œƒS=¾¿5 €ÀoÁ8™šPW‚ Ÿp7 ¡¢ Â=oijµ=]{PWb|Óĩ j]{Å25vwÆÇȦ8:(‚ q“”5±²:( ¡¢ÂÉʊË Ìb|͖ÎÏnoÐÑ5Ì8GH›J IJº¢qËB5IJÒÓP•ÐÔ5. I°Õr|cd µ=:(5#Ö×8 q0bœƒSÂȦØÙu-5ÚÛ; <|ÇÜPWijk)#no8 UÝÞØÙu-D#noDKLMN OD:( Abstract On time delivery is the major objective of wafer probing factories. The characteristics of wafer probing scheduling problem (WPSP) include dynamic arrival of testing lots, the allowance of the inserting rush orders in current dispatching list, the sequence-dependent setup time, job cluster, product type-dependent processing time, and capacity constraints, etc. Because the testers are expensive, the reduction of setup times to increase capacity utilization rate is an important performance index. We define the wafer probing scheduling problem as the unrelated parallel-machine problem with sequence dependent setup time. We also provide the integer programming model for the WPSP. To meet both requirements of pre-determined length of lead time and of reducing setup times, this research regards the scheduling problem as vehicle routing problem with time window constraint (VRPTW) to develop the production planning and scheduling model. The production planning and scheduling model consists of the following three modules, the rough-cut capacity planning module, the scheduling module, and the rush order insertion 1.

(7) module. In the rough-cut capacity planning module, we design a bi-criteria algorithm to evaluate the necessity of increasing the number of backup machines. In the scheduling module, we propose nine algorithms to solve the WPSP approximately, which based on the savings and insertion vehicle delivery algorithms. The performances of the algorithms are also evaluated with four testing problems. In the rush order insertion module, we propose an algorithm to insert the rush order with least additional cost and reduce the impacts on the schedules. The experimental testing shows that the three modules are well-integrated. In the first module, the bi-criteria algorithm is designed to utilize the machine capacity efficiently and evaluate the necessity of increasing the number of backup machines. In the second module, each one of the nine algorithms can solve the WPSP quickly and approximately. According to the computational results, we can choose the algorithm with better scheduling performances. In the third module, the rush order insertion method is developed to find the insertion position which cause least additional cost and reduce the total tardiness of the orders on the schedule after the insertion of rush order. Therefore, the three modules can help us to efficiently improve the capacity utilization and the on time delivery performances. Keywords: Wafer probing, delivery performance, sequence-dependent setup time, scheduling.. 

(8) ßàáâã5PÚۖbäÑ5# nolåæ54ç8u-/5(èé ßØÙ êb9ëØÙ/‹ IC ­Cu-/5BC arrival time 5ìí8ßî'5PÚÛïbÅðGH (ñ5›JI° 9ò›J5•P:(ó å=qìí8q0ßôu-/5PW. ‚/]{RSOs)•P:(‚åõö ÷GH›J5V 8øùåõ=*úû. PW‚):(º¢büWýþGH›J *ú5)¶·8 Èu-/54(]{(-.])^ _`ab9PWijk5Ôlm45n op78-.]Â-²PQô ÅðW5-. bˆôÅð5PQ -.W-.bÂWæ4ôMU.

(9) 5O 8q0åõ ‚-.> 5KL0cdOefbüWÇ]{i jk8 [\u-/5:(vw;<)-.] { Zoz:;<b)xŽXY5 ‘’‚vw(vehicle routing problem with time window constraint; VRPTW)=F 5ð<br.‹u-/5:( vwŒÕ VRPTW ‘vwb|0“ „ ¡¢Š-.]{ -.>5-.K L8 -.]{5:(vw0'¢´s 5KLŠÌb´:(no|Å bˆ 0’<‚Zf&ƒ„ŠÌb´ÅW 12vw5æŠ8ß‘vw–F NP-hard vwl0“„(heuristics) ¡¢ ŠÌbÆFvw=oÁÅ5 Ì8 !“„ ¡¢5ÌwÊñÂ12 "5æŠbÆqŠË5#Á$è¸ %Ì8 q0br

(10) 0}~u-/ •P ‚):(ƒ„365bß&Àu-/5P Q)(;< Çïb'Y(-. >5-.ß67)*bÇ] {ijk8+Õ ' ,6= (1) u-/:(vw5st)‘Œ º¢ “”8ô ' 3stu/:(vw3‡²z]{:(vwD‹ -vw0€f‚ f&ƒ„.CD‹u -/:(vwŒ3 VRPTW 5‘Œ /01½2 3²vwlMZ58 (2) ™šPW抁‚ƒS£¤]{ 2.

