• 沒有找到結果。

SOCP Relaxation of Sensor Network Localization

N/A
N/A
Protected

Academic year: 2022

Share "SOCP Relaxation of Sensor Network Localization"

Copied!
25
0
0

加載中.... (立即查看全文)

全文

(1)

SOCP Relaxation of Sensor Network Localization

Paul Tseng

Mathematics, University of Washington Seattle

University of Vienna/Wien June 19, 2006

Abstract

This is a talk given at Univ. Vienna, 2006.

(2)

Talk Outline

• Problem description

• SDP and SOCP relaxations

• Properties of SDP and SOCP relaxations

• Performance of SOCP relaxation and efficient solution methods

• Conclusions & Future Directions

(3)

Sensor Network Localization Basic Problem

:

• n pts in <d (d = 1, 2, 3).

• Know last n − m pts (‘anchors’) xm+1, ..., xn and Eucl. dist. estimate for pairs of ‘neighboring’ pts

dij ≥ 0 ∀(i, j) ∈ A with A ⊆ {(i, j) : 1 ≤ i < j ≤ n}.

• Estimate first m pts (‘sensors’).

History? Graph realization, position estimation in wireless sensor network, determining protein structures, ...

(4)

Optimization Problem Formulation

υopt := min

x1,...,xm

X

(i,j)∈A

kxi − xjk2 − d2ij

• Objective function is nonconvex.

6. .

_

• Problem is NP-hard (reduction from PARTITION).

6. .

_

• Use a convex (SDP, SOCP) relaxation.

(5)

NP-hardness

PARTITION: Given positive integers a1, a2, ..., an, ∃ a partition I1, I2 of {1, ..., n} with P

i∈I1 ai = P

i∈I2 ai? (NP-complete)

Reduction to our problem

(d = 1) (Saxe ’79):

Let m = n − 1, xn = 0, dn1 = a1, d12 = a2, ..., dn−1,n = an

PARTITION ‘yes’ ⇐⇒ υopt = 0 [This extends to d ≥ 2]

(6)

SDP Relaxation

Let X := [x1 · · · xm], A := [xm+1 · · · xn].

Then (Biswas,Ye ’03)

kxi − xjk2 = tr



bijbTij  XTX XT

X Id



with bij :=  Im 0

0 A



(ei − ej).

Fact

:  Y XT X Id



 0 has rank d ⇐⇒ Y = XTX

(7)

Thus

υopt = min

X,Y

X

(i,j)∈A

tr bijbTijZ − d2ij s.t. Z =  Y XT

X Id



 0, rankZ = d Drop low-rank constraint:

υsdp := min

X,Y

X

(i,j)∈A

tr bijbTijZ − d2ij s.t. Z =  Y XT

X Id



 0

• Biswas and Ye gave probabilistic interpretation of SDP soln, and proposed a distributed (domain partitioning) method for solving SDP when n > 100.

(8)

SOCP Relaxation

Second-order cone program (SOCP) is easier to solve than SDP.

• Q: Is SOCP relaxation a good approximation? Or a mixed SDP-SOCP relaxation?

• Q: How to efficiently solve SOCP relaxation?

(9)

SOCP Relaxation

υopt = min

x1,...,xm,yij

X

(i,j)∈A

yij − d2ij

s.t. yij = kxi − xjk2 ∀(i, j) ∈ A

Relax “=” to “≥” constraint:

υsocp = min

x1,...,xm,yij

X

(i,j)∈A

yij − d2ij

s.t. yij ≥ kxi − xjk2 ∀(i, j) ∈ A

y ≥ kxk2 ⇐⇒ y + 1 ≥ k(y − 1, 2x)k

(also Doherty,Pister,El Ghaoui ’03)

(10)

Properties of SDP, SOCP Relaxations

d = 2, n = 3, m = 1, d12 = d13 = 2

Problem

:

0 = min

x1=(α,β)∈<2

|(1 − α)2 + β2 − 4| + |(−1 − α)2 + β2 − 4|

(11)

SDP Relaxation

:

0 = min

x1=(α,β)∈<2 y∈<

|y − 2α − 3| + |y + 2α − 3|

s.t.

y α β

α 1 0

β 0 1

  0

If solve SDP by IP method, then likely get analy. center.

