• 沒有找到結果。

interfaces and cavitation A numerical model for multiphase liquid–vapor–gas flows with International Journal of Multiphase Flow

N/A
N/A
Protected

Academic year: 2022

Share "interfaces and cavitation A numerical model for multiphase liquid–vapor–gas flows with International Journal of Multiphase Flow"

Copied!
23
0
0

加載中.... (立即查看全文)

全文

(1)

ContentslistsavailableatScienceDirect

International Journal of Multiphase Flow

journalhomepage:www.elsevier.com/locate/ijmulflow

A numerical model for multiphase liquid–vapor–gas flows with interfaces and cavitation

Marica Pelanti

a,

, Keh-Ming Shyue

b

a Institute of Mechanical Sciences and Industrial Applications, UMR 9219 ENSTA ParisTech – EDF – CNRS – CEA, 828, Boulevard des Maréchaux, Palaiseau Cedex 91762, France

b Department of Mathematics and Institute of Applied Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan

a rt i c l e i nf o

Article history:

Received 2 September 2018 Revised 16 January 2019 Accepted 28 January 2019 Available online 29 January 2019 MSC:

65M08 76T10 Keywords:

Multiphase compressible flows Relaxation processes Liquid–vapor phase transition Finite volume schemes Riemann solvers

a b s t ra c t

Weareinterestedinmultiphaseflowsinvolvingtheliquidandvaporphasesofonespeciesandathird inertgaseousphase.Wedescribetheseflowsbyahyperbolicsingle-velocitymultiphaseflowmodelcom- posedofthephasicmassandtotalenergyequations,thevolumefractionequations,andthemixturemo- mentumequation.Themodelincludesstiff mechanicaland thermalrelaxationsourcetermsforallthe phases,andchemicalrelaxationtermstodescribemasstransferbetweentheliquidandvaporphasesof thespeciesthatmayundergotransition.First,wepresentananalysisofthecharacteristicwavespeeds associatedtothehierarchyofrelaxedmultiphasemodelscorrespondingtodifferentlevelsofactivation ofinfinitelyfastrelaxationprocesses,showingthatsub-characteristicconditionshold.Wethenpropose amixture-energy-consistentfinite volumemethodforthenumerical solutionofthemultiphasemodel system.Thehomogeneousportionoftheequationsissolvednumericallyviaasecond-orderwaveprop- agationschemebasedonrobustHLLC-typeRiemannsolvers.Stiff relaxationsourcetermsaretreatedby efficient numericalprocedures that exploitalgebraicequilibrium conditionsfor therelaxedstates. We presentnumericalresultsforseveralthree-phaseflowproblems,includingtwo-dimensionalsimulations ofliquid–vapor–gasflowswithinterfacesandcavitationphenomena.

© 2019ElsevierLtd.Allrightsreserved.

1. Introduction

Liquid–vaporflowsarefoundinalargevarietyofindustrialand technologicalprocessesandnaturalphenomena.Oftentheseflows involveone or more additionalinert gasphases. Forinstance, in some processes the dynamics of a liquid–vapor mixture is cou- pledtothedynamicsofdefinedregionsofathirdnon-condensable gaseouscomponent.Anexampleisgivenbyunderwaterexplosion phenomena, where a high pressure bubble of combustion gases triggers cavitation phenomena in water (Cole, 1948; Kedrinskiy, 2005).Inother casesliquid–vapormixturesmaycontainadiluted inertgascomponent, whichmayaffecttheflow features,such as infuelinjectors(Battistonietal.,2015).Weareinterestedherein thesimulationofthistype ofmultiphase flows involvingtheliq- uidandvapor phasesof onespecies andone ormore additional non-condensable gaseous phases. We describe these multiphase flowsbyahyperbolicsingle-velocitycompressibleflowmodelwith infinite-rate mechanicalrelaxation, which extends the two-phase

Corresponding author.

