Intel x86 Assembly Fundamentals
Computer Organization and Assembly Languages p g z y g g Yung-Yu Chuang
with slides by Kip Irvine
x86 Assembly Language x86 Assembly Language
Fundamentals
Instructions
• Assembled into machine code by assembler
• Executed at runtime by the CPU
• Member of the Intel IA-32 instruction set
• Four parts
– Label (optional)Label (optional)
– Mnemonic (required)
Operand (usually required) – Operand (usually required) – Comment (optional)
Label: Mnemonic Operand(s) ;Comment
3
Labels
• Act as place markers
marks the address (offset) of code and data – marks the address (offset) of code and data
• Easier to memorize and more flexible mov ax [0020] → mov ax val mov ax, [0020] → mov ax, val
• Follow identifier rules D l b l
• Data label
– must be unique l
– example: myArray BYTE 10
• Code label (ends with a colon)
– target of jump and loop instructions – example: L1: mov ax, bx
...
jmp L1
Reserved words and identifiers
• Reserved words cannot be used as identifiers
Instruction mnemonics directives type attributes – Instruction mnemonics, directives, type attributes,
operators, predefined symbols
• Identifiers Identifiers
– 1-247 characters, including digits – case insensitive (by default)case insensitive (by default)
– first character must be a letter, _, @, or $ – examples: p
var1 Count $first
_main MAX open_file
@@myfile xVal _12345
5
Mnemonics and operands
• Instruction mnemonics
"reminder"
– reminder
– examples: MOV, ADD, SUB, MUL, INC, DEC
• Operands
• Operands
– constant (immediate value), 96 – constant expression 2+4constant expression, 2+4
– Register, eax
– memory (data label), county ( ), cou t
• Number of operands: 0 to 3
– stcstc ; set Carry flag; set Carry flag
– inc ax ; add 1 to ax
– mov count, bx, ; move BX to count
Directives
• Commands that are recognized and acted upon by the assembler
by the assembler
– Part of assembler’s syntax but not part of the Intel instruction set
instruction set
– Used to declare code, data areas, select memory model declare procedures etc
model, declare procedures, etc.
– case insensitive
• Different assemblers have different directives
• Different assemblers have different directives
– NASM != MASM, for example
E l d d OC
• Examples: .data .code PROC
7
Comments
• Comments are good!
– explain the program's purposeexplain the program s purpose – tricky coding techniques
– application-specific explanationspp p p
• Single-line comments
– begin with semicolon (;)g (;)
• block comments
– begin with COMMENT directive and a programmer-begin with COMMENT directive and a programmer chosen character and end with the same
programmer-chosen character
! COMMENT !
This is a comment
and this line is also a comment and this line is also a comment
Example: adding/subtracting integers
directive marking a comment
TITLE Add and Subtract (AddSub.asm)
; This program adds and subtracts 32-bit integers.
comment
INCLUDE Irvine32.inc .code
copy definitions from Irvine32.inc code segment. 3 segments: code, data, stack
main PROC
mov eax,10000h ; EAX = 10000h add eax,40000h ; EAX = 50000h
code seg e t. 3 seg e ts: code, data, stac beginning of a procedure
source d ti ti
add eax,40000h ; EAX 50000h sub eax,20000h ; EAX = 30000h
call DumpRegs ; display registers exit
destination
defined in Irvine32 inc to end a program
exit main ENDP
END main marks the last line and
defined in Irvine32.inc to end a program
9
define the startup procedure
Example output
Program output showing registers and flags:
Program output, showing registers and flags:
EAX 00030000 EBX 7FFDF000 ECX 00000101 EDX FFFFFFFF EAX=00030000 EBX=7FFDF000 ECX=00000101 EDX=FFFFFFFF ESI=00000000 EDI=00000000 EBP=0012FFF0 ESP=0012FFC4 EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0
Alternative version of AddSub
TITLE Add and Subtract (AddSubAlt.asm)
; This program adds and subtracts 32-bit integers.
