• 沒有找到結果。

微積分一:講義1-5

N/A
N/A
Protected

Academic year: 2021

Share "微積分一:講義1-5"

Copied!
10
0
0

加載中.... (立即查看全文)

全文

(1)

1.5

Limits as

→  and Continuity

Definition 8 We said a function  has limit  at point  if the following equation is satisfy lim → () =  (1.1) or lim →+ () = lim→− () = 

We said the function  have no limit at point  if above equation or definition does not holds. In general, we have three type

(a) lim

→+ ()6= lim→− () ;

Example 20  () = ||

 and  = 0 (b) lim

→+ () or lim→− () does not exist;

Example 21  () = 1

2 and  = 0

(c) Oscillating

Example 22  () = sin 1

 and  = 0 see FIG 1

5 2.5 0 -2.5 -5 1 0.75 0.5 0.25 0 -0.25 -0.5 -0.75 -1 x y x y FIG 1 sin1 Properties of limits

(2)

Theorem 6 Let   ∈ R,  ∈ N, (1) lim → = ; (2) lim → = ; (3) lim →  = 

Theorem 7 Let   ∈ R,  ∈ N, let   be functions with the following limits lim → () =  lim→ () =  Then (1) lim →( ()) = ; (2) lim →( ()±  ()) =  ± ; (3) lim → ()  () = ; (4) lim →  ()  () =   provided  6= 0; (5) lim →[ ()]  = ; (6) lim →  p  () = √  provided lim

→ () is not negative if  is even.

How to find lim

→ ()?

Use the Theorem 6, 7 we have following formulas A:

Theorem 8 If  is a polynomial function and  ∈ R. Then lim → () =  ()  Example 23 lim →5( 2 − 7 + 4) = −6

Theorem 9 If  is rational functions given by  () =  ()

 () Then lim → () =  () =  ()  () provided  () 6= 0 Example 24 lim →4 2+ 1 5 + 2 = 42+ 2 5× 4 + 2 = 17 22

(3)

Theorem 10 Let  ∈ N The following limit is valid for all  if  is odd and is valid for   0 if  is even

lim

→ 

 = lim 1 = √;

Theorem 11 If   are functions such that lim

→ () =  lim→ () =  ()  then lim → ( ()) =  () ; Example 25 If lim →0( 2+ 4) = 02+ 4 = 4 and lim →4 √  = 4 then lim →0 √ 2+ 4 = 2 B:(0 0 model) Let  () =  ()

 () be rational function, if lim→ () = 0 and lim→ () = 0

Then we must be use following Theorem and tools to find lim

→ () = lim→

 ()  () Theorem 12 Let  ∈ R, let  = ( ) be a open interval contain  and let

 () =  () ∀ ∈   6=  If lim → () =  then lim → () = lim→ () =  Example 26 For  () =  2 − 7 + 6 2− 36 µ 0 0 as  → 6 ¶  since 8 6 4 2 0 1 0.5 0 -0.5 -1 x y x y

(4)

2 − 7 + 6 2− 36 = (− 6) ( − 1) (− 6) ( + 6) = − 1  + 6 =  () for 6= 6 and lim →6 () = lim→6 − 1  + 6 = 5 12 Thus by Theorem 12 we have

lim →1 () = lim→1 () = 3 Example 27 For  () = √  + 1− 1  µ 0 0 as  → 0 ¶  since 5 3.75 2.5 1.25 0 1 0.875 0.75 0.625 0.5 0.375 x y x y √  + 1− 1  = √  + 1− 1  √  + 1 + 1 √  + 1 + 1 = √ 1  + 1 + 1 Thus by Theorem 12 we have

lim →0 √  + 1− 1  = lim→0 1 √  + 1 + 1 = 1 2 C: The Squeeze Theorem

(5)

Theorem 13 If  () ≤  () ≤  () for all  ∈   6=  and if lim → () =  = lim→ ()  then lim → () = 

How to use the Squeeze Theorem

(1) Use −1 ≤ sin  ≤ 1 −1 ≤ cos  ≤ 1 ∀ and Example 28 Find lim

→0|| sin 1  since −1 ≤ sin  ≤ 1 =⇒ − || ≤ || sin  ≤ || and lim →0− || = 0 and lim→0||

Thus by the squeeze Theorem we have lim →0|| sin 1  = 0 (2) Dominate-test If | ()| ≤  () and lim → () = 0 then lim → () = 0

Example 29 Find lim

→0 sin 1  since ¯ ¯ ¯ ¯ sin1 ¯ ¯ ¯ ¯ = || ¯ ¯ ¯ ¯sin1 ¯ ¯ ¯ ¯ ≤ || and lim →0|| = 0

Thus by Dominate-test we have

(6)

Continuity:

Definition 9 (Continuity at a point) A function  is continuous at  =  if the following conditions are satisfy

(1)  () is defined; (2) lim

→ () exists ( lim→+ () = lim→− ();

(3) lim

→ () =  () 

Another we say function  is not continuous(discontinuous) at point , if one of following three conditions is hold.

