• 沒有找到結果。

地下水中有機汙染物生物性傳輸三維模式之發展

N/A
N/A
Protected

Academic year: 2021

Share "地下水中有機汙染物生物性傳輸三維模式之發展"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

(2) I Development of Three Dimensional Biotransformation Model for Organic Chemicals I NSC87-2211-E-009-006  

(3)        . three-dimensional (3D) finite element solute transport model, which can couple with a 3D groundwater flow model, to simulate the migration and fate of microbes and organic contaminants in saturated or unsaturated aquifer. This model composes of five coupled nonlinear equations, while one is to describe the processes of transport, growth, and decay for microbes and four equations are to describe the processes of transport and biotransformation for each substrate, oxygen, nitrate, and nutrient..  '()*+,-./012/3456 7$%89:;<=>?,@+, A -. BC D 56 /E F012G5 6/HIJ KLM/5N-OJP> ? ,Q RS 0 12 TU BCDVWX YZ[;<=56/\>?,]^_`/ abcd*+,BefghigVjk _`glgmnoVpqrB89'st CDBPu/vwCGgxygz{g r/|V+,}~€Z 7‚ƒ:;012„ †‡ˆJ P>?/‰Š‹Œ 1000mg/L BŽ/ 9‘’“”•MB’–—˜<™Sš l›œ+,-.M/žŸŽB01 2Z565NBE ¡¢/>?,£¤ ¥l¦§¨š/‰Š-©ª«1¬B­ ®/¯:°9’–—ž012b/ >?±‰Š¬²B­®³¡¤t´µ/ ´E k MOC/BIOPLUME II 565N E ¶·/¡¢¸¹B>?,‰Šº* »‹/[J¼½¾¿9B34ÀMÁ/ V+,ÂÃPukjÄ'Å34Æa& ÇeZ. A hypothetical site contamination by organic chemical with the concentration of 1000mg/L is remediated using three pumping wells and three injection wells and the injection of oxygen to enhance biodegradation. Simulation results indicate that organic concentrations decrease more than one order of magnitude after the simulation time of two years while increasing the injection oxygen concentration. Besides the simulation results of organic concentrations are higher than those simulation results by MOC/BIOPLUME II model. The differences between these two results may be due to the use of numerical approaches. ABSTRACT The. research. employs. !"#$%&. a 1.

(4) 1. and/or different biotransform function and its parameter values.. 6U RsgRm -^_`k*+,B s3Retardation factor/D ^xy s3Dispersion coefficient/W ^lg mnogpqo§–G¶inject flow rate/ µ0 Ƌµ n -‘lkmno§ ¶+fmaximum specific growth rate/ Υ0 ƋΥ n -‘lkmno§ e f  à   yield coefficient  / Κ so ƋΚ o ƋΚ ao -  ^  á   1 _ `glgpqo§RS3/ Κ sn ƋΚ n ƋΚ an -‘âq1_ `glgpqo§RS3/I(O)^. u À #  inhibition function  / I( O )=[1+ Ο / Kc]-1 K C .    ÈÉ Ê/ËQ"ÌÆÍBÎÏÐ 2ÁцÒVWÓÔÕÖB×Ø/ُ 012„JP>?,>?BÚÛ/ÜÝ „ Þ]Z:߂ƒJP>?,B$% e U¡¢/àáâqã89lÁmn oBäz/ƒ0‘1JPåB-./æ ç:;èBéêZٜ´ëì9 b/íîlBïð1/l¾ñòBó„ ôtíâlBïð1/mnoõ¾ñò Bó„ô/Ù[böpqr÷øù/ú abûQ012UZ¿´/89*+, Befghük_`glgmnoSp qr§ý'sSCDBPu/¼þ ïFA§CDgXYÀ#6 (Widdowson et al., 1988tBedient et al., 1994tYeh and Cheng, 1998)/HI34 ÀM/÷J KLMÁJ -M/¼ ´ïÀ#6 e3456/½9 Q012ž "ìB5N-OZ. 2. ∂O = D ∇2 O − V • ∇O − τ o Ro S + WS ′ ∂t   S  O   A      γ o µo   K so + S   K o + O   K an + A   − Rm M    O  +     α o κ o  ′ + O   Ko   Ro. . 2. _`glgmnogpqogV* +,§CDÀ#6/è¾þQ`¦ Æi

(5) SFick

(6) B_1/ ÙCDBPu/vwCGgxygz{g r/|gV+,}~€Z89 Sg OgNgAgM -ʑ¢_`glgm nogpqogV*+,/¼ ÷ 1ïA§CDgXYÀ#6. γ o ‘lB9s3/ α o Ƌκ o ƋΚ o ' -. ‘lÂÃe½¦Bs3g*+,í îl1§hüs3gVí*+,h üblBRSs3îl1Z 3. ∂N 2 = D ∇ N − V • ∇N − τ n Rn N + WN ′ ∂t    O   S A    η µ n  + S  K o + O  K an + A   K sn    − Rm M  I (O )   N     + α n κ n    ′     Kn + N . R. 1.MՖ ∂S = D ∇2 S − V • ∇S − Rs S + WS ′ ∂t  µo  S   O   A     +          S O A + + + Ko K ao  Y o K so  − Rm M   µ S N A        n I( O)        Y n  K sn + S   K n + N   K an + A  Rs. n. 3 2.