.386
.MODEL flat,stdcall, .STACK 4096
ExitProcess PROTO, dwExitCode:DWORD DumpRegs PROTO
.code
main PROC main PROC
mov eax,10000h ; EAX = 10000h add eax,40000h ; EAX = 50000h sub eax,20000h ; EAX = 30000h call DumpRegs
INVOKE ExitProcess,0 main ENDP
END main
11
END main
Program template
TITLE Program Template (Template.asm)
; Program Description:
; Author:
; Creation Date:
;
; Revisions:
; Date: Modified by:
.data
; (insert variables here) code
.code
main PROC
; (insert executable instructions here) i
exit main ENDP
; (insert additional procedures here) END main
Assemble-link execute cycle
• The following diagram describes the steps from creating a source program through executing the creating a source program through executing the compiled program.
• If the source code is modified, Steps 2 through 4 must , p g be repeated.
Link Library
St 2 Step 3: Step 4:
Source File
Object File
Executable
File Output
Step 2:
assembler
Step 3:
linker
Step 4:
OS loader
Listing File
Map
Step 1: text editor File
13
Defining data
Intrinsic data types
(1 of 2)• BYTE , SBYTE
8 bit i d i t 8 bit i d i t
– 8-bit unsigned integer; 8-bit signed integer
• WORD , SWORD
– 16-bit unsigned & signed integer
• DWORD , SDWORD
– 32-bit unsigned & signed integer
• QWORD Q
– 64-bit integer
• TBYTE
• TBYTE
– 80-bit integer
15
Intrinsic data types
(2 of 2)• REAL4
4 b t IEEE h t l – 4-byte IEEE short real
• REAL8
– 8-byte IEEE long real
• REAL10
– 10-byte IEEE extended real
Data definition statement
• A data definition statement sets aside storage in memory for a variable
memory for a variable.
• May optionally assign a name (label) to the data.
• Only size matters other attributes such as signed are
• Only size matters, other attributes such as signed are just reminders for programmers.
• Syntax:Syntax:
[name] directive initializer [,initializer] . . . At least one initializer is required, can be ?
• All initializers become binary data in memory
17
Integer constants
• [{+|-}] digits [radix]
Optional leading + or sign
• Optional leading + or – sign
• binary, decimal, hexadecimal, or octal digits
C di h t
• Common radix characters:
– h – hexadecimal
d d i l (d f lt) – d – decimal (default) – b – binary
r encoded real – r – encoded real – o – octal
Examples: 30d, 6Ah, 42, 42o, 1101b
Hexadecimal beginning with letter: 0A5h
Hexadecimal beginning with letter: 0A5h
Integer expressions
• Operators and precedence levels:
• Examples:
19
Real number constants (encoded reals)
• Fixed point v.s. floating point
1 8 23
S E M
1 8 23
±1.bbbb×2
(E-127)• Example 3F800000r=+1.0,37.75=42170000r
• double
1 11 52
S E M
Real number constants (decimal reals)
• [sign]integer.[integer][exponent]
i { | } sign → {+|-}
exponent → E[{+|-}]integer
• Examples:
2 2.
+3.0
-44 2E+0544.2E+05 26.E5
21
Character and string constants
• Enclose character in single or double quotes
'A' " "
– 'A', "x"
– ASCII character = 1 byte
l l d bl
• Enclose strings in single or double quotes
– "ABC"
– 'xyz'
– Each character occupies a single byte
• Embedded quotes:
– ‘Say "Goodnight," Gracie’y g – "This isn't a test"
Defining BYTE and SBYTE Data
Each of the following defines a single byte of storage:
value1 BYTE 'A‘ ; character constant
l 2 BYTE 0 ll t i d b t
value2 BYTE 0 ; smallest unsigned byte value3 BYTE 255 ; largest unsigned byte value4 SBYTE -128 ; smallest signed byte value5 SBYTE +127 ; largest signed byte value6 BYTE ? ; uninitialized byte
A variable name is a data label that implies an offset (an address).
