• 沒有找到結果。

Preferential induction of CYP1A1 and CYP1B1 in CCSP-positive cells.

N/A
N/A
Protected

Academic year: 2021

Share "Preferential induction of CYP1A1 and CYP1B1 in CCSP-positive cells."

Copied!
9
0
0

加載中.... (立即查看全文)

全文

(1)

Preferential Induction of CYP1A1 and CYP1B1

in CCSP-Positive Cells

Han Chang,* Louis W. Chang,† Ya-Hsin Cheng,† Wen-Tin Tsai,‡ Ming-Xian Tsai,† and Pinpin Lin†

,

,1

*Institute of Medicine; Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C.; †Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Kaoshiung, Taiwan, R.O.C.; and ‡Institute of Medical and Molecular

Toxicology, Chung Shan Medical University, Taichung, Taiwan, R.O.C. Received August 14, 2005; accepted October 8, 2005

Both benzo[a]pyrene (BaP) and

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are potent ligands of aryl hydrocarbon receptors

(AhR). Although animal studies indicate that both compounds

induce pathological changes in the peripheral lung, the specific

cell type involved remains unclear. Clara cells, expressing Clara

cell specific protein (CCSP) and abundant in cytochrome P450,

are nonciliated bronchiolar epithelial cells in the peripheral lung.

Here we explore the hypothesis that CCSP-positive Clara cells are

highly responsive to AhR ligands and are the primary cell type

involved in BaP- and TCDD-induced toxicities. The

responsive-ness to AhR ligands was evaluated by measuring the respective

mRNA and protein levels of cytochrome P450 1A1 (CYP1A1) and

1B1 (CYP1B1) using real-time RT-PCR and

immunocytochemis-try assays. Two in vitro models were used: primary cultures of

human small airway epithelial (SAE) cells and rat lung slice

cultures. In the presence of calcium, human SAE cells

differen-tiated into CCSP-positive cells. BaP- and TCDD-induced mRNA

and protein levels of CYP1A1 and CYP1B1 levels were

signifi-cantly elevated in CCSP-positive cell cultures. Similarly, AhR

mRNA and protein levels were increased in CCSP-positive cell

cultures, as determined by real-time RT-PCR and Western blot

analysis. When rat lung slice cultures were treated with BaP or

TCDD for 24 h, CYP1A1 and CYP1B1 proteins were strongly

induced in Clara cells. These results indicate that, in the

pe-ripheral lung of both rats and humans, CCSP-positive cells (Clara

cells) may be more sensitive to AhR ligands than other cell types.

Key Words: BaP; TCDD; Clara cells; CYP1A1; CYP1B1; lung.

Exposure to environmental factors such as dioxins,

poly-cyclic aromatic hydrocarbons (PAH), tobacco smoke, and

various air pollutants have been suggested to enhance the risk

of chronic obstructive pulmonary diseases (COPD) and lung

cancer (Bertazzi et al., 2001; Boffetta et al., 1997; Kogevinas,

2000). Benzo[a]pyrene (BaP) is the major PAH found in

to-bacco smoke, which is strongly associated with an increased

risk of COPD and lung cancer (Hecht, 1999).

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent dioxin.

In animal studies, TCDD and BaP both induce pathological

changes in the peripheral lungs (Brix et al., 2004; Hecht et al.,

2002; Stoner et al., 1984; Tritscher et al., 2000). For example,

TCDD induces bronchiolar metaplasia in bronchioloalveolar

interfaces (Brix et al., 2004; Tritscher et al., 2000), and

BaP-induced lung adenoma was identified in the peripheral lung in

a sensitive strain of mice (Hecht et al., 2002; Stoner et al.,

1984). Thus, certain cell types in the peripheral lung are likely

to be highly susceptible to BaP and/or TCDD.

Both BaP and TCDD are ligands for the aryl hydrocarbon

receptor (AhR). Ligand interaction induces AhR translocation

to the nuclei and heterodimerization with the AhR translocator

(Arnt), which subsequently transactivates genes of several

drug-metabolizing enzymes, such as cytochrome P4501A1

(CYP1A1) and cytochrome P4501B1 (CYP1B1) (Kress and

Greenlee, 1997; Whitlock, 1999). There is ample evidence

showing that BaP- and TCDD-induced toxic effects are AhR

dependent in vivo (Fernandez-Salguero et al., 1996; Shimizu

et al., 2000). BaP-induced carcinogenesis is abolished in

AhR-deficient mice (Shimizu et al., 2000). Therefore, AhR

expres-sion and CYP1A1/CYP1B1 induction are important indicators

for susceptibility to BaP and TCDD. In human lung tissues, our

studies (Lin et al., 2003) and others (Saarikoski et al., 1998)

both show that AhR and CYP1A1 are mainly expressed in

bronchiolar epithelial cells of the peripheral lung. Similarly,

AhR is expressed in bronchiolar Clara cells and ciliated cells of

rats (Tritscher et al., 2000). TCDD treatment increased

CYP1A1 expression in the cells showing alveolar-bronchiolar

metaplasia (Tritscher et al., 2000). These data provide evidence

that bronchiolar epithelial cells of both humans and rats are

responsive to TCDD.

The bronchiolar epithelia consist of various cell types,

including basal cells, ciliated cells, and Clara cells. Bronchiolar

Clara cells are a specialized type of nonciliated secretory cells,

which are believed to be progenitor cells or local stem cells of

the bronchiolar epithelium (Otto, 2002). Several lines of

1To whom correspondence should be addressed at Institute of Medical and

Molecular Toxicology, Chung Shan Medical University, 110 Sec 1, Chein–Kuo N. Rd., Taichung, 402 Taiwan. Fax: 886–4–24751101. E-mail: ppl@csmu. edu.tw.

Ó The Author 2005. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

(2)

evidence suggested that bronchiolar Clara cells are considered

to be the precursors of human lung adenocarcinoma (AD)

(Dermer, 1982; Herrera et al., 1983; Linnoila et al., 1992;

Takezawa et al., 2002). Some studies show that Clara cells are

rich in cytochrome P450s (Hukkanen et al., 2002). Since the

majority of AhR ligand-induced toxicities are dependent on

CYP1 expression, we hypothesized that Clara cells might be

responsive to AhR ligands, such as TCDD and BaP.

To establish the relationship between exposure to AhR

ligands and the pathological changes in the peripheral lung, it

is essential to evaluate the responsiveness of Clara cells to AhR

ligands, such as TCDD and BaP. However, primary cultures of

human Clara cells have not previously been established. It has

been reported that, while CYP1A1 may be barely detectable, it

was nevertheless inducible by AhR ligands (Whitlock, 1999).

