• 沒有找到結果。

利用細胞固定化嗜酸乳酸桿菌發酵香蕉培養基的探討

N/A
N/A
Protected

Academic year: 2021

Share "利用細胞固定化嗜酸乳酸桿菌發酵香蕉培養基的探討"

Copied!
8
0
0

加載中.... (立即查看全文)

全文

(1)

行政院國家科學委員會專題研究計畫成果報告

利用細胞固定化嗜酸乳酸桿菌發酵香蕉培養基的探討

Fermentation of Banana Media by Using Cell Immobilized

Lactobacillus acidophilus

計畫編號:NSC 92-2313-B-039-001

執行期限:92 年 8 月 1 日至 93 年 7 月 31 日

主持人:曾政鴻 中國醫藥大學營養學系

共同主持人:金安兒 國立中興大學食品科學系

計畫參與人員:徐陟遠、陳映連 國立中興大學食品科學系

一、中文摘要 本研究使用香蕉作為原料來製備培養 基,進行嗜酸乳酸桿菌的發酵,並分別利用 褐藻酸鈣及κ-紅藻膠凝膠所製備得之膠球 來進行細胞的包埋固定化,所得褐藻膠膠球 之直徑約 2.6 mm,κ-紅藻膠膠球直徑約為 3.0 mm,以嘗試提升嗜酸乳酸桿菌在香蕉培 養基中的發酵效率。所用香蕉原料包括綠香 蕉及成熟香蕉,分別利用固定化及游離態菌 體來進行發酵 80 小時。在發酵過程中,不 論是固定化或是游離態的嗜酸乳酸桿菌發 酵,成熟香蕉培養基中的活菌數均高於綠香 蕉培養基。在固定化菌體的發酵生長過程 中,部份菌體會自包埋的膠球中脫離進入培 養基溶液中生長。在固定化菌體發酵實驗部 份,培養基懸浮液中的最終活菌數可達 105 CFU/ml 的程度,固定化膠球中的活菌體濃 度可達 108 CFU/ml gel 以上;而在游離態發 酵組中,最終活菌為 106 CFU/ml 的程度。 固定化菌體能克服綠香蕉培養基中的不利 條件,呈現出較佳的生長。在發酵過程中, pH 值與可滴定酸度的變化和菌株的生長情 況有明顯的關聯。成熟香蕉培養基經固定化 嗜酸乳酸桿菌發酵後,其中果寡醣的含量變 化不大,可作為嗜酸乳酸桿菌之益菌物質, 具有成為良好 synbiotics 產品之潛力,其中 褐藻酸鈣固定化者又優於κ-紅藻膠固定化 者。由成本分析的整體結果發現,褐藻酸鈣 固定化要優於κ-紅藻膠固定化。另一方 面,將嗜酸乳酸桿菌分別以褐藻酸鈣及κ-紅藻膠進行固定化,探討細胞固定化對菌體 凍結及冷凍乾燥時存活的保護效果,以及其 對冷凍乾燥菌體在 5℃、25℃、45℃、60℃、 70℃等不同溫度下之貯藏安定性的影響。實 驗所用游離態及固定化菌體的初始濃度均 達 1010 cells/ml 層次的程度,結果發現褐藻 酸鈣與κ-紅藻膠膠球的固定化均能有效地 提供保護效果,減少菌株在操作過程中所受 到的傷害。在所用的不同貯藏溫度下,不論 是游離態或是固定化的菌體,其 Log D 值與 貯藏溫度間均具有極高的相關性,而由此二 種狀態菌體所得之二條 Log D 與貯藏溫度 的迴歸直線所求出之 z 值間亦具顯著差異(p < 0.05),顯示細胞固定化能增加冷凍乾燥菌 體在貯藏過程中對溫度的耐受性,並且能減 低溫度變化對冷凍乾燥菌體貯藏安定性的 影響。 關鍵詞:香蕉、嗜酸乳酸桿菌、細胞固定化、 發酵、益生菌、益菌物質、果寡醣、 合生素、冷凍乾燥、貯藏安定性、 成本分析 Abstract

Banana was used as the raw material for the preparation of fermentation media of

Lactobacillus acidophilus, and cell

immobilization was applied to improve the fermentation efficiency of L. acidophilus in banana media. Cell immobilization was performed using calcium alginate and κ -carrageenan as the entrapping matrix, and gel beads of diameters around 2.6 mm for the former and 3.0 mm for the latter were obtained. Both green and ripe bananas were used for the preparation of banana media, and both free and immobilized cells were used to conduct the fermentation for 80 hours. The