23
Defining multiple bytes
Examples that use multiple initializers:
list1 BYTE 10 20 30 40
Examples that use multiple initializers:
list1 BYTE 10,20,30,40 list2 BYTE 10,20,30,40 BYTE 50,60,70,80 BYTE 81,82,83,84, , ,
list3 BYTE ?,32,41h,00100010b list4 BYTE 0Ah,20h,‘A’,22h
Defining strings
(1 of 2)• A string is implemented as an array of characters
characters
– For convenience, it is usually enclosed in quotation marks
q
– It usually has a null byte at the end
• Examples:
str1 BYTE "Enter your name",0
str2 BYTE 'Error: halting program',0
Examples:
str3 BYTE 'A','E','I','O','U'
greeting1 BYTE "Welcome to the Encryption Demo program "
BYTE "created by Kip Irvine " 0 BYTE created by Kip Irvine. ,0 greeting2 \
BYTE "Welcome to the Encryption Demo program "
25
BYTE "created by Kip Irvine.",0
Defining strings
(2 of 2)• End-of-line character sequence:
0Dh = carriage return – 0Dh = carriage return – 0Ah = line feed
str1 BYTE "Enter your name: ",0Dh,0Ah BYTE "Enter your address: " 0
BYTE Enter your address: ,0 newLine BYTE 0Dh 0Ah 0
newLine BYTE 0Dh,0Ah,0
Idea: Define all strings used by your program in the same area of the data segment.
Using the DUP operator
• Use DUP to allocate (create space for) an array or string
string.
• Counter and argument must be constants or constant expressionsp
var1 BYTE 20 DUP(0) ; 20 bytes, all zero var2 BYTE 20 DUP(?) ; 20 bytes,
i iti li d
; uninitialized var3 BYTE 4 DUP("STACK") ; 20 bytes:
;"STACKSTACKSTACKSTACK"
var4 BYTE 10 3 DUP(0) 20
27
var4 BYTE 10,3 DUP(0),20
Defining WORD and SWORD data
• Define storage for 16-bit integers or double characters
– or double characters
– single value or multiple values
word1 WORD 65535 ; largest unsigned word2 SWORD –32768 ; smallest signed g word3 WORD ? ; uninitialized,
; unsignedg
word4 WORD "AB" ; double characters myList WORD 1,2,3,4,5y , , , , ; array of words; y
array WORD 5 DUP(?) ; uninitialized array
Defining DWORD and SDWORD data
Storage definitions for signed and unsigned 32-bit Storage definitions for signed and unsigned 32-bit integers:
val1 DWORD 12345678h ; unsigned val2 SDWORD –2147483648 ; signed val2 SDWORD –2147483648 ; signed
val3 DWORD 20 DUP(?) ; unsigned array val4 SDWORD 3 2 1 0 1 ; signed array val4 SDWORD –3,–2,–1,0,1 ; signed array
29
Defining QWORD, TBYTE, Real Data
Storage definitions for quadwords, tenbyte values, and real numbers:
quad1 QWORD 1234567812345678h and real numbers:
q Q
val1 TBYTE 1000000000123456789Ah rVal1 REAL4 -2.1a .
rVal2 REAL8 3.2E-260 rVal3 REAL10 4.6E+4096 rVal3 REAL10 4.6E+4096
ShortArray REAL4 20 DUP(0.0)
Little Endian order
• All data types larger than a byte store their individual bytes in reverse order The least individual bytes in reverse order. The least significant byte occurs at the first (lowest) memory address
memory address.