Recently human small airway epithelial (SAE) cells have

become available that can differentiate to express Clara cell

secretory protein (CCSP), a specific marker for Clara cells

(Jyonouchi et al., 1999). Therefore, we compared the levels of

induced CYP1A1/CYP1B1 in SAE cell cultures before and

after differentiating into CCSP-positive cells. Furthermore, in

order to identify the sensitive cell types in the bronchiolar

epithelia, we identified the locations of AhR ligand-induced

CYP1A1/CYP1B1 proteins in rat lung slice cultures. Harrigan

et al. (2004) have demonstrated that BaP induced BaP-DNA

adducts formation both in rat lung slice cultures and rat lung

in vivo, suggesting that rat lung slices had comparable

biotransformation ability for BaP. Although several studies

showed that mouse lungs are highly sensitive to xenobiotics

(Simmonds et al., 2004; West et al., 2001), Lee and Dinsdale

(1995) reported that Aroclor 1254 increased CYP1A1 protein

in rat lungs, but not in mouse lungs in vivo. Therefore, lung

slice cultures were prepared from rats, instead of mice, in our

present study. Tissue slice cultures are an in vitro system, which

retain different cell types in an organ. Tissue slices retain the

biochemical capacity and the metabolic function of the whole

organ, allowing for identification of specific cell types

re-sponsive to toxicants. The results generated from this study

should allow us to determine if Clara cells are highly

re-sponsive to carcinogenic AhR ligands (BaP and TCDD).

MATERIAL AND METHODS

Chemicals. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was purchased from ULTRA Scientific (Kingston, RI). Benzo[a]pyrene (BaP) and dimethyl sulfoxide (DMSO) were purchased from Sigma Chemical Co. (St. Louis, MO). TCDD and BaP were dissolved in DMSO, stored in aliquots, and kept at20°C until used.

Human SAE cell culture and cell differentiation. Human SAE cells (Clonetics,Walkersville, MD) were cultivated in SAE basal medium (Clonetics, Walkersville, MD) and supplemented with growth factors, including bovine pituitary extract, hydrocortisone, recombinant epidermal growth factor, epi-nephrine, insulin, triiodothyonine, transferrin, gentamicin/amphotericin-B, reti-noic acid, and bovine serum albumin (fatty acid free) (Clonetics, Walkersville,

MD). SAE cells were plated at a density of 2500 cells/cm2. The medium was changed every other day. SAE cells were subcultivated when they became confluent. Cells used in these experiments were kept for a maximum of five passages.

Jyonouchi et al. (1999) has reported that a high concentration of Ca2þ (1 mM CaCl2) induced differentiation and expression of Clara cell secretory

protein (CCSP) in SAE cell cultures. SAE cells were seeded on 12- or 24-well plates at a density of 3 3 104cells/well. When cells became 70% confluent, the

medium was changed to one containing 1 mM Ca2þfor 72 h. Cell morphology was examined under a light microscope after hematoxylin staining. We found that SAE cells consisted of two cell types. The majority of these cells were small round cells with scanty to adequate cytoplasm, defined as basal cells. Basal cells are thought to be transient amplifying cells, which can terminally differentiate into epithelial cells (Otto, 2002). A few larger cells showed moderate cytoplasm, defined as epithelial cells. In the presence of Ca2þ, the cell appearance changed from a monolayer to a stratified or overlapping appear-ance, similar to epithelial cells lying on the top of basal cells in vivo (airway epithelium).

Treatment of human cells. SAE cells were either preincubated with 1 mM calcium or not. After 72 h preincubation, the culture medium was changed and SAE cells were treated with 1 lM BaP, 1 nM TCDD or a01% DMSO (control). Our preliminary study in human lung cell cultures showed that 1 lM of BaP and 1 nM of TCDD are the minimal doses required to significantly increase both CYP1A1 and CYP1B1 expression. After 24-h incubation, cells were harvested for the real-time RT-PCR assay. For immunocytostaining assay, the incubation of 72 h was required.

Immunocytochemistry of human SAE cells. To clarify the characteristics of SAE cells cultivated in Ca2þ-supplemented medium, some markers were used, including anti-human CCSP (UP1, 1:1000 dilution), cytokeratin 7 (CK7) (Clone OV-TL 12/30, 1:50 dilution), cytokeratin 14 (CK14) (Clone 34bE12), chromogranin A (Clone DAK-A3), anti-CYP 1B1 (1:3000 dilution, clone WB-1B1, Gentest, Woburn, MA), and anti-CYP1A1 (1:100 dilution, clone H-70, Santa Cruz Biotechnology, Santa Cruz, CA). The majority of the anti-bodies studied were purchased from DakoCytomation (Glostrup, Denmark). SAE cells on 24-well plates were fixed with cold methanol for 20 min, air dried, and then incubated with adequately diluted antibodies in a moist chamber for 2 h at room temperature. After washing with PBS buffer, an immunoenzymatic reaction was performed using the Universal LSAB2 kit (DakoCytomation, Glostrup, Denmark). Finally, the brown color was developed with 3#-3# diaminobenzidine (DakoCytomation, Glostrup, Denmark), and Gill’s hema-toxylin was used for nuclear counterstaining. The immunopositive cells were then counted and the data represented as the percentage of positive cells over total cell numbers.

Quantitative real-time RT-PCR assay. Total cell RNA was prepared using TRIZOL reagent (Life Technologies, Rockville, MD) and the phenol-chloroform extraction method. Synthesis of cDNA was performed by 2 lg total RNA mixed with 250 ng random primer (BioLabs, Beverly, MA) using M-MLV Reverse Transcriptase (Promega, Madison, WI). Quantitative PCR was carried out using the ‘‘SYBRÒGreen’’ PCR kit (Qiagen, Hilden, Germany) and analyzed on a ABI PRISM 7700 Sequence Detector System (Perkin-Elmer Applied Biosystem, Foster City, CA). Primers were chosen with the assistance of the computer program Primer Express (Perkin-Elmer Applied Biosystem, Foster City, CA). These primer sequences and optimal concentrations of CCSP, AhR, Arnt, CYP1A1, CYP1B1, and b-actin are shown in Table 1. The PCR reactions consisted of an initial step 2 min at 50°C, a denaturation step for 10 min at 95°C, followed by 40 cycles at 95°C for 15 sec and one at 60°C for 1 min. Quantitative values were obtained from the threshold cycle (CT)

number, the increase in signal being associated with an exponential growth for PCR product when detected. Each sample target gene expression level was normalized to its b-actin mRNA content. Fold change¼ 2DCt, DCt¼

Cttarget gene Ctb-actin.