(12)

SOCP Relaxation

:

0 = min

x1=(α,β)∈<2 y,z∈<

|y − 4| + |z − 4|

s.t. y ≥ (1 − α)2 + β2 z ≥ (−1 − α)2 + β2

If solve SOCP by IP method, then likely get analy. center.

(13)

Properties of SDP & SOCP Relaxations Fact 1

: υsocp ≤ υsdp. If υsocp = υsdp, then

{SOCP (x1, ..., xm) solns} ⊇ {SDP (x1, ..., xm) solns}.

Fact 2

: If (x1, ..., xm, yij)(i,j)∈A is the analytic center soln of SOCP, then xi ∈ conv {xj}j∈N (i) ∀i ≤ m

with N (i) := {j : (i, j) ∈ A}.

(14)

Opt soln (m = 900, n = 1000, nhbrs if dist< .06)

SOCP soln found by IP method (SeDuMi)

(15)

Fact 3

: If X = [x1 · · · xm], Y is a relative-interior SDP soln (e.g., analytic center), then for each i,

kxik2 = Yii =⇒ xi appears in every SDP soln.

Fact 4

: If (x1, ..., xm, yij)(i,j)∈A is a relative-interior SOCP soln (e.g., analytic center), then for each i,

kxi − xjk2 = yij for some j ∈ N (i) ⇐⇒ xi appears in every SOCP soln.

(16)

Error Bounds

What if distances have errors?

d2ij = ¯d2ij + δij,

where δij ∈ < and d¯ij := kxtruei − xtruej k (xtruei = xi ∀ i > m).

Fact 5

: If (x1, ..., xm, yij)(i,j)∈A is a relative-interior SOCP soln corresp.

(dij)(i,j)∈A and X

(i,j)∈A

ij| ≤ δ, then for each i,

kxi − xjk2 = yij for some j ∈ N (i) =⇒ kxi − xtruei k = O(

s X

(i,j)∈A

ij|).

Fact 6

: As X

(i,j)∈A

ij| → 0, (analytic center SOCP soln corresp. (dij)(i,j)∈A)

→ (analytic center SOCP soln corresp. ( ¯dij)(i,j)∈A).

(17)

Error bounds for the analytic center SOCP soln when distances have small errors.

(18)

Solving SOCP Relaxation I: IP Method

x1,...,xminm,yij

X

(i,j)∈A

yij − d2ij

s.t. yij ≥ kxi − xjk2 ∀(i, j) ∈ A

Put into conic form:

min X

(i,j)∈A

uij + vij

s.t. xi − xj − wij = 0 ∀(i, j) ∈ A

yij − uij + vij = d2ij ∀(i, j) ∈ A

αij = 12 ∀(i, j) ∈ A

uij ≥ 0, vij ≥ 0, (αij, yij, wij) ∈ Rconed+2 ∀(i, j) ∈ A with Rconed+2 := {(α, y, w) ∈ < × < × <d : kwk2/2 ≤ αy}.

Solve by an IP method, e.g., SeDuMi 1.05 (Sturm ’01).

(19)

Solving SOCP Relaxation II: Smoothing + Coordinate Gradient Descent

miny≥z |y − d2| = max{0, z − d2} So SOCP relaxation:

x1min,...,xm

X

(i,j)∈A

max{0, kxi − xjk2 − d2ij}

This is an unconstrained nonsmooth convex program.

• Smooth approximation:

max{0, t} ≈ µh(t/µ) (µ > 0)

h smooth convex, limt→−∞ h(t) = limt→∞ h(t) − t = 0. We use h(t) = ((t2 + 4)1/2 + t)/2 (CHKS).

(20)

SOCP approximation:

min fµ(x1, .., xm) := X

(i,j)∈A

µh kxi − xjk2 − d2ij µ

!

Add a smoothed log-barrier term −µ X

(i,j)∈A

log µh d2ij − kxi − xjk2 µ

!!

Solve the smooth approximation using coordinate gradient descent (SCGD):

• If k∇xifµk = Ω(µ), then update xi by moving it along the Newton direction

−[∇2x

ixifµ]−1xifµ, with Armijo stepsize rule, and re-iterate.

• Decrease µ when k∇xifµk = O(µ) ∀i.

µinit = 1e − 5. µend = 1e − 9. Decrease µ by a factor of 10.

Code in Fortran. Computation easily distributes.