(2)

viable cell number in ripe banana media was found to be higher than that in green ones during both free cell and immobilized cell fermentation. During the fermentation of immobilized cell, cells would leak out from the gel beads and grew in the medium solution. In immobilized cell fermentation, the final viable cell number could reach 105 CFU/ml in medium suspension and that in gel beads could become over 108 CFU/ml gel. In free cell fermentation, the final viable cell number was around 106 CFU/ml. Immobilized cell could overcome the unfavorable conditions in green banana media and improved results could be obtained. During the fermentation, the variation of pH and titratable acidity showed obvious relationships with the growth of cells. Variation of fructooligosaccharides contents in ripe banana media was not remarkable in immobilized cell fermentation compared to free cell. Immobilized L. acidophilus fermented banana medium was able to be used as a synbiotic product by combining the probiotic effect of L. acidophilus and the prebiotic effect of banana. The effect of Ca-alginate immobilization was better than κ-carrageenan. Based on the overall results of cost analysis, Ca-alginate immobilization was a better choice compared to κ -carrageenan immobilization. On the other hand, L. acidophilus was immobilized using Ca-alginate and κ -carrageenan, and protection effects of cell immobilization on the viability of the bacteria after freezing and freeze-drying were studied, and its influence on the storage stability of the freeze-dried cells at 5℃, 25℃, 45℃, 60℃, 70℃ was also investigated. Initial concentration of both free and immobilized cells used for experiments all reached the level of 1010 cells/ml. Results indicated that the immobilization in Ca-alginate gel beads andκ-carrageenan gel beads could provide effective protection to reduce the damage of bacteria under operations. High correlations were obtained between Log D values and storage temperatures for both free and immobilized cells under those various storage temperatures used. the z value which derived from the linear regression equation of Log D and

storage temperature for free and immobilized cells were significantly different (p < 0.05). Cell immobilization could enhance temperature tolerance of the freeze-dried bacteria during storage and diminish the influence of temperature variation on the storage stability of freeze-dried cells.

Keywords: Banana, Lactobacillus acidophilus, Cellimmobilization, Fermentation,

Probiotic, Prebiotic, Fructooligosaccharides, Synbiotic,

Freeze-drying, Storage stability, Cost analysis. 二、緣由與目的 嗜 酸 乳 酸 桿 菌 (Lactobacillus acidophilus)是一種具有益生效果(probiotic effect)的乳酸菌,對人體具有整腸之療效, 常用於保健食品的製造。此菌最初是由幼兒 及成人糞便中所分離,其與大多數乳酸桿菌 之不同處為對膽汁具有抵抗力,而且可抑制 腸內有害菌之生長,因此在一些市售之乳製 品及乾燥食品中皆有添加此菌,以助益人體 健康。由於市售之乾燥食品中嗜酸乳酸桿菌 之存活率很低,因此如何藉由適當的加工方 法以提高發酵產品中乳酸的產率、發酵效 率,以及液態發酵產品及冷凍乾燥食品中嗜 酸乳酸桿菌的存活率,實為一重要的課題。 細胞固定化(cell immobilization)為利用聚合 物、玻璃、無機鹽類等適當的擔體以結合、 架橋或包埋等方式,來將微生物菌體作某種 空間限制,以加以有效利用的方法,能提供 多項優於傳統發酵程序及固定化酵素程序 的優點,因此在各方面的應用日廣,尤其在 食品方面的利用更是日益增加。菌體固定化 能有效提高菌體對 pH、溫度等外界環境因 子的耐受性,增加其貯藏時的安定性,同時 並能有效提高菌體濃度及操作處理過程中 菌體的存活率,以及增加作用效率。無論是 菌株的冷凍乾燥、保存,或是諸如香蕉泥等 液態乳酸食品的發酵,在加工與操作過程 中,均存在有不利於嗜酸乳酸桿菌生存繁殖 的因子。因此藉由嗜酸乳酸桿菌菌體的固定 化,可以提高該菌在冷凍、乾燥、發酵等操 作過程中菌體的存活,增加最終產品的保存

(3)

