• 沒有找到結果。

§ 5-1 Main Results Chapter 5 C -evolution System and the Conditional Stability for the Solutions of Abstract Semilinear Differential Equations

N/A
N/A
Protected

Academic year: 2021

Share "§ 5-1 Main Results Chapter 5 C -evolution System and the Conditional Stability for the Solutions of Abstract Semilinear Differential Equations"

Copied!
30
0
0

加載中.... (立即查看全文)

全文

(1)

Chapter 5

C

0-evolution System and the Conditional Stability for the Solutions of Abstract Semilinear Differential Equations

§ 5-1 Main Results

In the preceding chapter, we get sufficient conditions to ensure that the zero solution to the abstract semilinear equation (4.1) is conditionally stable and conditionally asymptotically stable. In that chapter, we considered the linear parts and forcing term function of the equation together. However, if the equation can be linearized, we may approach the desired conclusion by some perturbation theory of linear operators. We consider the asymptotic behavior of some solutions of the abstract semilinear initial value problem:

( ) ( ) ( ) ( ( ) )

( )

0

, 0

d u t A t u t f t u t dt

u ξ

 = +



 =

(5.1)

where the family of operators

{

A t

( )

:t0

}

generates a non-trivial C -evolution 0 system

{

U t s

( )

, : 0≤ ≤ < ∞ on a Banach space X , and the forcing term function s t

}

[ )

: 0,

f ∞ × →X X satisfies the following conditions:

( )

F1 f t x is continuous in

( )

, t

[

0,∞ for each fixed x X

)

∈ .

( )

F2 f is locally Lipschitz continuous respect to x in X with Lipschitz constant γ , that is,

( )

,

( )

,

f t xf t y ≤γ x− for y all t≥ and x , y0 ≤ . α

( )

F3 f t

( )

, 0 = for all 0 t≥ . 0

Here we assume that there exists none trivial supplementary projections P , 1 P 2 and P on the Banach space X such that 3 P Xi = Xi for i =1, 2, 3. Where the dimensions of X1 and X2 are finite and the C0 -evolution system

{

U t s

( )

, : 0≤ ≤ < ∞ satisfies the following conditions: s t

}

(2)

( )

A1

{

U t s

( )

, : 0≤ ≤ < ∞ restricted on s t

}

X and 1 X are total evolution 2 system (here U t s x is defined by

( )

, U t s x

( )

, =U s t

( )

, 1x for all t< , s xX1 and xX2).

( )

A2 U t s P

( )

, j =PU t sj

( )

, for all 0≤ ≤ < ∞ and j =1, 2, 3. s t

( )

A3 0t

( )

, 3

( )

, 1

U tτ P dτ+ t U t τ P dτ ≤K

∫ ∫

for all 0≤ < ∞ . t

( )

A4 U t s P

( )

, 2L2 for all 0≤s t, < ∞ .

Furthermore, the forcing term function f satisfies the condition

( )

F4 :

( )

F4

0 P f2

(

τ ϕ τ,

( ) )

P f2

(

τ φ τ,

( ) )

dτ γ ϕ φ≤ 2 for all ϕ , φ ∈ , where D

D=

{

ϕC

( [

0,

)

;X

)

: ϕ α

}

, 0α > and ⋅ denotes supremum norm on C

( [

0,

)

;X

)

.

Under the above notations and assumptions, we have following results:

Lemma 5.1 Suppose that the C -evolution system 0

{

U t s

( )

, : 0≤ ≤ < ∞ s t

}

satisfies conditions (A1)~(A4) and the function f : 0,

[

∞ × →

)

X X satisfies conditions (F1)~(F4). Let ξ ∈3 X3 and the operator G D: C

( [

0,

)

;X

)

is

defined by

( )( )

Gϕ t =U t

( )

, 0 ξ3+

0tU t

( )

P f3

(

τ ϕ τ,

( ) )

dτ

( )

, 2

(

,

( ) )

tU tτ P f τ ϕ τ dτ

( )

, 1

(

,

( ) )

tU tτ P f τ ϕ τ dτ

for all ϕ ∈ , then G is well-defined and D

2 2

( )

Gϕ−Gφ ≤ γKL ϕ φ− for any φ , ϕ ∈ , D where γ , K , γ , 2 L are the constants in (A3), (A4), (F2) and (F4). 2

Proof. From the conditions (A1), (A3), (A4), (F3) and (F4), for any ε > , 0

1 2 0

t > ≥ and t ϕ ∈ , we have D

(3)

( )

1

( )

2

Gϕ tGϕ t

( ) ( )

{

U t1, 0 ξ3 U t2, 0 ξ3

}

0t1U t

( )

1P f3

(

τ ϕ τ,

( ) )

dτ

= − +

( ) ( ( ) ) ( ) ( ( ) )