E-mail addresses: marica.pelanti@ensta-paristech.fr (M. Pelanti), shyue@math.

ntu.edu.tw (K.-M. Shyue).

model that we have studied inprevious work Pelantiand Shyue (2014b).Thismodeliscomposedofthephasic massandtotalen- ergy equations, the volume fraction equations, and the mixture momentumequation.Themodelincludesthermalrelaxationterms toaccountforheattransferprocessesbetweenallthephases,and chemical relaxationterms to describe mass transfer betweenthe liquid and vapor phases of the species that may undergo tran- sition. Similar hyperbolic multiphase flow models withinstanta- neouspressure relaxationhave beenpreviously presented forin- stanceinPetitpasetal.(2009),Le Métayeretal.(2013),andZein etal.(2013).Afirstcontributionofourwork isa rigorousderiva- tionofthereducedpressure-relaxedmodelresultingfromthepar- ent non-equilibrium multiphase flow model with heat and mass transfertermsinthelimitofinstantaneousmechanicalrelaxation.

This is done by following the asymptotic analysistechnique em- ployed by Murrone and Guillard (2005) for the two-phase case withnoheatandmasstransfer.Moreover,we presentan original analysisofthecharacteristicwavespeedsassociatedtothehierar- chyofrelaxedmultiphasemodelscorrespondingtodifferentlevels ofactivationofinfinitelyfastmechanicalandthermo-chemicalre- laxationprocesses.Similartoresultsshownintheliteratureforthe two-phasecase(FlåttenandLund,2011;Lund, 2012;Linga,2018), https://doi.org/10.1016/j.ijmultiphaseflow.2019.01.010

0301-9322/© 2019 Elsevier Ltd. All rights reserved.

(2)

we demonstrate that sub-characteristic conditions hold, namely the speed of soundof themultiphase mixture is reducedwhen- everanadditionalequilibriumassumptionisintroduced.Then,we presenta finitevolumemethodforthe numericalsolutionofthe multiphasemodelsystembasedonaclassicalfractional steppro- cedure. The homogeneous hyperbolic portion ofthe equations is solved numericallyvia a second-order accuratewave propagation scheme, which employs a HLLC-type Riemann solver. In particu- lar,we presentherea newgeneralizedHLLC-solverbased onthe idea oftheSuliciu relaxationsolverofBouchut(2004),extending the solver that we have recently proposed in De Lorenzo et al.

(2018)forthetwo-phasecase.ThisHLLC/Suliciu-typesolverallows ustoguaranteepositivitypreservationwithasuitablechoiceofthe wave speeds. Stiff relaxationsourcetermsare treatedbyefficient numericalproceduresthatexploitalgebraicequilibriumconditions for the relaxed states, following the ideas of our work (Pelanti andShyue(2014b)).Similarapproacheshavebeenpreviouslypre- sentedintheliteratureforinstanceinLeMétayeretal.(2013).One important property of our numerical method is mixture-energy- consistencyinthesensedefinedinPelantiandShyue(2014b)),that isthemethodguaranteesconservationofthemixturetotalenergy atthediscretelevel,anditguaranteesconsistencybyconstruction ofthevaluesoftherelaxedstateswiththemixturepressurelaw.

Thispropertyisensuredthankstothetotal-energy-basedformula- tionofthemodelsystem.Wepresentseveralnumericalresultsfor three-phase flow problems, including problems involving liquid–

vapor–gas flows with interfaces and cavitation phenomena, such asunderwaterexplosiontests.

This article is organized as follows. In Section 2 we present the multiphase flow model under study. In Section 3 we derive thelimitpressure-equilibriummodelassociatedtotheconsidered multiphase flow model,andwe analyze thecharacteristic speeds oftherelaxedmodelsinthehierarchystemmingfromtheparent relaxationmodel.InSection4weillustratethenumericalmethod that we have developed to solve the multiphase flow equations.

Several one-dimensional and two-dimensional numerical experi- mentsarefinallypresentedinSection5.

2. Single-velocitymultiphasecompressibleflowmodel

We consider an inviscid compressible flow composed of N phasesthat we assume in kinematicequilibriumwith velocityu. Inthisworkwearemainlyinterestedinthree-phaseflows,N=3, nonetheless we shallpresentherea generalmultiphase flowfor- mulation. The volume fraction, density, internal energy per unit volume, and pressure of each phase will be denoted by

α

k,

ρ

k, Ek,pk,k=1,...,N, respectively.We willdenotethetotal energy for the kth phase with Ek=Ek+

ρ

k|u|2

2 . The saturation condition is N

k=1

α

k=1. The mixture density is

ρ

=N

k=1

α

k

ρ

k, the mix- ture internal energyis E=N

k=1

α

kEk,and themixture total en- ergy is E=N

k=1

α

kEk=E+

ρ

|u2|2. Moreover, we will denote the kthspecificinternalenergywith

ε

k=Ek/

ρ

k.Mechanicalandther- maltransferprocessesareconsideredingeneralforallthephases.