性與菌株的可利用性,並提高產品附加價值 以及食用時菌株在人體腸道中的存活率。香 蕉為台灣的重要農產作物,營養價值頗高, 而且常常會因產銷失調而造成生產過剩,因 此開發適當的加工方法以製成風味性質與 貯藏性質俱佳的香蕉加工品,確為一值得努 力的方向。香蕉含有多量適合乳酸菌發酵所 需的醣類,利用香蕉作為培養基以乳酸菌進 行發酵來製得乳酸菌發酵香蕉產品的研 究,國內外有不少學者做過嘗試,其目的在 延長香蕉產品的貯藏性,改善製品的風味, 並提升製品的營養保健效果。此外香蕉含有 益 生 菌 (probiotics) 生 長 所 需 之 益 菌 物 質 (prebiotics)-果寡醣(fructooligosaccharides) ,因此在香蕉產品中加入嗜酸乳酸桿菌,以 助益乳酸菌在人體腸胃道中之生長發育,是 開發乳酸菌營養保健產品時所值得考慮的 一個方向。本研究嘗試利用固定化嗜酸乳酸 桿菌(immobilized L. acidophilus)技術,來探 討菌體細胞固定化對嗜酸乳酸桿菌於冷凍 乾燥以及隨後之保存過程中菌株存活之影 響,並探討嗜酸乳酸桿菌於香蕉培養基中進 行發酵時,固定化與游離態菌株二者在發酵 時菌體濃度與發酵效率的差異。另一方面, 有效結合香蕉的營養價值與乳酸菌的益生 特性,配合細胞固定化的技術,以提升香蕉 乳酸菌產品的保健效果,亦是本研究所探討 的一項課題。 三、結果與討論 1.不論是成熟香蕉培養基或是綠香蕉培養 基,固定化 L. acidophilus 的發酵結果均優 於游離態菌體。不論是固定化或是游離態 L. acidophilus,在成熟香蕉培養基中的發 酵效果均優於在綠香蕉培養基中的結果 (圖 一、圖二)。 2.隨著發酵過程的進行,香蕉培養基中的 pH 值、還原糖量均會隨著菌數的增加而 降低,而可滴定酸度則隨著菌數的增加而 上升(圖三~圖八)。 3. 不論是褐藻酸鈣或是紅藻膠固定化 L. acidophilus,固定化菌體經凍結以及冷凍 乾 燥 後 之 菌 體 存 活 均 較 游 離 態 菌 體 為 高。固定化 L. acidophilus 冷凍乾燥後之貯 藏效果要優於游離態菌體,具有較佳之存 活率(圖九、圖十、表一~表四)。 4.成熟香蕉培養基經固定化 L. acidophilus 發酵後,發現其中果寡醣的含量變化不 大,可作為 L. acidophilus 之益菌物質。其 中褐藻酸鈣固定化者又優於κ-紅藻膠固 定化者。經固定化 L. acidophilus 發酵之成 熟香蕉培養基,具有成為良好之 synbiotics 產品之潛力(圖十一)。 5.成本分析的結果發現,採用固定化菌體來 進行香蕉培養基發酵,遠比利用游離態菌 體有利,而其中以褐藻酸鈣來進行固定化 會比以κ-紅藻膠來進行固定化具有較佳 之投資報酬(表五、表六)。 0 2 4 6 8 10 0 10 20 30 40 50 60 70 80 Time (hr) L og [ C FU/m l ( fo r f ree cell) or m l gel ( fo r im m obilized cell) ]

Green banana + immobilized cell (suspension) Ripe banana + immobilized cell (suspension) Green banana + immobilized cell (gel bead) Ripe banana + immobilized cell (gel bead) Green banana + free cell Ripe banana + free cell

圖一、褐藻酸鈣固定化與游離態嗜酸乳酸桿菌在 不同香蕉培養基中之生長曲線 0 2 4 6 8 1 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 T im e (h r) L og [C F U /ml (fo r fre e c ell) o r ml g el (fo r immo biliz ed c ell)] G re e n b a n a n a + im m o b iliz e d c e ll (s u s p e n s io n ) R ip e b a n a n a + im m o b iliz e d c e ll (s u s p e n s io n ) G re e n b a n a n a + im m o b iliz e d c e ll (g e l b e a d ) R ip e b a n a n a + im m o b iliz e d c e ll (g e l b e a d ) G re e n b a n a n a + fre e c e ll R ip e b a n a n a + fre e c e ll 圖二、κ-紅藻膠固定化與游離態嗜酸乳酸桿菌在 不同香蕉培養基中之生長曲線

(4)