1 1

1, 2 , 1, 1 ,

tU t τ P f τ ϕ τ dτ tU t τ P f τ ϕ τ dτ

( ) ( ( ) )

2

2 3

0tU tP f τ ϕ τ, dτ

( ) ( ( ) ) ( ) ( ( ) )

2 2

2, 2 , 2, 1 ,

tU t τ P f τ ϕ τ dτ tU t τ P f τ ϕ τ dτ

+

+

( )

1, 0 3

(

2, 0

)

3 0t2

{ ( )

1,

(

2,

) }

3

(

,

( ) )

U t ξ U t ξ U t τ U t τ P f τ ϕ τ dτ

≤ − +

( ) ( ( ) ) ( ) ( ( ) )

1 1

2 2

1, 3 , 2, 2 ,

t t

t U t τ P f τ ϕ τ dτ t U t τ P f τ ϕ τ dτ

+

+

( ) ( ( ) )

1 2

2, 1 ,

t

t U t τ P f τ ϕ τ dτ +

( ) ( )

{ } ( ) ( ( ) )

1

1, 2, 1 2 ,

t U t τ U t τ P P f τ ϕ τ dτ

+

− + .

Since f

(

τ ϕ τ,

( ) )

γ ϕ τ

( )

γα on the interval

[

0,∞ ,

) ( )

1

1, 1

t U t τ P dτ ≤K

and

t2 U t

(

2,τ

)

P d1 τ ≤K , there exists a constant T1> such that t1

( )

1, 1

(

,

( ) ) (

2,

)

1

(

,

( ) )

TU t τ P f τ ϕ τ dτ+ TU t τ P f τ ϕ τ dτ

∫ ∫

( )

1, 1

(

,

( ) ) (

2,

)

1

(

,

( ) )

T U t τ P f τ ϕ τ dτ T U t τ P f τ ϕ τ dτ

+

( ) ( )

(

T U t1, P d1 T U t2, P d1

)

γα τ τ τ τ

+

ε

<

for any T ≥ . From the condition (A4) and (F4), we obtain that T1 U t

( )

P2L2

for all 0≤τ, t< ∞ and

0 P f2

(

τ ϕ τ,

( ) )

dτ γ ϕ≤ 2 ≤γ α2 < ∞ . Thus there exists a constant T2 > such that t1

( )

1, 2

(

,

( ) ) (

2,

)

2

(

,

( ) )

TU t τ P f τ ϕ τ dτ + TU t τ P f τ ϕ τ dτ

∫ ∫

( )

1, 2 2

(

,

( ) ) (

2,

)

2 2

(

,

( ) )

T U t τ P P f τ ϕ τ dτ T U t τ P P f τ ϕ τ dτ

+

(4)

( ( ) )

2 2

2 ,

L T P f τ ϕ τ dτ

ε

<

for any T ≥ . Let T2 T0 =max

{

T T1, 2

}

, then

( ) ( ( ) ) ( ) ( ( ) )

0 0

1, 1 , 2, 1 ,

TU t τ P f τ ϕ τ dτ+ TU t τ P f τ ϕ τ dτ

∫ ∫

( ) ( ( ) )

0

1, 2 ,

TU t τ P f τ ϕ τ dτ

+

+

T0U t

(

2,τ

)

P f2

(

τ ϕ τ,

( ) )

dτ < and

( )

1

( )

2

Gϕ tGϕ t

( )

1, 0 3

(

2, 0

)

3 0t2

{ ( )

1,

(

2,

) }

3

(

,

( ) )

U t ξ U t ξ U t τ U t τ P f τ ϕ τ dτ

≤ − +

( ) ( ( ) ) ( ) ( ( ) )

1 1

2 2

1, 3 , 2, 2 ,

t t

t U t τ P f τ ϕ τ dτ t U t τ P f τ ϕ τ dτ

+

+

( ) ( ( ) )

1 2

2, 1 ,

t

t U t τ P f τ ϕ τ dτ +

( ) ( )

{ } ( ) ( ( ) )

0 1

1, 2, 1 2 ,

T

t U t τ U t τ P P f τ ϕ τ dτ

+

− + + 2ε .