(1)(Removable discontinuity) The  is not defend at  =  ( defined in ( ) expect ;

(2)(Nonremovable discontinuity) The limit of  () does not exist at  =  µ

lim

→+ ()6= lim→− ()

¶ ;

(7)

(3)(Removable discontinuity) The limit of  () exists at  =  but  ()6= lim

→ () 

Definition 10 Continuity on an Open interval:  is continuous on ( ) if it is continuous at each point in ( ) 

Example 30 Let  () = ½ 9− 2 , if 0 ≤   2 052+ 3 if 2≤  ≤ 4 Determine whether () is continuous at  = 2

One sided limits and Continuity on a Closed interval [ ] A:one sided limits ( lim

→+ ()  lim→− ())

(8)

Example 31 lim

→0+

√  = 0

Example 32 Find the limit of  () = √4− 2 as  approaches −2 from

the right, i.e

lim

→−2+ () = 0

Why, since the domain of  is [−2 2].

B:The Greatest integer function (Gauss function)  () = []

1 0 xy xy Example 33 lim →0−[] =−1 lim→0+[] = 0

Example 34 Find lim

→1 £ (− 1)2¤ 2− 1  since lim →1− £ (− 1)2¤ 2− 1 = lim→0− 0 2− 1 = 0 lim →1+ £ (− 1)2¤ 2− 1 = lim→0+ 0 2− 10 Thus lim →1 () = £ (− 1)2¤ 2− 1

Exercise 1 Find lim

→1(1−  + [] + [1 − ]) =?

(9)

Example 35 Find lim →0−  || and lim→0+  ||

Theorem 14 (The existence of limit) The limit of  () as  approaches  is  if and only if (⇔)

lim

→+ () = lim→− () = 

Definition 11 (Continuity on a closed interval [ ]) We say  is continu-ous on [ ], if

(1)  is continuous on ( ) and (2) lim

→ () =  () (continuous from right at ) and lim→ () =  ()

(con-tinuous from left at ).

Example 36  () = √1− 2 the domain of  is [−1 1]   is continuous

on (−1 1) and lim →−1+ √ 1− 2 = 0 lim →1− √ 1− 2 = 0 Thus  is continuous on [ ]  Properties of Continuity

Theorem 15 If  ∈ R and   are continuous at  =  then the following functions are also continuous at 

(1) Scalar multiple: 

(2) Sum and difference  ±  (3) Product:  

(4) Quotient: 

 if  () 6= 0

Example 37 (1) Polynomial functions  () = +−1−1+· · ·+1+

0

(2) Rational function:  () =  ()()  ()6= 0 (3) Radical function:  () = √

(10)

Theorem 16 If  is continuous at  and  is continuous at  ()  then the composite function  ◦ () =  ( ()) is continuous at 

Theorem 17 (Intermediate Value Theorem) If  is continuous on [ ] and  is any number between  () and  ()  then ∃  ∈ [ ] such that  () =  Remark 1 Continuity is necessarily condition.

Example 38 5 2.5 0 -2.5 -5 0.5 0 -0.5 x y x y

Example 39 (Application) Use the Intermediate Value Theorem to show that the

 () = 3+ 2− 1 has a zero in [0 1] 

Proof. Since  is continuous on [0 1] and  (0) = 03+ 2

· 0 − 1 = −1  (1) = 13+ 2

· 1 − 1 = 2

Moreover  (0) = −1  0  2 =  (1)  Thus by Intermediate Value Theorem ∃  ∈ [0 1] such that  () = 0

參考文獻

相關文件

(non-hypoelliptic) 的線性偏微分方程式而發展起來的一門學問。 許多大數學家如約瑟夫.孔 恩 (Joseph Kohn), 路易.尼倫博格 (Louis Nirenberg), 拉爾斯.霍曼德 (Lars

Krantz [7, 8] 等人的工作。 本 講就是參考了上述的文獻, 尤其是 Minda 及 Schober 與 Krantz 的工作所寫成的。 這樣寫法 的優點不僅是化簡了

對稱(symmetry) ⇐⇒ 不變量(invariant) ⇐⇒ 群 論(group theory) 挪威 數學家 Sophus Lie 在聽過同胞數學家 Ludwig Sylow (1832∼1918) 介紹 Abel 與 Galois

Cauchy 積分理論是複變函數論中三個主要組成部分之一, 有了 Cauchy 積分理論, 複變 函 數論才形成一門獨立的學科, 並且導出一系列在微積分中得不到的結果。 我們先從 Cauchy

(三) 變率與微分、 求和與積分: “變率” 與 “求和” 是函數的兩種定量型 (quantitative) 的基本性質。 但是它們的定義本身就是理論的起點, 有如當年

對任意連續函數,每個小區間上的取樣點 x 都選擇在函數最 大值與最小值發生的點。如下圖,淺色方塊的高度都挑選小

是以法國物理學家 Augustin Fresnel 命名的。.

同一個常數 C ,只適用在 ( 0) 或者 (0, ) 上。.