0 0.5 1 1.5 2 2.5 0 10 20 30 40 50 60 70 80 Time (hr) R educi ng s ugar (% )

Gree banana + immobilized cell Green banana + free cell Ripe banana + immobilized cell Ripe banana + free cell

3 3 .2 3 .4 3 .6 3 .8 4 4 .2 4 .4 4 .6 4 .8 5 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 T i m e ( h r ) pH G r e e n b a n a n a + i m m o b i l i z e d c e l l R i p e b a n a n a + i m m o b i l i z e d c e l l G r e e n b a n a n a + f r e e c e l l R i p e b a n a n a + f r e e c e l l 圖三、不同香蕉培養基在褐藻酸鈣固定化與游離態嗜酸 圖五、不同香蕉培養基在褐藻酸鈣固定化與游離態嗜酸 乳酸桿菌發酵過程中 pH 的變化 乳酸桿菌發酵過程還原糖量的變化 0 0.1 0.2 0.3 0.4 0.5 0.6 0 10 20 30 40 50 60 70 80 Time (hr) Titratable acidity (%)

Green banana + free cell Green banana + immobilized cell Ripe banana + free cell Ripe banana + immobilized cell

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 0 10 20 30 40 50 60 70 80 T ime (hr) pH

Green banana + im m obilized cell Ripe banana + im m obilized cell Green banana + free cell Ripe banana + free cell

圖四、不同香蕉培養基在褐藻酸鈣固定化與游離態嗜酸 圖六、不同香蕉培養基在κ-紅藻膠固定化與游離態嗜酸

(5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0 10 20 30 40 50 60 70 8 Time (hr) Titr at ab le a cid ity ( % ) 0

Green banana + free cell Green banana + immobilized cell Ripe banana + free cell Ripe banana + immobilized cell

圖 九 、 冷 凍 乾 燥 嗜 酸 乳 酸 桿 菌 在 (a)5 ℃ ,(b)25 ℃ ,(c)45 ℃,(d)60℃,(e)70℃下貯藏過程中存活率的變化(○:游 離態菌體, ●:褐藻酸鈣固定化菌體) 圖七、不同香蕉培養基在κ-紅藻膠固定化與游離態嗜酸 乳酸桿菌發酵過程中可滴定酸度的變化 0 0.5 1 1.5 2 2.5 0 10 20 30 40 50 60 70 80 Time (hr) R educing s u gar (%)

Gree banana + immobilized cell Green banana + free cell Ripe banana + immobilized cell Ripe banana + free cell

圖八、不同香蕉培養基在κ-紅藻膠固定化與游離態 嗜酸乳酸桿菌發酵過程中還原糖量的變化

圖十、冷凍乾燥嗜酸乳酸桿菌在(a)5℃,(b)25℃,(c)45℃, (d)60℃,(e)70℃下貯藏過程中存活率的變化(○:游離 態菌體, ●:κ-紅藻膠固定化菌體)

(6)

表一、游離態及褐藻酸鈣固定化嗜酸乳酸桿菌在凍結及冷凍 乾燥後之存活菌數(log CFU/ml 及 log CFU/ml gel)

State Initial Freezing Freeze-drying

Immobilized cells 10.80ax* 10.49bx 10.22cx

Free cells 10.81ax 9.60by 8.45cy 0 0 .1 0 .2 0 .3 0 .4 0 .5 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 T im e (h r) F O S c onc . ( m g/ g me di um) 0 *a-c

Different letters within a row are different at a 5% significant level (n = 6).

x-y Different letters within a column are different at a 5% significant level (n = 6).

-◆- Ripe GF2 (Ca-alginate immobilization) -■- Ripe GF2 (κ-carrageenan immobilization) -*-Ripe GF2 (Free cell) -●- Ripe GF4 -□- Green GF2 -▲- Ripe GF3 圖十一、固定化及游離態嗜酸乳酸桿菌香蕉培養基發酵過 程中果寡醣(FOS)含量的變化 表二、不同貯藏溫度下,褐藻酸鈣固定化與游離態冷凍乾燥嗜酸乳酸桿菌菌體的 D 值與所得之迴歸方程式和 z 值 D value Freeze-dried sample 5℃ 25℃ 45℃ 60℃ 70℃ Equationsa Correlation coefficient (R2) Z valueb (℃) Free cells 2746.6 717.6 109.6 24.4 12.4 Log DT = 3.69-0.0373T 0.9951 26.8x* Immobilized cells 4838.7 1224.5 289.2 92.6 23.0 LogDT = 3.92-0.0344T 0.9857 29.1y a D

T is D value (time required to obtain one log variation in population for free cells in solution and immobilized cells in gel) for a given storage temperature T; D values are in hours.

b Z value is the temperature span (in ℃) required to obtain a 10-fold variation in D values. *x-y Different letters within a column are different at a 5% significant level (n = 6).