Since the function taU t s

( )

, ξ3 is continuous on 0≤ ≤ < ∞ , there exists a s t constant δ > such that 1 0

( )

1, 0 3

(

2, 0

)

3

U t ξ −U t ξ < for ε all t1− < . t2 δ1

From the facts that functions τ aU t

( )

1P f3

(

τ ϕ τ,

( ) )

, τ aU t

(

2

)

P fi

(

τ ϕ τ,

( ) )

are continuous on the compact interval

[ ]

t t for each 2,1 i=1, 2, one obtain that they are bounded on

[ ]

t t and there exists a constant 2,1 δ > such that 2 0

( ) ( ( ) ) ( ) ( ( ) )

1 1

2 2

1, 3 , 2, 2 ,

t t

t U t τ P f τ ϕ τ dτ + t U t τ P f τ ϕ τ dτ

∫ ∫

( ) ( ( ) )

1 2

2, 1 ,

t

t U t τ P f τ ϕ τ dτ

+

< ε

for all t1− <t2 δ2. On the other hand, since the mappings

( )

t,τ aU t

( )

P f3

(

τ ϕ τ,

( ) )

and

( )

t,τ aU t

( )(

P1+P2

)

f

(

τ ϕ τ,

( ) )

are uniformly continuous on compact sets

{ ( )

t,τ : 0≤ ≤ ≤τ t T0

}

and

(5)

{ ( )

t,τ : 0≤ ≤ ≤t τ T0

}

respectively, there exists a constant δ > such that 3 0

( )

1, 3

(

,

( ) ) (

2,

)

3

(

,

( ) )

U t τ P f τ ϕ τ −U t τ P f τ ϕ τ <εT01 for all t1− < , t2 δ3 0≤ ≤ ≤ and τ t2 T0

( ) ( )

{

U t1,τ −U t2

} (

P1+P2

)

f

(

τ ϕ τ,

( ) )

T01 for all t1− < , t2 δ3 0≤ ≤ ≤ . Let t1 τ T0 δ =min

{

δ δ δ1, 2, 3

}

, then

( )

1

( )

2

Gϕ tGϕ t ≤ +ε

(

t2s

)

εT01+

(

T0t1

)

εT01+2ε ≤6ε for all 0≤ ≤ ≤ + . t2 t1 t2 δ

Hence, G is well-defined and Gϕ ∈C

( [

0,

)

;X

)

for all ϕ ∈ . Moreover, D Gϕ−Gφ

( ) ( ( ( ) ) ( ( ) ) )

{

0 3

0

sup t , , ,

t

U tτ P f τ ϕ τ f τ φ τ dτ

( )

, 2

(

2

(

,

( ) )

2

(

,

( ) ) )

tU tτ P P f τ ϕ τ P f τ φ τ dτ

+

( )

, 1

( (

,

( ) ) (

,

( ) ) ) }

tU tτ P f τ ϕ τ f τ φ τ dτ

+

( ) ( ) ( ) ( ) ( ) ( )

{

0 3 1

}

0

sup t , ,

t t

U tτ P γ ϕ τ φ τ dτ U tτ P γ ϕ τ φ τ dτ

− +

( )

2

(

2

( ( ) )

2

( ( ) ) )

0

sup , , ,

t t

U t τ P P f τ ϕ τ P f τ φ τ dτ

+

( ) ( )

{

0 3 1

}

0

sup t , ,

t t

U t P d U t P d

γ ϕ φ τ τ τ τ

≤ −

+

( ( ) ) ( ( ) )

2 2 2

0 0

sup , ,

t

L P f τ ϕ τ P f τ φ τ dτ

+

2 2

K L

γ ϕ φ γ ϕ φ

≤ − + −

(

γK γ2L2

)

ϕ φ

≤ + −

for all φ , ϕ ∈ . This lemma is proved now. D

Lemma 5.2. Suppose that the C -evolution system 0

{

U t s

( )

, : 0≤ ≤ < ∞ s t

}

satisfies conditions (A1)~(A4). Then lim

( )

, 3 0

t U t s P

→∞ = for all s≥ , and there is 0 a constant L3> such that 0 U t

( )

, 0 P3L3 for all t≥ . 0

(6)

Furthermore, if the function f : 0,

[

∞ × →

)

X X satisfies conditions (F1)~(F4) and the constants K , L , 2 γ and γ in (A3), (A4), (F2) and (F4) satisfy 2

2 2 1

K L

γ +γ < , then for any ξ ∈3 P X3 with ξ3 < −

(

1 γK−γ2L2

)

αL31, the operator G is a contraction mapping from D into itself.

Proof. From the condition (A3), we obtain that

( )

3

0t U tP dτ ≤K

for all

0

t≥ . For any fixed s≥ , let 0

( )

t U t s P

( )

, 3 1

ϕ = for all t≥ . s Then for any fixed ξ ∈ and X t≥ ≥ , s 0

(

stϕ τ τ

( )

d

)

U t s P

( )

, 3ξ =

stϕ τ

( ) ( )

U t s P d, 3ξ τ

( ) ( )

, 3

( )

, 3 t

sϕ τ U tτ PU τ s P dξ τ

=

( ) ( )

, 3

( )

, 3 t

sϕ τ U tτ PU τ s Pξ τd

( ) ( )

, 3

( )

, 3 t

sϕ τ U t τ P U τ s P ξ τd

( ) ( )

, 3

( )

, 3 t

s U s P U t P d

ξ ϕ τ τ τ τ

=

( )

, 3 t

s U t P d

ξ τ τ

=

( )

3 0t U t, P d

ξ τ τ

K ξ

= .