Western immunoblot. The cytosolic homogenates of cells were prepared and analyzed by Western immunoblot. Equivalent amounts of 1% Nonidet

(3)

P-40 or 1% Triton X-100 lysate protein were denatured in SDS buffer (containing 125 mM Tris, 4% SDS, 25% glycerol, 4 mM EDTA, pH 6.8) and separated by 10% SDS–PAGE. Proteins were transferred to PVDF membrane. An AhR antibody (1:1500 dilution, Biomol, Plymouth Meeting, PA) or b-actin antibody (Sigma, Saint Louis, MO) was used. Bands were visualized using an enhanced chemiluminescence kit according to instructions from the manufac-turer (Amersham, Buckinghamshire, UK).

Animals. Male Sprague-Dawley rats (150–250 g) 6 weeks old were purchased from the National Laboratory Animal Center (Taiwan, ROC). The animals were housed in standard cages under a 12 h light/dark cycle and received food and water ad libitum. All procedures and experiments with animals in this study were approved by the Animal Care and Use Committee at the National Health Research Institute, Taiwan, ROC.

Rat lung slice preparation and incubation. Rats were anesthetized with sodium thiopental (120 mg/kg) via intra-peritoneal injection. The lungs was perfused with Ringer’s solution containing 500 U sodium heparin through right pulmonary artery for 5 min to wash the blood away and prevent blood coagulation in small vessels. Then, the lungs were precisely excised and immediately inflated with 1.5% (w/v) low-melting agarose dissolved in culture medium at 37°C. The culture medium was RPMI 1640 medium containing 1 lM insulin, 0.1 mM hydrocortisone-21-hemisuccinate, 5% fetal calf serum, 50 lg/ml streptomycin, 50 IU/ml penicillin, and 2.5 lg fungizone per liter. Subsequently, rat lungs were placed in ice-cold V-7 solution (4°C, pH 7.4) until completely gelled (Fisher et al., 1996). Cylindrical tissue cores (8 mm diame-ter) were prepared from the lung tissues, which were cut to form 450-lm-thick lung slices using a Vitron tissue slicer (Vitron Inc., Tucson, AZ). Every two to three lung slices were floated on a titanium mesh of Teflon roller insert. These inserts were placed into 20-ml glass scintillation culture vials containing 2 ml of culture medium. Culture vials were capped (the cap has a central 2-mm hole) and placed horizontally into the dynamic organ culture incubator at 37°C, 5% CO2and 95% O2. After 2 h the culture medium was changed, and the lung

slices were treated with 10 lM BaP, 1 nM TCDD, or 0.1% DMSO (control) for 24 h. Harrigan et al. (2004) demonstrated that BaP-DNA adducts in rat lung slices were not detectable until the dose of BaP was increased to 10 lM. Our preliminary data showed that 10 lM BaP and 1 nM TCDD induced similar levels of CYP1A1 mRNA in vitro. Therefore, these doses were used for lung slices. The lung slices were then fixed with 10% buffered formalin, dehydrated

with graded ethanol, and embedded with paraffin for immunohistochemical analysis.

Immunohistochemistry for rat lung slices. The rat lung slices were cut to sections of 4–5 lm thickness on Silane-coated microscope slides (DakoCytomation, Glostrup, Denmark). Paraffin was removed from the sections by xylene, and they were rehydrated through graded ethanol to distilled water. For antigen detection, sections were placed in a microwave oven in a citrate buffer (pH 6) for 20–30 min, cooled for 20 min at room temperature and then washed with distilled water. To block endogenous peroxidase activity, sections were incubated with 3% hydrogen peroxide in distilled water for 20 min. Antibodies included anti-CYP1B1, anti-CYP1A1, and anti-rat CCSP (1:4000 dilution, Upstate, Charlottesville, VA) for rat lung slices. These antibodies were incubated overnight at 4°C in a moist chamber, following which an immunoenzymatic reaction was performed using the Universal LSAB2 kit. Finally, the brown color was developed and nuclei stained as for cells (see above).

Statistical analysis. Comparisons between treated and control groups were calculated using the Student’s t-test.

RESULTS

Ca

-Induced Differentiation in Human SAE Cell Cultures

CK 7 and CK 14 are specific markers for human respiratory

epithelial cells and basal cells, respectively. Respiratory basal

cells are thought to differentiate into ciliated and nonciliated

(Clara cell) cells, whose CK14 protein is lost (Nakajima et al.,

1998; Otto, 2002). In SAE cell cultures, epithelial and basal

cells were distinguished by cell morphology as described in

Methods. Regardless of Ca

supplementation, CK7

expres-sion was more common in epithelial cells (24.0% and 39.2%)

than in basal cells (1.0% and 1.6%) (Table 2). However, the

prevalence of CK14 expression was similar in epithelial and

basal cells (Table 2), suggesting both cell types had an ability to

differentiate. Chromogranin A and surfactant protein C are

markers for neuroendocrine cells and type II pneumocytes,

respectively. Neither chromogranin A immunostaining, nor the

mRNA level of surfactant protein C, was detectable in SAE

cells cultivated in a Ca

-supplemented medium (data not

TABLE 1

Primer Sequences and Working Concentrations

Primers Sequences Working concentration (nm) b-actin 5#-tcatgaagtgtgacgtggacatc-3# 100 5#-caggaggagcaatgatcttgatct-3# CCSP Assay ID: Hs00171092a 5#-acatcacctacgccagtcgc-3# 400 AhR 5#-tctatgccgcttggaaggat-3# 5#-gctgctgcctaccctagtctca-3# 200 Arnt 5#-gctgtccgtgtctggaattgt-3# 5#-caccatcccccacagcac-3# 200 CYP1A1 5#-acaaagacacaacgcccctt-3# 5#-cggctggatttggagaacgta-3# 200 CYP1B1 5#-tgatccaattctgcctgcact-3#

Note. Abbreviation: CCSP, Clara cell secretory protein; AhR, aryl hydrocarbon receptor; Arnt, Ah-receptor nuclear translocator; CYP1A1, cytochrome P450 1A1; CYP1B1, cytochrome P450 1B1.

aTagManÒ gene expression assay kit of primers and probes (Applied

Biosystems).