表三、游離態及κ-紅藻膠固定化嗜酸乳酸桿菌在凍結及冷凍乾燥後之存活菌數(log CFU/ml 及 log CFU/ml gel)

State Initial Freezing Freeze-drying

Immobilized cells 10.80ax* 10.54bx 10.26cx

Free cells 10.81ax 9.51by 8.38cy

*a-c Different letters within a row are different at a 5% significant level (n = 6). x-y Different letters within a column are different at a 5% significant level (n = 6).

表四、不同貯藏溫度下,κ-紅藻膠固定化與游離態冷凍乾燥嗜酸乳酸桿菌菌體的 D 值與所得之迴歸方程式和 z 值 D value Freeze-dried sample 5℃ 25℃ 45℃ 60℃ 70℃ Equationsa Correlation coefficient (R2) Z valueb (℃) Free cells 2330.1 705.9 111.7 24.6 12.1 Log DT = 3.6393-0.0364T 0.9922 27.5x* Immobilized cells 4137.9 1121.5 261.2 80.0 19.6 LogDT = 3.8723-0.0345T 0.9836 29.0y a

DT is D value (time required to obtain one log variation in population) for a given storage temperature T (℃); D values are in hours. b Z value is the temperature span (in ℃) required to obtain a 10-fold variation in D values.

(7)

表五、各生產模式所用材料之單位成本 材料 模式(1) 模式(2) 模式(3) 市價a 嗜酸乳酸桿菌 2000 元/株 2000 元/株 2000 元/株 1 元/1 億活菌 果寡醣 — — — 1 元/公克 香蕉 20 元/公斤 20 元/公斤 20 元/公斤 固定化凝膠 — κ-紅藻膠b ,5000 元/公斤; KCl,900 元/公斤 褐藻酸鈉b ,4500 元/公斤; CaCl2,1000 元/公斤 a為市售台糖公司產品之價格。 b為美國 Sigma 公司產品之價格。 表六、以發酵完成之培養基 1 公升作基準所作之投資報酬的比較 項目 模式(1) 模式(2) 模式(3) 香蕉 20 元 X0.25=5 元 20 元 X0.25=5 元 20 元 X0.25=5 元 成本 膠體 - κ-carrageenan 4 元 KCl (以 500 ml 計) 10 元 Na-alginate 1.8 元 CaCl2 (以 500 ml 計) 11.2 元 合計 5 元 19 元 18 元 活菌 10 6 x 103 = 109 10 元 gel 108 x 40 suspension 105 x 103 共 4.1 x 109 41 元 gel 108 x 40 suspension 105 x 103 共 4.1 x 109 41 元 收益 FOS 0.5 g 0.5 元 0.65 g 0.65 元 0.65 g 0.65 元 合計 10.5 元 41.65 元 41.65 元 總結算 + 5.5 元 + 22.65 元 + 23.65 元

de Porres, E., de Arriola, M. C., Garcia, R., and Rolz, C. 1985. Lactic acid fermentation of banana puree. Lebensmittel-Wissenschaft und Technologie 18: 379-382. 四、計畫成果自評 本計畫所得成果已達成原計畫書的 目標,內容並切實遵照原計畫書的構想, 具產業實際應用及學術上的價值。所得成 果已寫成兩篇論文投稿 SCI 學術期刊(J. Gen. Appl. Microbiol., 49: 357-361; Int. J. Food Microbiol., 91: 215-220)。

Fuller, R. and Brooker, B. E. 1973. Ecological studies on the Lactobacillus flora associated with the crop epithelium of the fowl. American Journal of Clinical Nutrition 27: 1305-1312.

五、參考文獻

Gilliland, S. E. and Speck, M. L. 1977. Enumeration and identity of lactobacilli in dietary products. Journal of Food Protection 40: 760-762.

Aegerter, P. and Dunlap, C. 1980. Culture of five commonly used acid-producing bacteria on banana pulp. Applied and Environmental Microbiology 39: 937-942.