This implies that

( )

, 3

(

st

( ) ) (

st

( ) ) ( )

, 3

U t s P

ϕ τ τd =

ϕ τ τd U t s PK

for all t≥ ≥ and s 0

( )

1 t

( )

t s d K

ϕ

ϕ τ τ ≤ for all t≥ ≥ . s 0 Let

( )

t

( )

t sϕ τ τd

Ψ =

for all t≥ ≥ . Then s 0

( )

t

( )

t 1 st

( )

d 1

( )

t

K K

ϕ ϕ τ τ

Ψ′ = ≥

= Ψ ,

(7)

and hence Ψ

( ) ( )

t Ψ t 1K1 for all t≥ ≥ . This shows that for any fixed s 0

0 0

t > ≥ , s

( )

t

( )

t0 exp

{

K1

(

t t0

) }

Ψ ≥ Ψ − for all t≥ . t0 and

( )

, 3

( )

1

U t s Pt

( )

1

K t

≤ Ψ

( )

0 1exp

{

1

(

0

) }

K t K t t

≤ Ψ − −

( ) ( )

{

K t0 1exp K t10

}

exp

(

K t1

)

≤ Ψ −

for all t≥ . Therefore, t0 lim

( )

, 3 0

t U t s P

→∞ = for all s≥ and 0

( )

, 0 3

{ ( )

1 1exp

( )

1

}

exp

(

1

)

U t PKΨ KK t

( )

1 1exp

( )

1

K K

≤ Ψ

for all t≥ . With a similar proof as that for Lemma 2.1, there exists a constant 1

1 0

M > such that U t

( )

, 0 P3M1 for all t

[ ]

0,1 . Let

( ) ( )

{

1 1

}

3 max 1, 1 exp

L = M KΨ K .

Then U t

( )

, 0 P3L3 for all t≥ . 0

If γK2L2 < and 1 ξ ∈3 P X3 with ξ3 < −

(

1 γK−γ2L2

)

αL31, then for any ϕ ∈ , D

( )

3

( )

3

( ( ) )

0 0

sup ,0 t , ,

t

U t ξ U tτ P f τ ϕ τ dτ

= +

( )

, 2

(

,

( ) ) ( )

, 1

(

,

( ) )

tU t τ P f τ ϕ τ dτ tU tτ P f τ ϕ τ dτ

( )

3 3

( )

2 2

( ( ) )

0 0

sup , 0 sup , ,

t t t

U t Pξ U t τ P P f τ ϕ τ dτ

≤ +

( ) ( ( ) )

(

0 3

sup t , ,

t s

U tτ P f τ ϕ τ dτ

+

( )

, 1

(

,

( ) ) )

t U tτ P f τ ϕ τ dτ +

(8)

( )

3 3

( )

2 2

( ( ) )

0 0

sup , 0 sup , ,

t t t

U t P ξ U t τ P P f τ ϕ τ dτ

≤ +

( ) ( ) ( ) ( )

(

0t U t,τ P3 γ ϕ τ dτ t U t,τ P1 γ ϕ τ dτ

)

+

+

( ( ) )

3 3 2 0 2 ,

L ξ L P f τ ϕ τ dτ γK ϕ

≤ +

+

( )

3 3 2 2

L ξ γ L γK ϕ

≤ + +

(

2 2

) ( )

3 2 2

3

1 L K

L L K

L

γ γ α γ γ α

− −

≤ + +

α

= .

Hence, Gϕ ∈ for all D ϕ ∈ and D G D

( )

⊂ . D

Moreover, from Lemma 5.1,

2 2

( )

Gϕ−Gφ ≤ γKL ϕ φ− for any φ , ϕ ∈ . D

Hence, :G D→ is a contraction mapping on D with a contraction constant D

2 2

K L

γ +γ . The assertion of this lemma is established now.

Theorem 5.3. Suppose that the C -evolution system 0

{

U t s

( )

, : 0≤ ≤ < ∞ s t

}

satisfies conditions (A1)~(A4) and the function f : 0,

[

∞ × →

)

X X satisfies conditions (F1)~(F4). If the constants K , L , 2 γ and γ in (A3), (A4), (F2) and 2 (F4) satisfy γK2L2< , then for any 1 ξ ∈3 X3 with ξ3 < −

(

1 γK−γ2L2

)

αL31, there exists ξ ∈ such that 0 X 3 0 = and the corresponding unique mild solution ξ3

( )

u t to the abstract semilinear initial value problem (5.1) is bounded on

[

0,∞ .