(7) η  mno9s3/ α n mn oÂÃe½¦Bs3/κ n *+,í ′ *+,h âl1§hüs3/. 2GÀ0. Kn. übmnoBRSs3âl1Z 4. ∂A = D∇2 A − V •∇A − τ a Ra A + WA′ ∂t   S   O   A        ψµo         K s + S K o + O K ao + A   I(O) − Rm M     + ε µ  S   N   A       n   A N  +   +   +  S  K aN Kn K sn   Ra. Y. X   

(8) Bendient et al., 1994 1000 mg/L 889 mg/L 778 mg/L 667 mg/L 222 mg/L 111 mg/L 0 mg/L  . 4. ψ  ε 

(9)   5.

(10) ∂M = D∇2 M − V •∇M + WM′ ∂t    S   O   A      −κ o  µo     kso + S   ko + O  kao + A  − Rm M     S  N  A   + − I O µ   n  k + S   k + N   k + A κ n ( ) n n aN     Rma.   / Grid size 22*22 Cell size 15m*15m Transmissivity 1.8E-4 m2/sec Aquifer thickness 3.048m Hydraulic gradient 0.001 Longitudinal dispersivity 3.48m Transverse dispersivity 0.9m Effective porosity 0.3 . 5. .       .   7$%‚ƒ Bendient et al.1994, p.236&B:; !„JP>?B Ž/" ¢569Q012>? žk+, #$B%½ZŽ&' (-V>?)*‰Š-©/¢Q+:/ 5Nb§S&'Ä'20`Å34/ ,Q‘:/k_`glJ'B+,Å3 4 / s Å c Ä '  -  Watson et al., 1986tWheeler et al., 1987.“F•4/ ,Q‘/Z.  ! µo Yo Kso Ko Kao Ko' γo. ! / 2.10D-01 day-1 4.26D-01 kg/kg 6.54D+02 kg/m 3 1.00D+02 kg/m 3 3.00D-04 kg/m3 2.00D-04 7.044D+00.   565Nbý^ 2 730 1/ 012UlB23‰Š^ 3mg/L/cd 4’–—k’–—˜<™5G¦^ 5.43m3/day B67/-891,<: ïðƒ012 B; 1–<2 3.

(11) 6/[J5N-O"’–MV+,. ž„JP>?B012Z´µ/4B –\B/í͖<—V’2—˜<™" ž012b/>?±B‰Š] 1000mg/L ¬ 37mg/L/´b012U B@l¦/s^_234 3mg/L/`Í < ™ – < — ab 0˜ š< 20mg/L k 40mg/L/> ?± B ‹ ‰Š c˜d¬ 11mg/L37-26e11k 21mg/L37-16 e21/šlÂ>>?,Be;/fg Æh/:;·J;B,>Á+,. ÀM/ÓF’–—ÁWij/"ž 012B>?/íYkW¾lèBZm ÊEFÈ:ncd/íâlÁà áA1012B+, /.ÓF WiBžoj÷ funnel -and- gate M/ì5N-O/012 #$ Bp(/½³J;gqrZ. Æ@lt2Q–<—–<lB‰Š^ 20mg/Lt3–<lB‰Š^ 40mg/LZ.    í4’–—Bïð1/>?,B‰ Š=>/£¤¥l¦BÆa/5N/ ? Ž U> ? ,B ‰Š -©/@Q+ //WU>?‰ŠA-^ 558mg/Lg419mg/LgV 384mg/L/Ë´ ‰ŠB-©¼B/Í012UlB‰ Š¨šb/5NBE ¡¢/>?,‰ ŠC¬²Z풖—˜<™B6b/ 5Nž/ ?BE /@Q+</j ¡¢–<—Æ@l/Ù012UlB2 3‰Š^ 3mg/L b/>?±B‹‰Š ^ 37mg/LZ͖<lB‰Š^ 20mg/L b/>?±B‹‰Š¬ 26mg/LZÙ –<lB‰Š^ 40mg/L b/>?±‹ ‰Šü 15.9mg/LZ   [;E ¯k Bendient et al.(1994) 89 MOC/BIOPLUME II 5NE ¶ ·/í–<l¦-^ 0g20gV 40mg/L B6/W>?±‹‰Š-^ 20g 15gV 9mg/L/D²QEF5NBE / [;G¼½¾1,H;I¿Çe1. 9B34ÀMÆaZí BIOPLUME II Model ¾ 89 JKLMmethod of characteristics, MN MOCOP/k 7$%Q9B back particle tracking kJ. KLMÆa/Çe5NE §GZ 2.9B+,ÂÃPuSjÄ'Å34 Æa&ÇeZ7Q9B+,ÂÃPu ¾RS Monod T6/UÀ#61 5 - / Ù BIOPLUME II Model õ89MVB ÂÿòF/"Â>>?,B‰Š Bendient et al., 1994, eq8-20, p.226Z. 22 20 18. 480. 16 14 240. 12 10 0. 8 6 4 2 0. 0. 2. 4. 6. 8. 10. 12. 14. a. 16. 18. 20. 22. 20. 22. 20. 22. 22 20 18 16. 440. 14. 330. 12. 220. 10. 110. 8. 0. 6 4 2 0. 0. 2. 4. 6. 8. 10. 12. 14. b. 16. 18. 22 20 400. 18 16 14. 200. 12 10 0. 8 6 4 2 0.  . 0. 2. 4. 6. c 8. 10. 12. 14. 16. 18.  "#$%&'(.   ËWXBYZ¡¢/EFQ9B5 4.