Huis in't Veld, J. H. J. and Havenaar, R. 1991. Probiotics and health in man and animal. Journal of Chemical Technology and Biotechnology 51: 562-567.

Bozoglu, T. F. and Gurakan, G. C. 1989. Freeze-drying injury of Lactobacillus

acidophilus. J. Food Prot. 52: 259-260.

Champagne, C. P., Gardner, N., and Dugal, G. 1994a. Increasing the stability of immobilized Lactococcus lactis cultures stored at 4 degree C. Journal of Industry Microbiology 13(6): 367-371.

Kearney, L., Upton, M., and McLoughlin, A. 1990a. Enhancing the viability of

Lactobacillus plantarum inoculums by

immobilizing the cells in calcium-alginate beads incorporating cryoprotectants.

(8)

Applied and Environmental Microbiology 56: 3112-3116.

King, V. A.-E. and Su, J. T. 1993. Dehydration of Lactobacillus acidophilus. Process Biochemistry 28(1): 47-52.

Lee, K. Y. and Heo, T. R. 2000. Survival of

Bifidobacterium longum immobilized in

calcium alginate beads in simulated gastric juices and bile salt solution. Applied and Environmental Microbiology 66: 869-873.

Marriott, J. 1980. Bananas - physiology and biochemistry of storage and ripening for optimum quality. CRC Critical Reviews in Food Science and Nutrition 13(1): 41-88.

Nath, S. and Chand, S. 1996. Mass transfer and biochemical reaction in immobilized cell packed bed reactors: correlation of experiment and theory. Journal of Chemical Technology and Biotechnology 66: 286-292.

Özer, B. H. and Robinson, R. K. 1999. The behaviour of starter cultures in concentrated yoghurt (Labneh) produced by different techniques. Lebensmittel-Wissenschaft und Technologie 32: 391-395.

Pettersson, L. 1983. Survival of

Lactobacillus acidophilus NCDO 1748 in

human gastrointestinal tract. In “Symposium Sweden Nutrition Fund (Stockholm, A., ed.) ”, pp. 123-125. Almqvist & Wiksell International, New York, USA.

Sandine, W. E. 1979. Roles of Lactobacillus in the intestinal tract. Journal of Food Protection 42: 259-262.

Shah, N. P., Lankaputhra, W. E. V., Britz, M. L., and Kyle, W. S. A. 1995. Survival of

Lactobacillus acidophilus and Bifidobacterium bifidum in commercial

yoghurt during refrigerated storage. International Dairy Journal 5: 515-521.

Speck, M. L. 1984. Compendium of Methods for the Microbiological

Examination of Foods. 2nd ed. American Public Health Association, Washington, DC, USA.

Vega, E. Z., Glatz, B. A., and Hammond, E. G. 1988. Optimization of banana juice fermentation for the production of microbial oil. Applied and Environmental Microbiology 54: 748-752.

Williams, D. and Munnecke, D. M. 1981. The production of ethanol by immobilized yeast cells. Biotechnology and Bioengineering 23: 1813-1825.

數據

圖 九 、 冷 凍 乾 燥 嗜 酸 乳 酸 桿 菌 在 (a)5 ℃ ,(b)25 ℃ ,(c)45 ℃,(d)60℃,(e)70℃下貯藏過程中存活率的變化(○:游 離態菌體, ●:褐藻酸鈣固定化菌體) 圖七、不同香蕉培養基在κ-紅藻膠固定化與游離態嗜酸 乳酸桿菌發酵過程中可滴定酸度的變化  00.511.522.5 0 10 20 30 40 50 60 70 80 Time (hr)Reducing sugar (%)

參考文獻

相關文件

In order to apply for a permit to employ Class B Foreign Worker(s), an Employer shall provide reasonable employment terms and register for such employment demands with local

Should an employer find it necessary to continue the employment of the Class A Foreign Worker(s), the employer shall, within four (4) months prior to the expiration of the

Teachers may encourage students to approach the poem as an unseen text to practise the steps of analysis and annotation, instead of relying on secondary

The short film “My Shoes” has been chosen to illustrate and highlight different areas of cinematography (e.g. the use of music, camera shots, angles and movements, editing

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix

Monopolies in synchronous distributed systems (Peleg 1998; Peleg

Corollary 13.3. For, if C is simple and lies in D, the function f is analytic at each point interior to and on C; so we apply the Cauchy-Goursat theorem directly. On the other hand,