Realization of the Topological Superconductor Phases Protected by Chiral Symmetry
Ching-Kai Chiu (邱靖凱)
Kavli Institute for Theoretical Sciences University of Chinese Academy of Sciences
Chiral Matter and Topology Workshop at National Taiwan University
December 6, 2018
The ten-fold classification of topological phases
D DIII
AII CII C CI AI A AIII
Z
20 Z 0 0 0 Z 0
Z
2Z
20 Z 0 0 0 Z
Z Z
2Z
20 Z 0 0 0
0 Z Z
2Z
20 Z 0 Z
0 0 Z Z
2Z
20 Z
Z 0 Z 0 Z
0
0d 1d 2d 3d 4d
+1 +1 0 -1 -1 -1 0 0 0 C
0 -1 -1 -1 0 +1 +1 0 0 T
0 1 0 1 0 1 0
BDI +1 +1 1 Z
2Z 0 0 0
0 1 S
Time-Reversal Symmetry
Particle-hole symmetry
Chiral
Symmetry Integer Quantum Hall Effect, Quantum Anomalous Hall Effect TKNN number
Z2 Time Reversal Symmetric Topological Insulators
k
2d
3d
XL Qi, TL Hughes, Shou-Cheng Zhang, Physical Review B 78 (19), 195424 (2008)
The ten-fold classification of topological phases
D DIII
AII CII C CI AI A AIII
Z
20 Z 0 0 0 Z 0
Z
2Z
20 Z 0 0 0 Z
Z Z
2Z
20 Z 0 0 0
0 Z Z
2Z
20 Z 0 Z
0 0 Z Z
2Z
20 Z
Z 0 Z 0 Z
0
0d 1d 2d 3d 4d
+1 +1 0 -1 -1 -1 0 0 0 C
0 -1 -1 -1 0 +1 +1 0 0 T
0 1 0 1 0 1 0
BDI +1 +1 1 Z
2Z 0 0 0
0 1
S
Z2 Topological Superconductors hostingMajorana zero modes
Topological Superconductors
Z Topological Superconductors hosting Majorana chiral edge modes
Majorana Workshop at the Kavli Institute for Theoretical Sciences
Z2 Topological Superconductors hosting Majorana zero modes
Z Topological Superconductors hosting Majorana chiral edge modes
In Beijing, Jan 8th to 11th, 2019
Invited Speakers
Hong Ding, IOP CAS
Hao Zhang, Tsinghua University Dong Liu, Tsinghua University Jun-Yi Ge, Shanghai University Tetsuo Hanaguri, Riken
Tadashi Machida, Riken
Roland Wiesendanger, University of Hamburg Jinfeng Jia, Shanghai Jiao Tong University Hao Zheng, Shanghai Jiao Tong University Hai-Hu Wen, Nanjing University
Donglai Feng, Fudan University Jun He, Riken
Organizers
Fuchun Zhang, Ching-Kai Chiu, KITS
Class D
Time-reversal symmetry
D DIII
AII CII C CI AI A AIII
Z
20 Z 0 0 0 Z 0
Z
2Z
20 Z 0 0 0 Z
Z Z
2Z
20 Z 0 0 0
0 Z Z
2Z
20 Z 0 Z
0 0 Z Z
2Z
20 Z
Z 0 Z 0 Z
0
0d 1d 2d 3d 4d
+1 +1 0 -1 -1 -1 0 0 0 C
0 -1 -1 -1 0 +1 +1 0 0 T
0 1 0 1 0 1 0
BDI +1 +1 1 Z
2Z 0 0 0
0 1
S
Z Time-reversal symmetric topologicalSuperconductors
Topological Superconductors
Z2 Topological Superconductors hosting Majorana Helical edge modes
Topological Superconductor phases with chiral symmetry
DIII 0 Z
2Z
2Z 0
0d 1d 2d 3d 4d
+1 C
-1 T
1
BDI +1 +1 1 Z
2Z 0 0 0
S
Z Time-reversal symmetric topologicalSuperconductors
Topological Superconductors
Z2 Topological Superconductors hosting Majorana Helical edge modes
Time-reversal symmetry
Particle-hole symmetry
Chiral symmetry
Topological Superconductors
1d 2d 3d C
T S
Time-Reversal Symmetry
Particle-hole symmetry
BDI +1 +1 1 Z 0 0
Spinless time-reversal symmetric topological superconductors 1D: Multiple Majorana bound states
Majorana operator
Time reversal symmetry
Two Majorana coupling
Interaction of four Majorana fermions emerges
The interaction preserves all of the symmetries
This is a well-studied Majorana interacting system 1. Majorana strip order
(Y Kamiya, A Furusaki et al, PRB 98 (16), 161409 (2018))2. Enlarge topological region
(HH Hung, CKC et al, Scientific Reports (2017), Jian-Jian Miao, Fuchun Zhang, et al, Scientific Reports (2018))3. Majorana fermion surface code for universal quantum computation (
SVijay, TH Hsieh, L Fu, PRX 2015)
4. Emergent Supersymmetry
(A Rahmani et al, PRL 2015)The realization of the class BDI platform
Setup: Fu-Kane model
Abrikosov lattice of vortices in the s-wave superconducting (SC) surface of a strong topological insulator (STI).