TABLE 2

Comparison of the Characteristics of SAE Cells Cultivated

in Ca

-Free or Ca

-Supplemented Medium

Ca2þ-free Ca2þ-supplemente

Cell types CK7a CK14a CK7a CK14a

Epithelial cells 24.0 ± 4.4b 59.4 ± 7.1 39.2 ± 26.5 78.1 ± 26.9

Basal cells 1.0 ± 0.7 50.8 ± 15.0 1.6 ± 2.0 80.6 ± 17.7c

aProtein was detected using a immunocytochemical stain in 24-well plates.

Protein expression was scored as the percentage of immunostained cells and is represented as the mean ± SD from four replicates.

bCompared with basal cells in the same type of medium, p < 0.05. cCompared with the same cell type in Ca-free medium, p < 0.05.

(4)

shown). This result indicates that there was no neuroendocrine

and type II pneumocyte differentiation in these cultures.

CCSP is a specific marker for Clara cells. After Ca

-supplementation, the CCSP mRNA levels were markedly

elevated in SAE cell cultures (Table 3). Utilizing

immunocy-tochemical staining, CCSP immunoreactivity was not

detect-able in basal cells but detected in 0.6% of epithelial cells in the

Ca

-free condition (Table 3). After Ca

2

-supplementation for

72 h, the prevalence of CCSP immunoreactivity was 0.5% in

basal cells and 19.2% in epithelial cells (Table 3).

Approxi-mately 80% of epithelial cells were CCSP-negative but

CK14-positive. These data suggest that Ca

induces SAE cell

cultures to differentiate into CCSP-positive cell cultures.

Comparison of CYP1A1 and CYP1B1 Induction in SAE

and CCSP-Positive Cell Cultures

Several studies have indicated that some cytochrome P450s

are rich in Clara cells (Hukkanen et al., 2002). Therefore,

constitutive and AhR ligand (TCDD and BaP)-induced

expres-sion of CYP1A1 and CYP1B1 were examined and compared in

SAE (Ca

-free medium) and CCSP-positive (high Ca

medium) cell cultures. Regardless of the presence of Ca

,

CYP1A1 mRNA was barely detectable (Figs. 1A and 1C).

CYP1B1 mRNA was readily detectable in SAE and

CCSP-positive cell cultures (Figs. 1B and 1D). After TCDD

treatment, CYP1A1 mRNA levels (4378 3 10

5

) in

CCSP-positive cell cultures were much higher than the levels (702 3

10

5

) in SAE cell cultures (Fig. 1A). TCDD-induced CYP1B1

mRNA levels were also increased in CCSP-positive cell

cultures (Fig. 1B). Similarly, after BaP treatment, CYP1A1

mRNA levels were 1249 and 99 (3 10

5

) in CCSP-positive

and SAE cell cultures, respectively (Fig. 1C). BaP-induced

CYP1B1 mRNA levels increased approximately two-fold

with Ca

presence (Fig. 1D). Taken together, TCDD- and

TABLE 3

Expression of CCSP in SAE Cells Cultivated with Ca

-Free

or Supplemented Medium

Calcium-free Calcium-supplemented Cell types CCSP mRNAa CCSP proteinb CCSP mRNAa CCSP proteinb SAE cells 1.5 ± 0.9 0.1 ± 0.3 586.6 ± 176.5c 10.3 ± 6.7 Epithelial cells 0.6 ± 1.2 19.2 ± 6.6c Basal cells 0.0 ± 0.0 0.5 ± 0.6 a

CCSP mRNA molecules relative to 108b-actin molecules was determined using real-time RT-PCR. Each data is the mean of four replicates

bCCSP protein was detected by immunocytochemical stain in 24-well

plates. CCSP expression is scored as the percentage of immunostained cells as the mean ± SD from four replicates.

cCompared with cells in Ca-free medium, p < 0.05.

FIG. 1. Comparison of CYP1A1 and CYP1B1 induction in SAE (Ca2þ-free) and CCSP-positive (High Ca2þ) cell cultures with TCDD or BaP treatment. SAE cells were cultivated in Ca2þ-free or supplemented (1 mM) medium for 72 h and were then treated with (A and B) 1 nM TCDD, (C and D) 1 lM BaP or 0.01% DMSO (control solvent) for 24 h. The relative gene expression of (A and C) CYP1A1 and (B and D) CYP1B1 was determined using real-time RT-PCR. ‘‘*’’ represents p < 0.05 as compared with DMSO-treated cells. ‘‘#’’ represents p < 0.05 as compared with SAE cell cultures.

(5)

BaP-induced CYP1A1 and CYP1B1 levels were much higher

in CCSP-positive cell cultures than in SAE cell cultures.

In order to localize the CYP1A1 and CYP1B1 induced

proteins in CCSP-positive cell cultures, an

immunocytochem-ical assay was performed. We found that CYP1B1, but not

CYP1A1, was detectable in CCSP-positive cell cultures (Table 4).

Furthermore, CYP1B1 immunoreactivity was more prevalent

in epithelial cells (22.3%) than in basal cells (8.6%) within

CCSP-positive cell cultures (Table 4). After TCDD treatment

for 72 h, CYP1A1 and CYP1B1 immunoreactivities were

increased in both epithelial and basal cells. Similarly, these

immunoreactivities were more common in epithelial cells

(65.1% and 47.4%) than in basal cells (10.4% and 17.1%)

(Table 4). Since CCSP immunoreactivity also located in

epithelial cells (Table 3), these results implied that CYP1A1

and CYP1B1 are more inducible by AhR ligands in

CCSP-positive epithelial cells than in basal cells.

Increased AhR Expression in CCSP-Positive Cell Cultures

It is well known that AhR and Arnt regulate AhR

ligand-induced CYP1A1 and CYP1B1 expression (Kress and Greenlee,

1997; Whitlock, 1999). AhR and Arnt were constitutively

expressed in SAE cells (Figs. 2A and 2C). Consistent with

increased CYP1A1/CYP1B1 induction, the AhR mRNA levels

were significantly increased in CCSP-positive cell cultures

(Fig. 2A). The level of AhR also increased two-fold in

CCSP-positive cell cultures (Fig. 2B). Using immunocytostaining,

AhR expression was observed in both epithelial cells and basal

cells. The AhR immunointensity and the percentages of

AhR-positive cells were similar between SAE and CCSP-AhR-positive

cell cultures (data not shown). This inconsistent finding, the

result of immunocytostaining assay compared with the results

of RT-PCR assay and Western immunoblot, may be due to the

limited sensitivity of immunocytochemistry. Levels of Arnt

mRNA were only slightly increased in CCSP-positive cells

(Fig. 2C). These results imply that increased AhR expression

might partially contribute to the elevated induction of CYP1A1

and CYP1B1 in CCSP-positive cell cultures.