• Example:
val1 DWORD 12345678h
31
Adding variables to AddSub
TITLE Add and Subtract, (AddSub2.asm) INCLUDE Irvine32 inc
INCLUDE Irvine32.inc .data
val1 DWORD 10000h val2 DWORD 40000h val2 DWORD 40000h val3 DWORD 20000h finalVal DWORD ? .code
main PROC
mov eax,val1 ; start with 10000h add eax,val2 ; add 40000h
sub eax,val3 ; subtract 20000h
mov finalVal,eax, ; store the result (30000h); ( ) call DumpRegs ; display the registers
exit main ENDP main ENDP END main
Declaring unitialized data
• Use the .data? directive to declare an i ti li d d t t
unintialized data segment:
.data?
• Within the segment, declare variables with "?"
initializers: (will not be assembled into .exe)
Advantage: the program's EXE file size is reduced.
.data
smallArray DWORD 10 DUP(0) .data?
bigArray DWORD 5000 DUP(?)
33
Mixing code and data
.code
mov eax ebx mov eax, ebx .data
temp DWORD ? temp DWORD ? .code
mov temp eax
mov temp, eax
Symbolic constants
Equal-sign directive
• name = expression
i i 32 bit i t ( i t t)
– expression is a 32-bit integer (expression or constant) – may be redefined
i ll d b li t t – name is called a symbolic constant
• good programming style to use symbols
– Easier to modify
– Easier to understand, ESC_key COUNT = 500 Array DWORD COUNT DUP(0)
COUNT=5
l COUNT
.
mov al,COUNT mov al, COUNT
COUNT=10
mov al COUNT mov al, COUNT
Calculating the size of a byte array
• current location counter: $
bt t dd f li t – subtract address of list
– difference is the number of bytes
list BYTE 10,20,30,40 ListSize = ($ - list) list BYTE 10,20,30,40
ListSize = 4stS e stS e ($ st) list BYTE 10,20,30,40
var2 BYTE 20 DUP(?) ListSize = ($ - list)
myString BYTE “This is a long string.”
St i l ($ St i )
37
myString_len = ($ - myString)
Calculating the size of a word array
• current location counter: $
– subtract address of list
– difference is the number of bytes – divide by 2 (the size of a word)
li t WORD 1000h 2000h 3000h 4000h list WORD 1000h,2000h,3000h,4000h ListSize = ($ - list) / 2
list DWORD 1,2,3,4
ListSize = ($ - list) / 4
EQU directive
• name EQU expression name EQU symbol
name EQU <text> Q
• Define a symbol as either an integer or text expression
expression.
• Can be useful for non-integer constants C t b d fi d
• Cannot be redefined
39
EQU directive
PI EQU <3.1416>Q
pressKey EQU <"Press any key to continue...",0>
.data
prompt BYTE pressKey
matrix1 EQU 10*10 matrix2 EQU <10*10>
matrix2 EQU <10 10>
.data
M1 WORD matrix1 ; M1 WORD 100 M1 WORD matrix1 ; M1 WORD 100 M2 WORD matrix2 ; M2 WORD 10*10
Addressing
Addressing Modes
Addressing Modes
32-Bit Addressing Modes
• These addressing modes use 32-bit registers
Segment + Base + (Index * Scale) + displacement
Operand types
• Three basic types of operands:
I di t t t i t (8 16 32 bit ) – Immediate – a constant integer (8, 16, or 32 bits)
• value is encoded within the instruction R i t th f i t
– Register – the name of a register
• register name is converted to a number and encoded within the instruction
encoded within the instruction
– Memory – reference to a location in memory dd i d d ithi th
• memory address is encoded within the
instruction, or a register holds the address of a memory location
memory location
45
Instruction operand notation
Direct memory operands
• A direct memory operand is a named reference to storage in memory
reference to storage in memory
• The named reference (label) is automatically dereferenced by the assembler
dereferenced by the assembler
.data
1 BYTE 10h var1 BYTE 10h, .code
l 1 AL 10h
mov al,var1 ; AL = 10h mov al,[var1] ; AL = 10h alternate format; I prefer this one.