)

Furthermore, lim

( )

0

t u t

→∞ = .

Proof. From Lemma 5.2, G D: → is a contraction mapping on D with a D contraction constant γK2L2 . Then there exists uD such that Gu= . u Hence, u t is bounded on

( ) [

0,∞ , and

)

( ) ( )

3

( )

3

( ( ) )

0

, 0 t , ,

u t =U t ξ +

U tτ P f τ u τ dτ

( )

, 2

(

,

( ) ) ( )

, 1

(

,

( ) )

tU t τ P f τ u τ dτ tU tτ P f τ u τ dτ

.

Thus

(9)

( )

0 3 0

( )

0, 2

(

,

( ) )

0

( )

0, 1

(

,

( ) )

u =ξ −

U τ P f τ u τ dτ −

U τ P f τ u τ dτ . Let ξ =0 u

( )

0 ∈X . Following from the facts PU t s3

( )

, =U t s P

( )

, 3 for all

0

t≥ ≥ and s P Pj 3 = for each j =1, 2, we have 0 P3 0ξ =P u3

( )

0 = . On the other ξ3

hand,

( )

u t

( )

,0 3 0t

( )

, 3

(

,

( ) ) ( )

, 2

(

,

( ) )

U t ξ U tτ P f τ u τ dτ tU tτ P f τ u τ dτ

= +

( )

, 1

(

,

( ) )

tU t τ P f τ u τ dτ

( )

, 0 0

( )

, 0 0

( )

0, 2

(

,

( ) )

U t ξ U t U τ P f τ u τ dτ

= +

( )

, 0

( )

0, 1

(

,

( ) )

U t s U τ P f τ u τ dτ

+

( )

3

( ( ) )

0tU tP f τ,u τ dτ +

( )

, 2

(

,

( ) ) ( )

, 1

(

,

( ) )

tU t τ P f τ u τ dτ tU tτ P f τ u τ dτ

( )

, 0 0 0t

( )(

, 1 2 3

) (

,

( ) )

U t ξ U t τ P P P f τ u τ dτ

= +

+ +

( )

, 0 0 0t

( )

,

(

,

( ) )

U t ξ U t τ f τ u τ dτ

= +

for any t≥ . 0

This shows that u t

( )

is a bounded mild solution to the abstract semilinear initial value problem (5.1) with initial value ξ on 0

[

0,∞ which satisfies

)

3 03. From Theorem 2.14, the solution u t

( )

is unique on

[

0,∞ .

)

Since u t

( )

≤α for all t≥ , there exists a constant 0 µ ∈ ∞ such that

[

0,

)

t

( )

lim u t

µ = →∞ . If µ > , then there is a constant 0 θ ∈

( )

0,1 and t1≥ such that 0

2 2

K L

θ γ> +γ and u t

( )

≤θ µ1 for all t≥ . From Lemma 5.2, one may have t1

( )

3

( )

1 3

lim , 0 lim , 0

t U t P t U t t P

→∞ = →∞ = . For any t≥ ≥ with t large enough, t1 0

( )

u t

( )

, 0 3 0t

( )

, 3

(

,

( ) )

U t ξ U tτ P f τ u τ dτ

= +

( )

, 2

(

,

( ) ) ( )

, 1

(

,

( ) )

tU tτ P f τ u τ dτ tU tτ P f τ u τ dτ

(10)

( )

, 0 3 3

( )

, 1 3 0t1

( )

1, 3

(

,

( ) )

U t P ξ U t t P U t τ P f τ u τ dτ

≤ +

( ) ( ( ) ) ( ) ( ( ) )

1

3 1

, , , ,

t

t U t τ P f τ u τ dτ tU tτ P f τ u τ dτ

+

+

( )

, 2

(

,

( ) )

tU tτ P f τ u τ dτ

+

( )

3 3

( )

1 3 1

( )

1 3

( ( ) )

, 0 , 0t , ,

U t P ξ U t t P U t τ P f τ u τ dτ

≤ +

( ) ( )

1

, 3 t

t U tτ P γ u τ dτ

+

+

t U t

( )

,τ P1 γ u

( )

τ dτ

( )

, 2 2

(

,

( ) )

t U tτ P P f τ u τ dτ +

( )

, 0 3 3

( )

, 1 3 0t1

( )

1, 3

(

,

( ) )

U t P ξ U t t P U t τ P f τ u τ dτ

≤ +

( ) ( )

(

1

)

1

3 1

, ,

t

t U t τ P dτ t U tτ P dτ γθ µ

+

+

( ( ) )

2 2 ,

L t P f τ u τ dτ +

( )

, 0 3 3

( )

, 1 3 0t1

( )

1, 3

(

,

( ) )

1

U t P ξ U t t P U t τ P f τ u τ dτ Kγθ µ

≤ +

+

( ( ) )

2 2 ,

L t P f τ u τ dτ

+

.