Colocalization of CCSP, CYP1A1, and CYP1B1 Proteins

in Rat Lung Slices

In CCSP-positive cell cultures, CYP1A1 and CYP1B1

expression were highly inducible. We further used an in vitro

model of rat lung slice cultures to investigate the locations of

TCDD- and BaP-induced effects. In rat lung slices,

CCSP-positive cells were nonciliated epithelial cells, namely Clara

cells (Figs. 3A, 3D, and 3G). Rat Clara cells were found in the

bronchi and bronchioles, but not in the alveoli. Clara cells were

more common in the bronchioles than in the bronchi (52% vs.

35%). After treatments with TCDD and BaP, increased

CYP1A1 immunoreactivity was detected in the cytoplasm of

nonciliated and ciliated bronchiolar epithelial cells (Figs. 3E

TABLE 4

Expression of CYP1A1 and CYP1B1 on CCSP-Positive Cell

Cultures Treated with TCDD

CYP1A1a CYP1B1a

Cell types DMSO 1 nM TCDD DMSO 1 nM TCDD

Epithelial cells 0.0 ± 0.0 65.1 ± 7.5b,c 22.3 ± 15.8 47.4 ± 16.8c

Basal cells 0.0 ± 0.0 10.4 ± 2.9b 8.6 ± 10.9 17.1 ± 9.9

a

Cells were incubated with DMSO or TCDD for 72 h. Protein was detected by immunocytochemical stain in 24-well plates. Expressions were scored as the percentage of immunostained cells as the mean ± SD from four replicates.

b

Compared with 0.01% DMSO-treated cells, p < 0.05.

cCompared with basal cells, p < 0.05.

FIG. 2. Effect of Ca2þon the expression of AhR and Arnt in SAE cell cultures. SAE cells were cultivated in Ca2þ-free or supplemented medium for 72 h. Total cell RNA and protein were then extracted. Relative gene expression of (A) AhR and (C) Arnt were determined by real-time RT-PCR. (B) The expression of AhR relative to b-actin was quantified using Western immuno-blotting. ‘‘#’’ represents p < 0.05 as compared with SAE cells cultivated in Ca2þ-free medium.

(6)

and 3H), in comparison with DMSO-treated lung slices (Fig. 3B).

It should be noted that nonciliated cells (Clara cells) showed

a much stronger intensity than ciliated cells (Figs. 3E and 3H).

CYP1B1 immunoreactivity was weak but constitutively

ob-served in the smooth muscles of the vascular and bronchial

walls (data not shown). The locations for BaP and

TCDD-induced immunoreactions of CYP1B1 were similar to those of

CYP1A1 in rat lung slices (Figs. 3C, 3F, and 3I). Thus, these

results provide evidence that CYP1A1/CYP1B1 induction is

more marked in Clara cells than in other bronchiolar epithelial

cells of rat lung slices.

DISCUSSION

The objective of this study was to determine whether human

Clara cells or CCSP-positive cells are responsive to AhR

ligands. In the primary cultures of human SAE (basal) cells,

AhR ligands (TCDD and BaP)-induced CYP1A1/1B1

expres-sion was highly elevated when cells differentiated into

CCSP-positive cells, indicating human CCSP-CCSP-positive cells are highly

responsive to AhR ligands. However, in the Ca

-induced SAE

differentiating system, human CCSP-positive cells retained the

ability to differentiate (CK14 positive) and would be

consid-ered as stem cells or progenitor cells of the bronchiolar

epithelia. To understand if terminally differentiated Clara cells

are responsive to AhR ligands, we identified the location of

TCDD/BaP-induced CYP1A1/1B1 proteins in the rat lung slice

cultures. It was found that CYP1A1/1B1 proteins were

consis-tently located in Clara cells. These results indicate that the

responsiveness to AhR ligands was highly increased when SAE

(basal) cells had differentiated into CCSP-positive or Clara

cells. In the other words, this finding implies that Clara cells in

the peripheral lung of humans and rats were more sensitive to

AhR ligands than basal and other bronchiolar epithelial cells.

Type II pneumocytes have been demonstrated to be susceptible

to toxicants (Monteil et al., 1999; Tatrai et al., 2001). However,

type II pneumocytes were not present in our present systems.

Thus we cannot ignore the possibility of CYP1A1 and CYP1B1

induction in type II pneumocytes.

The distribution of Clara cells is similar in rats and humans,

being more prevalent in the peripheral than in the central

airways (Boers et al., 1999). Clara cells are believed to

contrib-ute to cell renewal in the peripheral airway epithelium (Aliotta

et al., 2005; Hong et al., 2001; Otto, 2002). In addition to being

progenitor cells for replacing injured epithelium, Clara cells

are known to synthesize and secrete CCSP as well as protease

(Massaro et al., 1994; Singh and Katyal, 1997). CCSP inhibits

phospholipase A2, which is involved in the regulation of the

inflammatory process (Anderson et al., 1994; Johnston et al.,

1997). Protease secreted by Clara cells is trypsin-like and can

inhibit leukocyte protease activity to maintain the

protease-antiprotease balance in the lung (Massaro et al., 1994). TCDD

and BaP have been shown to induce cell apoptosis or inhibit

cell growth in an AhR dependent manner (Lin et al., 2004;

Solhaug et al., 2005). In the other words, CYP1A1/1B1

FIG. 3. Colocalization of Clara cell secretory protein (CCSP) and CYP1A1/CYP1B1 in rat lung slice cultures. Immunohistochemistry, 3400. Rat lung slices were cultivated in medium containing (A to C) 0.1% DMSO, (D to F) 1 nM TCDD, and (G to I) 10 lM BaP for 24 h. Rat lung slices were then fixed and paraffin-embedded. Serial sections were stained with (A, D, and G) anti-CCSP, (D, E, and H) anti-CYP1A1, and (C, F, and I) anti-CYP1B1. Positive immunoreactivity exhibited a cytoplasmic brown coloration. Bronchiolar Clara cells (arrow) were nonciliated cells those partly coexpressed CYP1A1/CYP1B1. Ciliated cells (arrowhead) were CCSP-negative, but CYP1A1/CYP1B1 weakly positive compared with Clara cells.