(11) 4l¥Ë58ô ' 3§]{R SPW抁D67>?)GH>?. PW849:‚D;€-.>?5©j ]{Z8 (3) :(‚ƒS<s67>?ß.]{5:L8ô ' 3“” Ì ¡¢0<s67>?ß-.]{5V KL8. ¢‹§PQ¨5›J8B§]{RS8 Ÿp7 ¡¢lB?ghPW®¯) (saving index) ˆ‰ÅCÕD!PQ¨5 ›JE¢8B]{F(urgency index)85 D!PQ¨¸êGE¢8B]{Fù î.õgh !PQ¨5©j]{8. (3)ß:( ¡¢5OºHbr

(12) ª«IJ–=UxŽXY ‘’ ‚vw53Ì ¡¢®¯(savings) (4) GH›JIJƒSV GH>?  ¡¢)I°(insertion) ¡¢b8TO BCÄ= IJvw8ô ' 3 ±² ¡¢8|0³Svw-. ¡¢ IJ‚DIJ¢´D'.m>;€Z8 nob !vwSq—˜5' fÍ 50  B 120 ÅZb§=0ïÅð5;<#  KG(ñÅðDPQRSDèu-/ (LMZ8no8N´ö÷OPQ ØÙu-:(vw5;<=-.> ¡DR]{:(f6Dq=]{:( ?@ABCDEFGH>?IJDKLM RSTZœU´8 N5OD'JPQRSD'JPQ »Vno58N“ÄvwS5# TMU V DPWXYZZ8u !;<br

(13) “”u-/5•P‚ KGñD' 5RW< PQRSDP• ):(ƒ„b9–—˜™šPW‚ƒ XY:(5º¢ZbÓìZ:( ¡¢Š SD:(‚ƒSDGH›JIJƒSZ Ì5no8q0b ¡Ó4=äÑ5 no.Äbåõ ö÷ œ²È[84 œƒS8? À\®¯ ¡¢]lß^=54 ® »¼½bœƒS=¾¿5€ Ào ¯ ¡¢–_`ö÷Ž5ìZbq09 ÁbÂȦØÙu-5ÚÛ;<|ÇÜP ßx=ÐG5#vwS–5no.Ä| Wijk)#no8™šPW‚ Ÿ abû8 p7 ¡¢Â=oijµ=]{PWb| (4) ß GH ›J IJ ƒS 5n o º Óĩj]{Å25vwÆÇÈ ¦8:(‚q“”5±²:( ¡¢Â Hb»:¼½bGH>?9:5‚c ÉʊËÂÌb|͖ÎÏnoÐÑ5 :(F§' 5d+')#. Ì8GH›JIJº¢qËB5IJÒ =%¹Ås5efñb†ÂgÔGH ÓP•ÐÔ5I°Õr|cd µ=:( ›JI°ê 9h›J5#Ö×88 ›J=Ð%5#Ö×lÈGH>?5B 5#Ö×8 Cxi]<Åð5:(º¢ÓP•Åð r

(14) 5

(15) ÕÁ)#@8A\ï 5:(j<bq0D!GH›J5I°Ó (1) stu-/:(vw3xKLM Õ8›JÐ%5#Ö×8 NO;< yMU5z]{:( vw unrelated parallel-machine problemb  |}~vw5€f‚ƒ„89ebÇ ‘Œ ¡¢b‹u-/:(vwŒ 1.

(16) *k)^M&(ñl2 3xŽXY5‘’‚vwb| ½2 3²vwlMZ58 (2) ™šPW抁‚0Ÿp7 ¡. 95 2. r

(17) CÕd67m4 3.

(18) ¼^n*ú ~"D @5op ƒ„~"DüqrDst >¦j 3. r

(19) ÕÁ &tuö^) v 4. r

(20) ÕÁ ¦jow^) v 5. r

(21) ÕÁÂxyzi,6 l2 r

(22) 5ÕÁy'(st5

(23) b9Õ ÁÅ{|xyzi 6. r

(24) ÕÁ“. ~} r

(25) ÕÁ“.\!*` ~ 7. £ r

(26) Õ5‹ØÙu-:(vwŒ 3‘vwbst‡3ØÙu-:(v w19€f‚ƒ„b|‹¬­v w ¡¢¦j\ŠÌØÙu-:(v w8q“”5•P‚):(ƒ„b ȦØÙu-5ÚÛ;<bÇÜ-.] {PWijk)›J#no8 € r