(12) Contaminants, Snowbird, Utah, Oct 1-3, 1986.. (a) 0mg/L (b) 20mg/L (c) 40mg/L%)*+ 

(13) . 22. Wheeler, M. F., C. N. Dawson, P. B. Bedient, C. Y. Chiang, R. C. Borden, and H. S. Rifai, Numerical simulation of microbial biodegradation of hydrocarbons in groundwater, paper presented at the NWWA Conference on Solving Ground Water Problems with Models, Natl. Water Well Assoc., Denver, CO, 1987.. 20 18 32. 16 24. 14 12. 16. 10 8. 8 0. 6 4 2 0. 0. 2. 4. 6. 8. 10. 12. 14. 16. 18. 20. 22. 20. 22. 20. 22. a 22 20 18. 24. 16 14. 16. 12 10. 8. 8 6. 0. 4 2 0. 0. 2. 4. 6. 8. 10. 12. 14. b. 16. 18. Widdowson, M. A., F. J. Molz, and L. D. Benefield, "A Numerical Transport Model for Oxygen- and Nitrate-based Respiration Linked to Substrate and Nutrient Availability in Porous Media", Water Resour. Res., Vol.24, No.9, pp.1553-1565, 1988.. 22 20 18 12. 16 14. 8. 12 10. 4. 8 0. 6 4 2 0. 0. 2. 4. 6. 8. 10. 12. 14. c. 16. 18. , -,.#$/%&'. Yeh, G. T., and “Three-Dimensional Fate and Transport Chemical Model, U.S.EPA, 1998.. ( (a) 0mg/L (b) 20mg/L (c) 40mg/L%)* + 

(14) . Reference Bedient, P. B., H. S. Rifai and C. J. Newell, Ground Water Contamination Transport and Remediation, PTR Prentice Hall, Inc., New Jersey, 1994. Watson, J. E., and W. R. Gradner, A mechanistic model of bacteria colony growth response to substrate supply, paper presented at the Chapman Conference on Microbial Processes in the Transport, Fate and in situ Treatment of Subsurface 5. J. R. Cheng, Subsurface Flow, of Microbes and User’s Manual”,.

(15)

參考文獻

相關文件

After teaching the use and importance of rhyme and rhythm in chants, an English teacher designs a choice board for students to create a new verse about transport based on the chant

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

O.K., let’s study chiral phase transition. Quark

Despite significant increase in the price index of air passenger transport (+16.97%), the index of Transport registered a slow down in year-on-year growth from +12.70% in July to

Despite higher charges of taxi service starting from September, the index of Transport registered a slow down in year-on-year growth from +8.88% in August to +7.59%, on account of

“Water control and useful knowledge: river management and the evolution of knowledge in China, Northern Italy and the Netherlands.” Paper presented at the Global Economic

Paper presented at an invitational conference sponsored by the National Educational Research Policy and Priorities Board, the Office of Educational Research and Improvement, and

a) Visitor arrivals is growing at a compound annual growth rate. The number of visitors fluctuates from 2012 to 2018 and does not increase in compound growth rate in reality.