(7)

induction is required for TCDD and BaP-induced cytotoxicity.

This implication is supported by some in vivo studies. For

example, it was reported that the number of Clara cells is

reduced in the lungs of cigarette smokers (Lumsden et al.,

1984; Shijubo et al., 1997). In rats, TCDD exposure caused

pathological changes in the bronchiolar epithelia, primarily in

Clara cells (Brix et al., 2004; Tritscher et al., 2000). Therefore,

AhR ligands may interact with Clara cells to disturb the cell

renewing function.

Previously we showed that TCDD inhibited cell growth, but

failed to induce cell death, in human bronchial epithelial cells

(Lin et al., 2004). In our present study, CCSP-positive cell

cultures were the mixtures of basal cells, CCSP-positive

epi-thelial cells and CCSP-negative epiepi-thelial cells. Furthermore,

in the presence of calcium, epithelial cells were consistently

differentiated from basal cells. Therefore, we were unable to

selectively evaluate effects of TCDD and BaP on growth of

CCSP-positive cells. In lung slice cultures, we failed to observe

morphological change in TCDD and BaP-treated slices 24 h

later. It is likely that the incubation time (24 h) was too short to

cause cytotoxicity in slice cultures.

Using light microscopy, electron microscopy, and

immuno-histochemical methods, earlier studies suggested that

bronchi-olar Clara cells constitute one of the precursor cells for

peripheral lung AD (Dermer, 1982; Kitamura et al., 1997;

Mori et al., 1998). However, several studies showed that CCSP

expression is reduced during the development of lung

carci-nogenesis. CCSP expression is widely observed in normal

bronchiolar epithelia, but less often in human atypical

bron-chiolar lesions and AD (Jensen et al., 1994; Nomori et al.,

1994). Bernard et al. (1992) showed that CCSP levels are

reduced in serum and bronchoalvolar lavage fluids obtained

from lung cancer patients. The loss of CCSP protein also

occurred in a transgenic mouse model for the transformation of

Clara cells to lung AD (Hicks et al., 2003). These data imply

that Clara cells were either damaged or transformed into tumor

cells during lung carcinogenesis. Since CCSP-positive cells are

highly responsive to carcinogenic AhR ligands, the relationship

between exposure of AhR ligands and the development of lung

AD deserves further investigation.

One of our major findings was that CYP1A1/1B1 induction

and AhR expression were increased during Clara cell

differ-entiation. Similarly, CYP1A1 induction and AhR expression

were also increased when proliferating keratinocytes were

induced to differentiate (Wanner et al., 1995). It appeared that

increased AhR expression at least partially explains the

increased CYP1A1/1B1 induction in more differentiated

keratinocytes and CCSP-positive lung cells (Wanner et al.,

1995). By contrast, AhR expression was decreased during

adipose differentiation (Shimba et al., 2001). These findings

suggest that the relationship between AhR expression and

differentiation is cell-type specific. Furthermore, the causal

relationship between AhR expression and differentiation is not

yet established and deserves further investigation.

Although CYP1A1 protein was detected in Clara cells from

rats treated with AhR ligands (PCB or 3-methylcholanthrene)

in vivo (Lee and Dinsdale, 1995), CYP1A1 induction by AhR

ligands was not observed in primary cultures of rat lung cells

(Solhaug et al., 2004, 2005). It is likely that CYP1A1

inducibil-ity in normal lung cells was lost in the in vitro culture system.

CYP1A1 and CYP1B1 are involved in the conversion of BaP

into an ultimate metabolite, which forms DNA adducts (Kim

et al., 1998; Shimada et al., 1999). Recently, Harrigan et al.

(2004) demonstrated that in vitro incubation with BaP

in-creased BaP-DNA adduct levels in rat lung slices, suggesting

that drug metabolizing enzymes were induced by BaP in lung

slice cultures. In our present study, we successfully

demon-strated TCDD/BaP-induced CYP1A1/1B1 proteins in Clara

cells of rat lung slice cultures, which have been maintained

in vitro for 3 days. Our results not only prove that Clara cells

are highly responsive to AhR ligands, but also indicate that rat

lung slice cultures are an excellent in vitro model for studying

toxicant metabolism in the lung.

ACKNOWLEDGMENTS

This work was supported by research grant, DOH94-TD-G-111–030, from the National Research Program for Genomic Medicine and Department of Health, and EO-094-PP-09 from Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan, ROC. The scientific content of this manuscript does not necessarily signify the view and policies of DOH and DEHOM/NHRI or condemn, endorse or recommend any aspects presented. Conflict of interest: none declared.

REFERENCES

Aliotta, J. M., Passero, M., Meharg, J., Klinger, J., Dooner, M. S., Pimentel, J., and Quesenberry, P. J. (2005). Stem cells and pulmonary metamorphosis: New concepts in repair and regeneration. J. Cell. Physiol. 204, 725–741. Anderson, O., Noack, G., Robertson, B., Glaumann, H., Sonnenfeld, T., and

Lund, J. (1994). Ontogeny of a human polychlorinated biphenyl-binding protein. Level of expression in tracheal aspirates in bronchopulmonary dysplasia. Chest 105, 17–22.

Bernard, A., Marchandise, F. X., Depelchin, S., Lauwerys, R., and Sibille, Y. (1992). Clara cell protein in serum and bronchoalveolar lavage. Eur. Respir. J 5, 1231–1238.

Bertazzi, P. A., Consonni, D., Bachetti, S., Rubagotti, M., Baccarelli, A., Zocchetti, C., and Pesatori, A. C. (2001). Health effects of dioxin exposure: A 20-year mortality study. Am. J. Epidemiol. 153, 1031–1044.

Boers, J. E., Ambergen, A. W., and Thunnissen, F. B. (1999). Number and proliferation of clara cells in normal human airway epithelium. Am. J. Respir. Crit. Care Med. 159, 1585–1591.

Boffetta, P., Jourenkova, N., and Gustavsson, P. (1997). Cancer risk from occupational and environmental exposure to polycyclic aromatic hydro-carbons. Cancer Causes Control 8, 444–472.

Brix, A. E., Jokinen, M. P., Walker, N. J., Sells, D. M., and Nyska, A. (2004). Characterization of bronchiolar metaplasia of the alveolar epithelium in female Sprague-Dawley rats exposed to 3,3#,4,4#,5-pentachlorobiphenyl (PCB126). Toxicol. Pathol. 32, 333–337.