A Majorana ZERO mode in a vortex
L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
CK Chiu, DI Pikulin, M Franz, Physical Review B 91 (16), 165402 (2015)
Hamiltonian of the superconducting surface of a STI
Particle-hole symmetry is automatically preserved.
Class D implies multiple Majorana zero modes are not stable due to Z
2invariant.
J.C.Y. Teo and C.L. Kane, PRB 82, 115120 (2010)
When chemical potential vanish, chiral symmetry is preserved.
Time reversal symmetry operator T=SC.
M. Cheng et al, PRB 82, 094504 (2010)
Class BDI
Break time-reversal symmetry
Estimate interaction strength
in real superconducting topological insulators
The heterostructure of NbSe
2and Bi
2Te
3Jin-Feng Jia et al, Phys. Rev. Lett. 112, 217001 (2014)
Microscopic origin of the interaction terms
Where
CK Chiu, DI Pikulin, M Franz, Physical Review B 91 (16), 165402 (2015) HH Hung, CKC et al, Scientific Reports (2017)
2D Topological Superconductors
1d 2d 3d C
T
D 0 +1 0 Z
2Z 0
S
Time-Reversal Symmetry
Particle-hole symmetry
Time-Reversal symmetry breaking topological superconductors 1D: Majorana Chains (Majorana bound state FeTe
1-xSe
x)
2D: p+ip topological superconductors (Chiral Majorana edge mode)
DIII -1 +1 1 Z
2Z
2Z
Spinfull Time-Reversal Topological Superconductors 1D: Majorana kramers’ pair
2D: Helical Majorana edge mode
Start from 2D Topological Chern Insulator
edge bulk
bulk
Quantum Anomalous Hall Insulator (QAHI, Chern Insulator)
= Integer Quantum Hall Insulator without magnetic field
Two Majoranas = One electron
QAHI
Superconducting Nambu basis (particle-hole)
edge bulk
bulk
D Z
2d +1
C 0
T
0 S
Chang, C.-Z., et al., Science 340, 167 (2013)
Single Chiral Majorana Edge Mode
An s-weve superconductor on the top of Quantum Anomalous Hall Insulator (QAHI)
Two Majoranas = One electron
QAHI
QAHI QAHI
(TSC)
TSC
Edge and bulk spectrum
X.-L. Qi, T. L. Hughes, S.-C. Zhang, Phys. Rev. B 82, 184516 (2010)
QAHI
QAHI QAHI
TSC
Single Chiral Majorana Edge Mode
(TSC)
Green Region Topological Phase Transition
One electron mode = Two Majorana modes
Bulk Gap closing Single Chiral Majorana mode
Two-terminal Conductance
QAHI
QAHI QAHI
TSC
Longitudinal Conductance
Longitudinal Conductance
Lead 1 Lead 2 Lead 1 Lead 2
Majorana is a half electron
Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Mu- rata, X. Kou, Z.