We assume that one species in the mixture can undergo phase transition, so that it can exist asa vapor or a liquid phase, and mass transfer terms are accountedfor thisspecies only. We will usethesubscripts1and2todenotethe liquidandvapor phases ofthisspecies.Wedescribe theN-phaseflowunderconsideration by acompressibleflow modelthatextends thesix-equationtwo- phase flow systemthatwe studied inPelanti andShyue(2014b). The model systemis composed ofthe volume fractionequations forN− 1phases,themassandtotalenergyequationsforalltheN phases,anddmixturemomentumequations,whereddenotesthe

spatialdimension:

t

α

k+u·

∇α

k=

N j=1

Pk j, k=1,3,...,N, (1a)

t

( α

1

ρ

1

)

+

·

( α

1

ρ

1u

)

=M, (1b)

t

( α

2

ρ

2

)

+

·

( α

2

ρ

2u

)

=−M, (1c)

t

( α

k

ρ

k

)

+

·

( α

k

ρ

ku

)

=0, k=3,...,N, (1d)

t

( ρ

u

)

+

·



ρ

uu+



N



k=1

α

kpk



I



=0, (1e)

t

( α

1E1

)

+

·

( α

1

(

E1+p1

)

u

)

+

ϒ

1

=−

N

j=1

pI1jP1j+

N

j=1

Q1j+



gI+

|

u

|

2

2

M, (1f)

t

( α

2E2

)

+

·

( α

2

(

E2+p2

)

u

)

+

ϒ

2

=−

N

j=1

pI2jP2j+

N

j=1

Q2j



gI+

|

u

|

2

2

M, (1g)

t

( α

kEk

)

+

·

( α

k

(

Ek+pk

)

u

)

+

ϒ

k

=−

N j=1

pIk jPk j+

N j=1

Qk j, k=3,...,N. (1h)

Thenon-conservative terms ϒk appearing inthe phasic totalen- ergyEqs.(1f)–(1h)aregivenby

ϒ

k=u·



Yk



N



j=1

α

jpj



( α

kpk

)



, k=1,...,N, (1i)

whereYk=αkρρk denotesthemassfractionofphase k.Inthesys- temabovePk jandQk jrepresentthevolumetransferandtheheat transfer, respectively, betweenthe phases k andj,k,j=1,...,N.

The termM indicates the mass transfer betweenthe liquid and vaporphasesindexedwith1and2.Thetransfertermsaredefined asrelaxationterms:

Pk j=

μ

k j

(

pk− pj

)

, Qk j=

ϑ

k j

(

Tj− Tk

)

, M=

ν (

g2− g1

)

, (2) whereTk denotes thephasic temperature,gkthe phasicchemical potential,andwherewehaveintroducedthemechanical,thermal andchemical relaxation parameters

μ

k j=

μ

jk≥ 0,

ϑ

k j=

ϑ

jk≥ 0, and

ν

=

ν

12=

ν

21≥ 0, respectively. Note that: Pkk=0, Qkk=0, Pk j=−PjkandQk j=−Qjk.ThequantitiespIk j=pIjk areinterface pressures and gI is an interface chemical potential. We shall as- sume that all mechanical relaxation processes are infinitely fast,

μ

k j=

μ

jk

μ

→+∞,so that mechanicalequilibriumis attained instantaneouslybetweenallthephases.Indeedhere,followingthe same idea of Saurel et al. (2008, 2009) and Pelanti and Shyue (2014b)),theparent non-equilibriummultiphaseflowmodelwith instantaneouspressurerelaxationisusedtoapproximatesolutions tothelimitingpressure-equilibriumflowmodel,whichisthephys- icalflow model ofinterest. Concerningthermal andchemical re- laxation, following the simple approach of Saurel et al. (2008), we consider in this work that these processes are either inac- tive,

ϑ

k j=0,

ν

=0,ortheyactinfinitelyfast,

ϑ

k j→+∞,

ν

→+∞. Heatandmasstransfermaybeactivatedatselectedlocations,for

(3)

instanceatinterfacesforaphase pair(k,j),identifiedbymin(

α

k,

α

j)>

,where

isatolerance.