Dermer, G. B. (1982). Origin of bronchioloalveolar carcinoma and peripheral bronchial adenocarcinoma. Cancer 49, 881–887.

(8)

Fernandez-Salguero, P. M., Hilbert, D. M., Rudikoff, S., Ward, J. M., and Gonzalez, F. J. (1996). Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol. Appl. Pharmacol. 140, 173–179.

Fisher, R. L., Hasal, S. J., Sanuik, J. T., Hasal, K. S., Gandolfi, A. J., and Brendel, K. (1996). Cold- and cryopreservation of dog liver and kidney slices. Cryobiology 33, 163–171.

Harrigan, J. A., Vezina, C. M., McGarrigle, B. P., Ersing, N., Box, H. C., Maccubbin, A. E., and Olson, J. R. (2004). DNA adduct formation in precision-cut rat liver and lung slices exposed to benzo[a]pyrene. Toxicol. Sci. 77, 307–314.

Hecht, S. S. (1999). Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst. 91, 1194–1210.

Hecht, S. S., Kenney, P. M., Wang, M., and Upadhyaya, P. (2002). Benzyl isothiocyanate: An effective inhibitor of polycyclic aromatic hydrocarbon tumorigenesis in A/J mouse lung. Cancer Lett. 187, 87–94.

Herrera, G. A., Alexander, C. B., and DeMoraes, H. P. (1983). Ultrastructural subtypes of pulmonary adenocarcinoma. A correlation with patient survival. Chest 84, 581–586.

Hicks, S. M., Vassallo, J. D., Dieter, M. Z., Lewis, C. L., Whiteley, L. O., Fix, A. S., and Lehman-McKeeman, L. D. (2003). Immunohistochemical analysis of Clara cell secretory protein expression in a transgenic model of mouse lung carcinogenesis. Toxicology 187, 217–228.

Hong, K. U., Reynolds, S. D., Giangreco, A., Hurley, C. M., and Stripp, B. R. (2001). Clara cell secretory protein-expressing cells of the airway neuro-epithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am. J. Respir. Cell Mol. Biol. 24, 671–681.

Hukkanen, J., Pelkonen, O., Hakkola, J., and Raunio, H. (2002). Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit. Rev. Toxicol. 32, 391–411.

Jensen, S. M., Jones, J. E., Pass, H., Steinberg, S. M., and Linnoila, R. I. (1994). Clara cell 10 kDa protein mRNA in normal and atypical regions of human respiratory epithelium. Int. J. Cancer 58, 629–637.

Johnston, C. J., Mango, G. W., Finkelstein, J. N., and Stripp, B. R. (1997). Altered pulmonary response to hyperoxia in Clara cell secretory protein deficient mice. Am. J. Respir. Cell Mol. Biol. 17, 147–155.

Jyonouchi, H., Sun, S., Iijima, K., Wang, M., and Hecht, S. S. (1999). Effects of anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene on hu-man small airway epithelial cells and the protective effects of myo-inositol. Carcinogenesis 20, 139–145.

Kim, J. H., Stansbury, K. H., Walker, N. J., Trush, M. A., Strickland, P. T., and Sutter, T. R. (1998). Metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-diol by human cytochrome P450 1B1. Carcinogenesis 19, 1847–1853.

Kitamura, H., Kameda, Y., Ito, T., Hayashi, H., Nakamura, N., Nakatani, Y., Inayama, Y., and Kanisawa, M. (1997). Cytodifferentiation of atypical adenomatous hyperplasia and bronchioloalveolar lung carcinoma: Immunohistochemical and ultrastructural studies. Virchows Arch. 431, 415–424.

Kogevinas, M. (2000). Studies of cancer in humans. Food Addit. Contam. 17, 317–324.

Kress, S., and Greenlee, W. F. (1997). Cell-specific regulation of human CYP1A1 and CYP1B1 genes. Cancer Res. 57, 1264–1269.

Lee, M. J., and Dinsdale, D. (1995). The subcellular distribution of NADPH-cytochrome P450 reductase and isoenzymes of NADPH-cytochrome P450 in the lungs of rats and mice. Biochem. Pharmacol. 49, 1387–1394.

Lin, P., Chang, Y. C., Chen, C. H., Yang, W. J., Cheng, Y. H., and Chang, L. W. (2004). A comparative study on the effects of 2,3,7,8,-tetrachlorodibenzo-p-dioxin polychlorinated biphenyl126 and estrogen in human bronchial epithelial cells. Toxicol. Appl. Pharmacol. 195, 83–91.

Lin, P., Chang, H., Ho, W. L., Wu, M. H., and Su, J. M. (2003). Association of aryl hydrocarbon receptor and cytochrome P4501B1 expressions in human non-small cell lung cancers. Lung Cancer 42, 255–261.

Linnoila, R. I., Jensen, S. M., Steinberg, S. M., Mulshine, J. L., Eggleston, J. C., and Gazdar, A. F. (1992). Peripheral airway cell marker expression in non-small cell lung carcinoma. Association with distinct clinicopathologic features. Am. J. Clin. Pathol. 97, 233–243.

Lumsden, A. B., McLean, A., and Lamb, D. (1984). Goblet and Clara cells of human distal airways: Evidence for smoking induced changes in their numbers. Thorax 39, 844–849.

Massaro, G. D., Singh, G., Mason, R., Plopper, C. G., Malkinson, A. M., and Gail, D. B. (1994). Biology of the Clara cell. Am. J. Physiol. 266, L101–L106.

Monteil, C., Le Prieur, E., Buisson, S., Morin, J. P., Guerbet, M., and Jouany, J. M. (1999). Acrolein toxicity: Comparative in vitro study with lung slices and pneumocytes type II cell line from rats. Toxicology 133, 129–138. Mori, M., Kaji, M., Tezuka, F., and Takahashi, T. (1998). Comparative

ultrastructural study of atypical adenomatous hyperplasia and adenocarci-noma of the human lung. Ultrastruct. Pathol. 22, 459–466.

Nakajima, M., Kawanami, O., Jin, E., Ghazizadeh, M., Honda, M., Asano, G., Horiba, K., and Ferrans, V. J. (1998). Immunohistochemical and ultrastruc-tural studies of basal cells, Clara cells and bronchiolar cuboidal cells in normal human airways. Pathol. Int. 48, 944–953.