47
Direct-offset operands
A constant offset is added to a data label to produce an effective address (EA) The address is dereferenced to get effective address (EA). The address is dereferenced to get the value inside its memory location. (no range checking)
.data
arrayB BYTE 10h,20h,30h,40h d
.code
mov al,arrayB+1 ; AL = 20h
mov al,[arrayB+1] ; alternative notation mov al,[arrayB+1] ; alternative notation mov al,arrayB+3 ; AL = 40h
Direct-offset operands
(cont)A constant offset is added to a data label to produce an effective address (EA) The address is dereferenced to
data
effective address (EA). The address is dereferenced to get the value inside its memory location.
.data
arrayW WORD 1000h,2000h,3000h arrayD DWORD 1,2,3,4
.code
mov ax,[arrayW+2] ; AX = 2000h
[ W 4] AX 3000h
mov ax,[arrayW+4] ; AX = 3000h
mov eax,[arrayD+4] ; EAX = 00000002h
; will the following assemble and run?
mov ax,[arrayW-2] ; ??
[ 16]
49
mov eax,[arrayD+16] ; ??
Data-Related Operators and Directives
• OFFSET Operator
• PTR Operator
• TYPE Operator p
• LENGTHOF Operator
• SIZEOF Operator
• SIZEOF Operator
• LABEL Directive
OFFSET Operator
• OFFSET returns the distance in bytes, of a label from the beginning of its enclosing segment
from the beginning of its enclosing segment – Protected mode: 32 bits
– Real mode: 16 bits
offset offset
data segment:
myByte
The Protected-mode programs we write only have a single segment (we use the flat memory model).
51
g g ( y )
OFFSET Examples
Let's assume that bVal is located at 00404000h:
.data
bVal BYTE ? wVal WORD ? dVal DWORD ? dV l2 DWORD ? dVal2 DWORD ? .code
.code
mov esi,OFFSET bVal ; ESI = 00404000 mov esi,OFFSET wVal ; ESI = 00404001 mov esi,OFFSET dVal ; ESI = 00404003 mov esi,OFFSET dVal2; ESI = 00404007
Relating to C/C++
The value returned by OFFSET is a pointer. Compare the following code written for both C++ and assembly the following code written for both C++ and assembly language:
; C++ version:
char array[1000];
char * p = &array;
char * p = &array;
.data
array BYTE 1000 DUP(?) .code
mov esi OFFSET array ; ESI is p mov esi,OFFSET array ; ESI is p
53
TYPE Operator
The TYPE operator returns the size, in bytes, of a single element of a data declaration
element of a data declaration.
.data
var1 BYTE ? var2 WORD ? var3 DWORD ? var3 DWORD ? var4 QWORD ? .code
mov eax,TYPE var1 ; 1
2 2
mov eax,TYPE var2 ; 2 mov eax,TYPE var3 ; 4 mov eax TYPE var4 ; 8 mov eax,TYPE var4 ; 8
LENGTHOF Operator
The LENGTHOF operator counts the number of elements in a single data declaration
.data LENGTHOF
in a single data declaration.
byte1 BYTE 10,20,30 ; 3 array1 WORD 30 DUP(?),0,0 ; 32
2 WORD 5 DUP(3 DUP(?)) 15 array2 WORD 5 DUP(3 DUP(?)) ; 15 array3 DWORD 1,2,3,4 ; 4 digitStr BYTE "12345678",0 ; 9 digitStr BYTE 12345678 ,0 ; 9 .code
mov ecx,LENGTHOF array1 ; 32
55
SIZEOF Operator
The SIZEOF operator returns a value that is equivalent to multiplying LENGTHOF by TYPE
.data SIZEOF
multiplying LENGTHOF by TYPE.