Thus lim

( ) (

2 2

)

1

t u t K L

µ γ γ θ µ µ

= →∞ ≤ + < . This is impossible, and hence µ = . 0 This shows that lim

( )

0

t u t

→∞ = , and this theorem is completely proved now.

With the same processes as in the proofs of Lemma 5.1 and Lemma 5.2, one may easily obtain following Lemma 5.4 and Lemma 5.5.

Lemma 5.4. Suppose the C -evolution system 0

{

U t s

( )

, : 0≤ ≤ < ∞ satisfies s t

}

conditions (A1)~(A4) and the function f : 0,

[

∞ × →

)

X X satisfies conditions (F1)~(F4). For any fixed ξ ∈2 X2, ξ ∈3 X3, let the operator B D: C

( [

0,

)

;X

)

be defined by

( )( ) ( )

2

( )

3

( )

2

( ( ) )

, 0 , 0 0t , ,

Bϕ t =U t ξ +U t ξ +

U tτ P f τ ϕ τ dτ

( )

3

( ( ) )

0tU tP f τ ϕ τ, dτ

+

tU t

( )

,τ P f1

(

τ ϕ τ,

( ) )

dτ

(11)

for all ϕ ∈ , then B is well-defined and D

2 2

( )

Bϕ−Bφ ≤ γKL ϕ φ− for any φ , ϕ ∈ . D Where γ , K , γ , 2 L are the constants in (A3), (A4), (F2) and (F4). 2

Lemma 5.5. Suppose that the C -evolution system 0

{

U t s

( )

, : 0≤ ≤ < ∞ s t

}

satisfies conditions (A1)~(A4) and the function f : 0,

[

∞ × →

)

X X satisfies conditions (F1)~(F4). If the constants K , L , 2 γ and γ in (A3), (A4), (F2) and 2 (F4) satisfy γK2L2 < , then for any 1 ξ ∈2 X2, ξ ∈3 X3 with both ξ and 2 ξ 3 strictly less than

(

1−γK−γ2L2

) (

α L2+L3

)

1, where L is as in Lemma 5.2, the 3 operator B is a contraction mapping from D into itself.

Theorem 5.6. Suppose that the C -evolution system 0

{

U t s

( )

, : 0≤ ≤ < ∞ s t

}

satisfies conditions (A1)~(A4) and the function f : 0,

[

∞ × →

)

X X satisfies conditions (F1)~(F4). If the constants K , L , 2 γ and γ in (A3), (A4), (F2) and 2 (F4) satisfy γK2L2 < . Then for any 1 ξ ∈2 X2 , ξ ∈3 X3 with ξ , 2

( ) ( )

1

3 1 K 2L2 L2 L3

ξ < −γ −γ α + , there exists ξ ∈0 X such that 3 03 ,

2 0 2

Pξ =ξ and the corresponding unique mild solution u t to the abstract

( )

semilinear initial value problem (5.1) is bounded on

[

0,∞ . More precisely,

)

2 3

2 3

2 2 2 2

1 1

L L

u K L ξ K L ξ

γ γ γ γ

≤ +

− − − − .

Proof. From Lemma 5.5, B D: → is a contraction mapping on D with a D contraction constant γK2L2 . Hence there exists u∈ such that Bu uD = ,

( )

u t is bounded on

[

0,∞ ,

)

( ) ( )(

, 0 2 3

)

0t

( )

, 2

(

,

( ) )

u t =U t ξ ξ+ +

U tτ P f τ u τ dτ

( )

3

( ( ) ) ( )

1

( ( ) )

0t , , , ,

U tτ P f τ u τ dτ tU t τ P f τ u τ dτ

+

and

( )

0 2 3 0

( )

, 1

(

,

( ) )

u =ξ + −ξ

U sτ P f τ u τ dτ.

(12)

Let ξ =0 u

( )

0 ∈X . Since P U t sj

( )

, =U t s P

( )

, j and P Pj i = for 0 i j, 1, 2, 3∈

{ }

and i≠ , this implies j P2 0ξ =P u2

( )

0 = , ξ2 P3 0ξ =P u3

( )

0 = . On the other hand, ξ3

( )

u t =U t

( )(

,0 ξ ξ2+ 3

)

+

0tU t

( )

,τ P f2

(

τ,u

( )

τ

)

dτ

( )

3

( ( ) ) ( )

1

( ( ) )

0t , , , ,

U tτ P f τ u τ dτ tU t τ P f τ u τ dτ

+

( )

, 0 0

( )

, 0 0

( )

, 1

(

,

( ) )

U t ξ U t U sτ P f τ u τ dτ

= +

( )