Chen, T. Nie, Q. Shao, Y. Fan, S.-C. Zhang, K. Liu, J. Xia, and K. L. Wang, Science 357, 294 (2017) J. Wang, Q. Zhou, B. Lian, S.-C. Zhang, Phys. Rev. B 92, 064520 (2015).
2D Topological Superconductors
1d 2d 3d C
T
D 0 +1 0 Z
2Z 0
S
Time-Reversal Symmetry
Particle-hole symmetry
Time-Reversal symmetry breaking topological superconductors 1D: Majorana Chains (Majorana bound state FeTe
1-xSe
x)
2D: p+ip topological superconductors (Chiral Majorana edge mode)
DIII -1 +1 1 Z
2Z
2Z
Spinfull Time-Reversal Topological Superconductors 1D: Majorana kramers’ pair
2D: Helical Majorana edge mode
Time Reversal Symmetry
Integer Quantum Hall Effect in 1980 Chiral Electron Mode
Quantum Spin Hall Effect in 2005 ~2007
Helical Electron Mode protected by time reversal symmetry
Time Reversal SymmetryAII A
Z
2Z 2d
0 0 C
-1 0 T
0 0 S Quantum Spin Hall Insulator
edge
bulk bulk
Time Reversal Symmetry
Chiral Topological Superconductor in 2016 Chiral Majorana Mode
D DIII
Z Z
22d +1
+1 C 0
-1 T
0 1 S Time Reversal Symmetry
k
Helical Topological Superconductor
Helical Majorana Mode
Proposals to realize Helical Majorana edge mode
M. Sato and S. Fujimoto, Phys. Rev. B 79, 094504 (2009).
S. Nakosai, Y. Tanaka, and N. Nagaosa, Phys. Rev. Lett. 108, 147003 (2012).
J. Wang, Y. Xu, and S.-C. Zhang, Phys. Rev. B 90, 054503 (2014).
J. Wang, Phys. Rev. B 94, 214502 (2016) C.-X. Liu and B. Trauzettel, Phys. Rev. B 83, 220510 (2011).
J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).
Exotic Superconducting Pairing Phase difference
Idea
QAHI QAHI
S-wave superconductor
QSHI QSHI+ QSHI
s-wave SC
QSHI s-wave SC QSHI QSHI
Quantum Anomalous Hall Insulator: QAHI
Quantum Spin Hall Insulator: QSHI
Chiral Majorana edge mode
Helical Majorana edge mode?
Quantum Spin Hall Insulator with S-wave SC
Yingyi Huang, CKC, Physical Review B 98 (8), 081412 (R)(2018) Quantum Spin Hall Insulator (QSHI)
S-wave superconductivity destroys the helical electron mode
QSHI QSHI+ QSHI
s-wave SC
s-wave pairing potential
QSHI s-wave SC QSHI QSHI
Electron, not Majorana
Antiferromagnetic order — Different spins located at different atoms
A B
Antiferromagnetic Quantum Spin Hall Insulator
A
B
A helical electron mode
A B
B A Spins flip
Effective time reversal symmetry (Use crystalline symmetry)
Z. Wang, H. Zhang, D. Liu, C. Liu, C. Tang, C. Song, Y. Zhong, J. Peng, F. Li, C. Nie, et al., Nature Materials 15, 968 (2016) R. S. K. Mong, A. M. Essin, and J. E. Moore, Phys. Rev. B 81, 245209 (2010)
Model of the Antiferromagnetic Quantum Spin Hall Insulator
A B B A Spins flip
spin orbital
Effective time reversal symmetry operator
Hamiltonian
Time-reversal symmetry
Yingyi Huang, CKC, Physical Review B 98 (8), 081412 (R)(2018)
Non-Trivial
Helical Electron Edge Mode
A
B
Two Helical Majorana modes
DIII Z
22d +1
C -1
T
1
S
Introduce s-wave superconductivity
Helical Electron Edge Mode
One helical Majorana Edge Mode Topological Phase Transition
How to observe the Helical Majorana Edge Mode
Yingyi Huang, CKC, Physical Review B 98 (8), 081412 (R)(2018)
Disorders breaks the effective time-reversal symmetry
Potential difference disorder Disorder destroys helical electron mode
The helical Majorana edge mode can be present in weak disorders