(21)

Simulation Results

• Uniformly generate xtrue1 , ..., xtruen in [0, 1]2, m = .9n, two pts are nhbrs if dist< radiorange.

Set

dij = kxtruei − xtruej k · max{0, 1 + ij · nf },

ij ∼ N (0, 1) (Biswas, Ye ’03)

• Solve SOCP using SeDuMi 1.05 or SCGD.

• Sensor i is uniquely positioned if

kxi − xjk2 − yij

≤ 10−7dij for some j ∈ N (i).

(22)

SeDuMi SCGD n m nf cpu/mup/Errup cpu/mup/Errup 1000 900 0 5.5/402/7.2e-4 .4/365/3.7e-5 1000 900 .001 5.4/473/1.8e-3 3.3/451/1.5e-3 1000 900 .01 5.6/554/1.5e-2 2.2/518/1.1e-2 2000 1800 0 209.6/1534/4.3e-4 1.3/1541/3.3e-4 2000 1800 .001 230.1/1464/3.6e-3 6.8/1466/3.6e-3 2000 1800 .01 176.6/1710/5.1e-2 3.7/1710/5.1e-2 4000 3600 0 203.1/2851/4.0e-4 2.5/2864/3.2e-4 4000 3600 .001 205.2/2938/3.2e-3 15.1/2900/3.0e-3 4000 3600 .01 201.3/3073/1.0e-2 23.2/3033/9.1e-3

Table 1: radiorange = .06(.035) for n = 1000, 2000(4000)

• cpu (sec) times are on a HP DL360 workstation, running Linux 3.5.

• mup := number of uniquely positioned sensors.

• Errup := maxi uniq. pos.kxi − xtruei k.

(23)

True positions of sensors (dots) and anchors (circles) (m = 900, n = 1000)

SOCP soln found by SeDuMi and SCGD

(24)

Mixed SDP-SOCP Relaxation

Choose 0 ≤ ` ≤ m. Let B := {(i, j) ∈ A : i ≤ `, j ≤ `}.

x1,...,xminm,yij,Y

X

(i,j)∈B

tr bijbTijZ − d2ij

+ X

(i,j)∈A\B

yij − d2ij

s.t. Z =  Y XT

X Id



 0

X = [x1 · · · x`]

yij ≥ kxi − xjk2 ∀(i, j) ∈ A \ B

with bij :=  I` 0 0

0 0 A



(ei − ej).

Easier to solve than SDP? As good a relaxation? Properties?

(25)

Conclusions & Future Directions

• SOCP relaxation may be a good pre-processor.

• Faster methods for solving SOCP? Exploiting network structures of SOCP?

(For d = 1, solvable by -relaxation method (Bertsekas,Polymenakos,T ’97))

• Error bound for SDP relaxation?

• Additional (convex) constraints? Other objective functions, e.g., X

(i,j)∈A

|kxi − xjk − dij|2 ?

• Replace 2-norm by a p-norm (1 ≤ p ≤ ∞)? p-order cone relaxation?

• Q: For any x1, ..., xn ∈ <d, does arg min

x

n

X

i=1

kx − xikpp ∈ conv {x1, ..., xn}?

(1 < p < ∞)

A: Yes for d ≤ 2. No for d ≥ 3.

參考文獻

相關文件

For circular cone, a special non-symmetric cone, and circular cone optimization, like when dealing with SOCP and SOCCP, the following studies are cru- cial: (i) spectral

Chen, Conditions for error bounds and bounded level sets of some merit func- tions for the second-order cone complementarity problem, Journal of Optimization Theory and

Specifically, for a locally optimal solution to the nonlinear second-order cone programming (SOCP), under Robinson’s constraint qualification, we establish the equivalence among

In this work, for a locally optimal solution to the nonlin- ear SOCP (4), under Robinson’s constraint qualification, we show that the strong second-order sufficient condition

Convex optimization, compressed sensing, ℓ 1 -regularization, nuclear/trace norm, regression, variable selection, sensor network localization, approximation accuracy, proximal

Each unit in hidden layer receives only a portion of total errors and these errors then feedback to the input layer.. Go to step 4 until the error is

congestion avoidance: additive increase loss: decrease window by factor of 2 congestion avoidance: additive increase loss: decrease window by factor of 2..

The MTMH problem is divided into three subproblems which are separately solved in the following three stages: (1) find a minimum set of tag SNPs based on pairwise perfect LD