Nomori, H., Morinaga, S., Kobayashi, R., and Torikata, C. (1994). Protein 1 and Clara cell 10-kDa protein distribution in normal and neoplastic tissues with emphasis on the respiratory system. Virchows Arch. 424, 517–523. Otto, W. R. (2002). Lung epithelial stem cells. J. Pathol. 197, 527–535. Saarikoski, S. T., Husgafvel-Pursiainen, K., Hirvonen, A., Vainio, H.,

Gonzalez, F. J., and Anttila, S. (1998). Localization of CYP1A1 mRNA in human lung by in situ hybridization: Comparison with immunohistochemical findings. Int. J. Cancer 77, 33–39.

Shijubo, N., Itoh, Y., Yamaguchi, T., Shibuya, Y., Morita, Y., Hirasawa, M., Okutani, R., Kawai, T., and Abe, S. (1997). Serum and BAL Clara cell 10 kDa protein (CC10) levels and CC10-positive bronchiolar cells are decreased in smokers. Eur. Respir. J. 10, 1108–1114.

Shimada, T., Gillam, E. M., Oda, Y., Tsumura, F., Sutter, T. R., Guengerich, F. P., and Inoue, K. (1999). Metabolism of benzo[a]pyrene to trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by recombinant human cytochrome P450 1B1 and purified liver epoxide hydrolase. Chem. Res. Toxicol. 12, 623–629.

Shimba, S., Wada, T., and Tezuka, M. (2001). Arylhydrocarbon receptor (AhR) is involved in negative regulation of adipose differentiation in 3T3-L1 cells: AhR inhibits adipose differentiation independently of dioxin. J. Cell Sci. 114,2809–2817.

Shimizu, Y., Nakatsuru, Y., Ichinose, M., Takahashi, Y., Kume, H., Mimura, J., Fujii-Kuriyama, Y., and Ishikawa, T. (2000). Benzo[a]pyrene carcinogenic-ity is lost in mice lacking the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. U.S.A. 97, 779–782.

Simmonds, A. C., Ghanayem, B. I., Sharma, A., Reilly, C. A., Millen, B., Yost, G. S., and Forkert, P. G. (2004). Bioactivation of 1,1-dichloroethylene by CYP2E1 and CYP2F2 in murine lung. J. Pharmacol. Exp. Ther. 310, 855–864.

Singh, G., and Katyal, S. L. (1997). Clara cells and Clara cell 10 kD protein (CC10). Am. J. Respir. Cell Mol. Biol. 17, 141–143.

Solhaug, A., Ovrebo, S., Mollerup, S., Lag, M., Schwarze, P. E., Nesnow, S., and Holme, J. A. (2005). Role of cell signaling in B[a]P-induced apoptosis: Characterization of unspecific effects of cell signaling inhibitors and apoptotic effects of B[a]P metabolites. Chem. Biol. Interact. 151, 101–119. Solhaug, A., Refsnes, M., Lag, M., Schwarze, P. E., Husoy, T., and Holme, J. A. (2004). Polycyclic aromatic hydrocarbons induce both apoptotic and anti-apoptotic signals in Hepa1c1c7 cells. Carcinogenesis 25, 809–819.

(9)

Stoner, G. D., Greisiger, E. A., Schut, H. A., Pereira, M. A., Loeb, T. R., Klaunig, J. E., and Branstetter, D. G. (1984). A comparison of the lung adenoma response in strain A/J mice after intraperitoneal and oral administration of carcinogens. Toxicol. Appl. Pharmacol. 72, 313–323. Takezawa, C., Takahashi, H., Fujishima, T., Shiratori, M., Morita, Y., Sano, H.,

Kuroki, Y., and Abe, S. (2002). Assessment of differentiation in adenocar-cinoma cells from pleural effusion by peripheral airway cell markers and their diagnostic values. Lung Cancer 38, 273–281.

Tatrai, E., Kovacikova, Z., Karacsony, G., Hudak, A., Adamis, Z., and Ungvary, G. (2001). Effects of sodium diethyldithiocarbamate on type II pulmonary epithelial cells in vitro. J. Toxicol. Environ. Health A 62, 207–216.

Tritscher, A. M., Mahler, J., Portier, C. J., Lucier, G. W., and Walker, N. J. (2000). Induction of lung lesions in female rats following chronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Pathol. 28, 761–769. Wanner, R., Brommer, S., Czarnetzki, B. M., and Rosenbach, T. (1995). The

differentiation-related upregulation of aryl hydrocarbon receptor transcript levels is suppressed by retinoic acid. Biochem. Biophys. Res. Commun. 209, 706–711. West, J. A., Pakehham, G., Morin, D., Fleschner, C. A., Buckpitt, A. R., and Plopper, C. G. (2001). Inhaled naphthalene causes dose dependent Clara cell cytotoxicity in mice but not in rats. Toxicol. Appl. Pharmacol. 173, 114–119. Whitlock, J. P., Jr. (1999). Induction of cytochrome P4501A1. Annu. Rev.

數據

FIG. 1. Comparison of CYP1A1 and CYP1B1 induction in SAE (Ca 2þ -free) and CCSP-positive (High Ca 2þ ) cell cultures with TCDD or BaP treatment
FIG. 2. Effect of Ca 2þ on the expression of AhR and Arnt in SAE cell cultures. SAE cells were cultivated in Ca 2þ -free or supplemented medium for 72 h
FIG. 3. Colocalization of Clara cell secretory protein (CCSP) and CYP1A1/CYP1B1 in rat lung slice cultures

參考文獻

相關文件

- In the current lesion, the epithelioid cells were positive for S100 protein and no sustentacular cells were identified, effectively ruling out PGL as the diagnosis. -

 Finally, the immunohistochemical results in the present case highlights that Bcl-2 negativity in granular cells indicating an apoptotic process, CD-68 positivity in granular

(E) Varying numbers of tumour cells expressing cancer antigen 125 are present in the lining of tubules (objective magnification ¥10).. The arrowed cells show strong nuclear

- D2-40 immunostaining was also performed and observed to be positive in the endothelial cells lining the lymphatic

Its main tool is the stem cells that are seeded on the surface of biomaterials (scaffolds), in order to create a biocom- plex. Several populations of mesenchymal stem cells are found

Histologically VX is distinguished from other lesions by presence of large numbers of foam cells, and limited to the connective tissue papillae.. The foam cells on

 Diagnosis is confirmed by histopathology showing the presence of Antoni A(cellular fascicular) and Antoni B (myxoid; vacuolated) cells, nuclear palisading, whirling of cells

stained negative for a-smooth muscle actin because the main body of the tumor consisted of epithelioid or epithe- lial cells that contained few positive smooth muscle cells.. We