2

( ( ) ) ( )

3

( ( ) )

0tU tP f τ,u τ dτ 0tU tP f τ,u τ dτ

+

+

( )

, 1

(

,

( ) )

tU t τ P f τ u τ dτ

( )

0

( )(

1 2 3

) ( ( ) )

, 0 0t , ,

U t ξ U t τ P P P f τ u τ dτ

= +

+ +

( )

, 0 0 0t

( )

,

(

,

( ) )

U t ξ U t τ f τ u τ dτ

= +

for any t≥ . 0

Thus u t

( )

is a bounded mild solution to the abstract semilinear initial value problem (5.1) on

[

0,∞ with initial value

)

ξ which satisfies 0 P2 0ξ = , ξ2 3 0= . The ξ3 uniqueness of the solution can be obtained as in the proof of Theorem 2.14 immediately. Furthermore,

( )(

2 3

)

0

( )

2

( ( ) )

0

sup , 0 t , ,

t

u U t ξ ξ U tτ P f τ u τ dτ

= + +

( )

, 3

(

,

( ) ) ( )

, 1

(

,

( ) )

t

sU tτ P f τ u τ dτ tU tτ P f τ u τ dτ

+

( )

2 2

( )

3 3

0 0

sup , 0 sup , 0

t t

U t P ξ U t P ξ

≤ +

( )

2 2

( ( ) )

0 0

sup t , ,

t

U tτ P P f τ u τ dτ

+

( ) ( ( ) )

(

0 3

0

sup t , ,

t

U tτ P f τ u τ dτ

+

( )

, 1

(

,

( ) ) )

t U tτ P f τ u τ dτ

+

( )

2 2

( )

3 3

0 0

sup , 0 sup , 0

t t

U t P ξ U t P ξ

≤ +

( )

2 2

( ( ) )

0 0

sup t , ,

t

U tτ P P f τ u τ dτ +

(13)

( ) ( )

(

0 3

0

sup t ,

t

U tτ P γ u τ τd

+

( )

, 1

( ) )

t U tτ P γ u τ τd

+

∫ ( ( ) )

2 2 3 3 2 0 2 ,

L ξ L ξ L P f τ u τ dτ γK u

≤ + +

+

( )

2 2 3 3 2 2

L ξ L ξ γ L γK u

≤ + + + .

Thus

(

1−γK−γ2L2

)

u L2ξ2 +L3ξ3 and

2 3

2 3

2 2 2 2

1 1

L L

u K L ξ K L ξ

γ γ γ γ

≤ +

− − − − .

The proof of this theorem is completed now.

§ 5-2 Applications

Example 5.1 We will consider the semilinear differential equations:

( ) ( ) ( ) ( ) ( )

( ) [ )

( )

0

( )

, , , , , on 0,

, 0 on 0, 0, on u t x u t x u t x f t x u t

u t x

u x x

β

ξ

∂ = ∆ + + ∞ × Ω

∂

= ∞ × ∂Ω

 = Ω



(5.2)

where Ω ⊂Rn is a bounded domain with smooth boundary, β > is a constant, the 0 function f satisfy conditions (F1)~(F4), and ξ ⋅ is in 0

( )

L2

( )

Ω . Let X be the Hilbert space L2

( )

Ω , and let the operator A D A:

( )

X be defined by

Aϕ = ∆ +ϕ βϕ for all ϕ ∈D A

( )

,

where D A

( )

=

{

ϕC1

( )

IC2

( ) ( )

:ϕ x =0 on ∂Ω

}

. Then the semilinear differential equation (5.2) can be replaced by the semilinear initial value problem:

( ) ( ) ( ) ( )

( )

0

, on 0, 0

d u t Au t f t u dt

u ξ X

 = + ∞



 = ∈

(5.3)

for all u

( )

⋅ ∈D A

( )

. From [13, P.205], it can be shown that there exists a sequence

(14)

of eigenfunctions

{

ϕn :nN

}

corresponding to the sequence of eigenvalues

{

λn:nN

}

for A and

{

ϕn:nN

}

is an orthonormal basis for the Hilbert space X.

This implies that

1 , k k

ϕ =

k= ϕ ϕ ϕ for all ϕ ∈ , X

and the C -semigroup 0

{

S t

( )

:t ≥0

}

generated by A on X is given by

(

S t

( )

ϕ

) ( )

x =

k=1exp

( )

λkt ϕ ϕ ϕ, k k

( )

x for all ϕ ∈ , x ∈Ω . X Suppose that β > be a constant such that the eigenvalues of A satisfies 0

1 2

Reλ ≥Reλ ≥L≥Reλn >0,

1 2

Reλn+ =Reλn+ =L=Reλm =0 and

1 2

0>Reλm+ ≥Reλm+ ≥ LL.