byte1 BYTE 10,20,30 ; 3 array1 WORD 30 DUP(?),0,0 ; 64 array2 WORD 5 DUP(3 DUP(?)) ; 30 array3 DWORD 1,2,3,4 ; 16 digitStr BYTE "12345678" 0 ; 9 digitStr BYTE 12345678 ,0 ; 9 .code
mov ecx,SIZEOF array1 ; 64
ALIGN Directive
• ALIGN bound aligns a variable on a byte, word, doubleword or paragraph boundary for
doubleword, or paragraph boundary for efficiency. (bound can be 1, 2, 4, or 16.)
bVal BYTE ? ; 00404000 ALIGN 2
ALIGN 2
wVal WORD ? ; 00404002 bV l2 BYTE ? 00404004 bVal2 BYTE ? ; 00404004 ALIGN 4
dVal DWORD ? ; 00404008 dVal2 DWORD ? ; 0040400C
57
PTR Operator
Overrides the default type of a label (variable).
Provides the flexibility to access part of a variable .data
myDouble DWORD 12345678h
Provides the flexibility to access part of a variable.
myDouble DWORD 12345678h .code
mov ax,myDouble o a , y oub e ; error – why?; e o y?
mov ax,WORD PTR myDouble ; loads 5678h mov WORD PTR myDouble,4321h ; saves 4321h
To understand how this works, we need to know about little endian ordering of data in memory about little endian ordering of data in memory.
Little Endian Order
• Little endian order refers to the way Intel stores integers in memory
stores integers in memory.
• Multi-byte integers are stored in reverse order, with the least significant byte stored at the
with the least significant byte stored at the lowest address
• For example the doubleword 12345678h would
• For example, the doubleword 12345678h would be stored as:
offset byte
78 0000
56 0001
offset byte
When integers are loaded from memory into registers the bytes 56
34 12
0001 0002 0003
memory into registers, the bytes are automatically re-reversed into their correct positions.
59
12 0003
PTR Operator Examples
.data
myDouble DWORD 12345678h myDouble DWORD 12345678h
12345678 5678 78 0000
offset doubleword word byte
myDouble
12345678 5678 0000
1234
78 56 34
0001
myDouble myDouble + 1
1234 34 12
0002 0003
myDouble + 2 myDouble + 3
mov al,BYTE PTR myDouble ; AL = 78h mov al BYTE PTR [myDouble+1] ; AL = 56h mov al,BYTE PTR [myDouble+1] ; AL = 56h mov al,BYTE PTR [myDouble+2] ; AL = 34h mov ax,WORD PTR [myDouble]y ; AX = 5678h mov ax,WORD PTR [myDouble+2] ; AX = 1234h
PTR Operator
(cont)PTR can also be used to combine elements of a smaller
d d h i l d Th CPU
data type and move them into a larger operand. The CPU will automatically reverse the bytes.
.data
myBytes BYTE 12h,34h,56h,78h .code
mov ax WORD PTR [myBytes] ; AX = 3412h mov ax,WORD PTR [myBytes] ; AX = 3412h mov ax,WORD PTR [myBytes+1] ; AX = 5634h mov eax,DWORD PTR myBytes, y y ; EAX ;
; =78563412h
61
Your turn . . .
Write down the value of each destination operand:
.data
varB BYTE 65h,31h,02h,05h varW WORD 6543h 1202h
varW WORD 6543h,1202h varD DWORD 12345678h .code
mov ax,WORD PTR [varB+2] ; a. 0502h mov bl,BYTE PTR varD ; b. 78h
mov bl,BYTE PTR [varW+2] ; c.
mov ax WORD PTR [varD+2] ; d
78h 02h 1234h mov ax,WORD PTR [varD+2] ; d.
mov eax,DWORD PTR varW ; e.