(27) ÕÁ‚ƒ£Z„v%. 464-474. [7] OVACIK, I. M., and UZSOY, R., 1992 A shifting bottleneck algorithm for scheduling semiconductor testing operations. Journal of Electronics Manufacturing, 2, 119-134. [8] OVACIK, I. M., and UZSOY, R., 1994, Rolling horizon algorithms for a single-machine dynamic scheduling problem with sequence-dependent setup time. International Journal of Production Research, 32(6), 1243-1263. [9] OVACIK, I. M., and UZSOY, R., 1995, Rolling horizon procedures for dynamic parallel machine scheduling with sequence-dependent setup time. International Journal of Production Research, 33(11), 3173-3192. [10] OVACIK, I. M., and UZSOY, R., 1996, Decomposition methods for scheduling semiconductor testing facilities. The International Journal of Flexible Manufacturing Systems, 8, 357-388. [11] PARKER, R. G., DEANE, R. H., and HOLMES, R. A., 1977, On the use of a vehicle routing algorithm for the parallel processor problem with sequence dependent changeover costs. AIIE Transactions, 9(2), 155-160. [12] POTVIN, J. Y., and ROUSSEAU, J. M. , 1993, A Parallel route building algorithm for the vehicle routing and scheduling problem with time windows. European Journal of Operational Research, 66, 19-26. [13] RANDHAWA, S. U., and KUO, C.–H., 1997, Evaluating scheduling heuristics for non-identical parallel processors. International Journal of Production Research, 35(4), 969-981.. . [14] SOLOMON, M. M., 1987, Algorithms for the vehicle routing and scheduling problem with time window constraints. Operations Research, 35(2), 254-265.. [1] BARNES, J. W., and BRENNAN, J. W., 1977, An improved algorithm for scheduling jobs on identical machines. IIE Transaction, 9, 25-31.. [15] UZSOY, R., CHURCH, L., OVACIK, I., and HINCHMAN, J., 1993, Performance evaluation of dispatching rules for semiconductor testing operations. Journal of Electronics Manufacturing, 3, 95-105.. [2] CENTENO, G., and ARMACOST, R. L, 1997, Parallel machine scheduling with release time and machine eligibility restrictions. Computers and Industrial Engineering, 33(1-2), 273-276. [3] CHENG, T. C. E., and SIN, C. C. S ., 1990, A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research, 47, 271-292. [4] ELMAGRABY, S. E., and PARK, S., 1974, Scheduling Jobs on A Number of Identical Machines. IIE Transactions, 6, 1-13. [5] LEE, C. Y., UZSOY, R., and MARTIN-VEGA, L. A., 1992, Efficient algorithms for scheduling semiconductor burn-in operations. Operations Research, 40(4), 764-775.. [16] UZSOY, R., LEE, C. Y., and MARTIN-VEGA, L., 1992, Scheduling semiconductor test operations: minimizing maximu m lateness and number of tardy jobs on a single machine. Naval Research Logistics, 39, 369-388. [17] UZSOY, R., MART-IN-VEGA, L. A., LEE, C. Y., and LEONARD, P. A., 1991, Production scheduling algorithms for a semiconductor test facility. IEEE Transactions on Semiconductor Manufacturing, 4, 271-280. [18] VASILESCU, E. N., and AMAR, A. D., 1983. An empirical evaluation of the entrapment procedure for scheduling jobs on identical machines. IIE transaction, 15, 261-263.. [6] LEE, Y. H., and PINEDO, M., 1997, Scheduling jobs on parallel machines with sequence-dependent setup times. European Journal of Operational Research, 100,. 4.

(28)

參考文獻

相關文件

fostering independent application of reading strategies Strategy 7: Provide opportunities for students to track, reflect on, and share their learning progress (destination). •

Strategy 3: Offer descriptive feedback during the learning process (enabling strategy). Where the

Now, nearly all of the current flows through wire S since it has a much lower resistance than the light bulb. The light bulb does not glow because the current flowing through it

Hope theory: A member of the positive psychology family. Lopez (Eds.), Handbook of positive

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =&gt;

incapable to extract any quantities from QCD, nor to tackle the most interesting physics, namely, the spontaneously chiral symmetry breaking and the color confinement.. 

• Formation of massive primordial stars as origin of objects in the early universe. • Supernova explosions might be visible to the most

support vector machine, ε-insensitive loss function, ε-smooth support vector regression, smoothing Newton algorithm..