We may define linear operators P , 1 P and 2 P on X by 3

1 n 1 , k k

=

k= ϕ ϕ ϕ for all ϕ ∈ , X

2 mk n 1 , k k

Pϕ =

= + ϕ ϕ ϕ for all ϕ ∈ , X and

3 k m1 , k k

=

= + ϕ ϕ ϕ for all ϕ ∈ . X

Then operators P , 1 P and 2 P are projections on the Hilbert space X. Let 3 X be i the range of a projection P for each i =1, 2, 3. Thus dimensions of i X and 1 X 2 are n and m− , respectively. Let n

( )

,

( )

U t s =S t− for s all t≥ ≥ , s 0

then

{

U t s

( )

, : 0≤ ≤ < ∞ is a s t

}

C -evolution system with the infinitesimal 0 generator A t

( )

≡ . Since A

( ) ( )

nk 1 , k k

S t ϕ =S t

= ϕ ϕ ϕ

1 ,

( )

n

k k

k= ϕ ϕ S t ϕ

=

( ( ) )

1 , 1exp ,

n

k j k j j

k= ϕ ϕ j= λt ϕ ϕ ϕ

=

∑ ∑

1exp

( )

,

n

k k k

k= λt ϕ ϕ ϕ

=

X1 for any t≥ and 0 ϕ ∈X1,

(15)

and similarly, S t

( )

ϕ =

mk n= +1exp

( )

λkt ϕ ϕ ϕ, k k for all t≥ and 0 ϕ ∈X2. This

implies that

{

S t

( )

| :X1 tR

}

and

{

S t

( )

| :X2 tR

}

are C -groups on 0 X and 1 X , 2 respectively. Therefore, the condition (A1) holds. On the other hand, since

( ) ( )

1 1 1exp k , k k

P S t ϕ =P

k= λt ϕ ϕ ϕ 1exp

( )

k , k 1 k

k λt ϕ ϕ Pϕ

=

=

=

k=1exp

( )

λkt ϕ ϕ, k

(

nj=1 ϕ ϕ ϕk, j j

)

=

nk=1exp

( )

λkt ϕ ϕ ϕ, k k

=

nk=1 ϕ ϕ, k S t

( )

ϕk

=S t Pϕ

( )

1 for all t≥ and 0 ϕ ∈ , X and

( ) ( )

2 2 k 1exp k , k k

P S t ϕ =P

= λt ϕ ϕ ϕ 1exp

( )

k , k 2 k

k λt ϕ ϕ Pϕ

=

=

=

k=1exp

( )

λkt ϕ ϕ, k

(

mj n= +1 ϕ ϕ ϕk, j j

)

=

mk n= +1exp

( )

λkt ϕ ϕ ϕ, k k

=

mk n= +1 ϕ ϕ, k S t

( )

ϕk

=S t P

( )

2ϕ for all t≥ and 0 ϕ ∈ . X

This shows that P S t1

( )

=S t P

( )

1 and P S t2

( )

=S t P

( )

2 on X for all t≥ . Thus, 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

3 1 2 1 2 3

P S t = I − −P P S t =S tP S tP S t =S t P on X for all t≥ . Hence, the condition (A2) holds. 0

For all t∈ and R ϕ ∈ , X

( )

1 n 1exp

( )

k , k k S t Pϕ =

k= λt ϕ ϕ ϕ

1exp

( )

,

n

k k k

k= λt ϕ ϕ ϕ

nk=1exp

( )

λkt ϕ ϕk2

(

nk=1exp Re

(

t λk

) )

ϕ ,

and hence

參考文獻

相關文件

remember from Equation 1 that the partial derivative with respect to x is just the ordinary derivative of the function g of a single variable that we get by keeping y fixed.. Thus

The five-equation model system is composed of two phasic mass balance equations, the mixture momentum equation, the mixture total energy equation, and an evolution equation for

We do it by reducing the first order system to a vectorial Schr¨ odinger type equation containing conductivity coefficient in matrix potential coefficient as in [3], [13] and use

An alternative way to proceed would be to directly estimate that one of the unknown constants C 1 :::C 4 which is appropriate to the context (e.g. C 1 if we were using the excess

In Case 1, we first deflate the zero eigenvalues to infinity and then apply the JD method to the deflated system to locate a small group of positive eigenvalues (15-20

Al atoms are larger than N atoms because as you trace the path between N and Al on the periodic table, you move down a column (atomic size increases) and then to the left across

 Promote project learning, mathematical modeling, and problem-based learning to strengthen the ability to integrate and apply knowledge and skills, and make. calculated

This kind of algorithm has also been a powerful tool for solving many other optimization problems, including symmetric cone complementarity problems [15, 16, 20–22], symmetric