1234h
12026543h
Spanning Multiple Lines
(1 of 2)A data declaration spans multiple lines if each line (except the last) ends with a comma The LENGTHOF (except the last) ends with a comma. The LENGTHOF and SIZEOF operators include all lines belonging to the declaration:
.data
array WORD 10,20, array WORD 10,20, 30,40, 50,60 .code
mov eax LENGTHOF array ; 6 mov eax,LENGTHOF array ; 6 mov ebx,SIZEOF array ; 12
63
Spanning Multiple Lines
(2 of 2)In the following example, array identifies only the first WORD declaration Compare the values returned by
WORD declaration. Compare the values returned by LENGTHOF and SIZEOF here to those in the previous slide:
.data
array WORD 10,20 WORD 30,40 WORD 50,60 .code
mov eax LENGTHOF array ; 2 mov eax,LENGTHOF array ; 2 mov ebx,SIZEOF array ; 4
LABEL Directive
• Assigns an alternate label name and type to an existing storage location
storage location
• LABEL does not allocate any storage of its own; it is just an alias.
j
• Removes the need for the PTR operator data
.data
dwList LABEL DWORD wordList LABEL WORDo d st O
intList BYTE 00h,10h,00h,20h .code
mov eax,dwList ; 20001000h mov cx,wordList ; 1000h
mov dl intList ; 00h
65
mov dl,intList ; 00h
Indirect operands
(1 of 2)An indirect operand holds the address of a variable, usually an array or string. It can be dereferenced (just
d
y y g (j
like a pointer). [reg] uses reg as pointer to access memory
.data
val1 BYTE 10h,20h,30h code
.code
mov esi,OFFSET val1
mov al,[esi] ; dereference ESI (AL = 10h) inc esi
l [ i] AL 20h mov al,[esi] ; AL = 20h inc esi
inc esi
mov al,[esi] ; AL = 30h
Indirect operands
(2 of 2)Use PTR when the size of a memory operand is ambiguous.
.data
myCount WORD 0
bl t d t i th .code
mov esi OFFSET myCount
unable to determine the size from the context
mov esi,OFFSET myCount
inc [esi] ; error: ambiguous inc WORD PTR [esi] ; ok
67
Array sum example
Indirect operands are ideal for traversing an array. Note that the register in brackets must be incremented by a g y value that matches the array type.
.data
arrayW WORD 1000h,2000h,3000h code
.code
mov esi,OFFSET arrayW mov ax,[esi]
add esi,2 ; or: add esi,TYPE arrayW add ax,[esi]
dd i 2 i t S b 2
add esi,2 ; increment ESI by 2
add ax,[esi] ; AX = sum of the array
Indexed operands
An indexed operand adds a constant to a register to
generate an effective address. There are two notational
d
generate an effective address. There are two notational
forms: [label + reg] label[reg]
.data
arrayW WORD 1000h,2000h,3000h code
.code
mov esi,0
mov ax,[arrayW + esi] ; AX = 1000hy
mov ax,arrayW[esi] ; alternate format add esi,2
dd [ W i]
add ax,[arrayW + esi]
etc.
69
Index scaling
You can scale an indirect or indexed operand to the offset of an array element. This is done by multiplying .data
o set o a a ay ele e t. s s do e by ult ply g the index by the array's TYPE:
.data
arrayB BYTE 0,1,2,3,4,5 arrayW WORD 0 1 2 3 4 5 arrayW WORD 0,1,2,3,4,5 arrayD DWORD 0,1,2,3,4,5
code .code
mov esi,4
mov al arrayB[esi*TYPE arrayB] ; 04 mov al,arrayB[esi*TYPE arrayB] ; 04 mov bx,arrayW[esi*TYPE arrayW] ; 0004
mov edx arrayD[esi*TYPE arrayD] ; 00000004 mov edx,arrayD[esi*TYPE arrayD] ; 00000004
Pointers
You can declare a pointer variable that contains the offset of another variable
.data
1000 2000 3000 offset of another variable.
arrayW WORD 1000h,2000h,3000h ptrW DWORD arrayW
code .code
mov esi,ptrW
mov ax,[esi] ; AX = 1000h
71