Theclosureofthesystem(1)isobtainedthroughthespecifica- tionofan equation ofstate (EOS)foreach phase pk=pk(Ek,

ρ

k), Tk=Tk(pk,

ρ

k). For the numerical model here we will adopt the widely used stiffened gas (SG) equation of state (Menikoff and Plohr,1989):

pk

(

Ek,

ρ

k

)

=

( γ

k− 1

)

Ek

γ

k

k

( γ

k− 1

) η

k

ρ

k, (3a)

Tk

(

pk,

ρ

k

)

= pk+

k

κ

vk

ρ

k

( γ

k− 1

)

, (3b)

where

γ

kk,

η

kand

κ

vk areconstantmaterial-dependentparam- eters.Inparticular,

κ

vkrepresentsthespecificheatatconstantvol- ume.Thecorrespondingexpressionforthephasicentropyis sk=

κ

vklog

(

Tkγk

(

pk+

k

)

k−1)

)

+

η

k, (3c) where

η

k=constant,andgk=hk− Tksk,withhkdenotingthepha- sicspecific enthalpy. The parameters for the SGEOS for theliq- uidandvapor phasesofthe speciesthat may undergotransition are determined so that the theoretical saturation curves defined by g1=g2 fit the experimental onesfor the considered material (LeMétayeretal.,2004). Themixturepressurelawforthemodel withinstantaneous pressurerelaxationisdetermined bythemix- tureenergyrelation

E=

N

k=1

α

kEk

(

p,

ρ

k

)

, (4)

wherewehaveusedthemechanicalequilibriumconditionspk=p, forallk=1,...,N,inthephasicenergylawsEk(pk,

ρ

k).Notethat fortheparticularcaseoftheSGEOS,anexplicitexpressionofthe mixturepressurecanbeobtainedfrom(4).

Sinceherewewillconsiderrelaxationparameterseither=0or

→+∞,a specificationoftheexpression fortheinterface quanti- tiespIkj,gIisnotneeded.Nevertheless,letusremarkthatthedef- initionof these interface quantities must be consistent withthe secondlawofthermodynamics,whichrequiresanon-negativeen- tropyproductionforthemixture.Theequationforthemixtureto- talentropyS=

ρ

s,s=N

k=1Yksk,isfoundas:

tS+

·

(

Su

)

=HP+HQ+HM, (5a) where

HP =

N

k=1

N j=1

pk− pIk j

Tk Pk j, HQ=

N

k=1

N j=1

1 TkQk j, HM=

g

I− g1

T1gI− g2

T2

M. (5b)

For consistency of the multiphase model (1)with the second lawofthermodynamicsweneedHP+HQ+HM≥ 0.Byfollowing theargumentsinFlåttenandLund(2011),onecaninferthefollow- ingsufficientconsistencyconditionsontheinterfacequantities:

pIk j∈[min

(

pk,pj

)

,max

(

pk,pj

)

]

and gI∈[min

(

g1,g2

)

,max

(

g1,g2

)

]. (6)

Themodel(1)ishyperbolic andtheassociatedspeed ofsoundcf (non-equilibriumorfrozensoundspeed)isdefinedby

c2f =



pm

∂ρ

sk,Yk,αk, k=1,...,N

, (7)

wherewehaveintroducedthemixturepressure pm

( ρ

,s1,...,sN,Y1,...,YN−1,

α

1,...,

α

N−1

)

=

N

k=1

α

kpk

sk,

ρ α

Ykk

.

(8) Fromthisdefinition,bynoticingthat



pk

∂ρ

sk,Yk,αk

=



pk

∂ρ

k

sk,Yk,αk

 ∂ρ

k

∂ρ

sk,Yk,αk

=c2kYk

α

k

, (9)

weobtaintheexpression:

cf=

N k=1

Ykc2k, (10)

whereck=

(∂ρpk

k)sk isthespeedofsoundofthephasek,which can be expressed as ck=



khk+

χ

k, where k=(

pk/

Ekk (Grüneisencoefficient),and

χ

k=(

pk/

ρ

k)Ek.

3. Hierarchyofmultiphaserelaxedmodelsandspeedofsound

Byconsideringdifferentlevelsofactivationofinstantaneousre- laxationprocesseswecanestablishfromthemodel(1)ahierarchy of hyperbolic multiphase flow models. Here in particularwe de- rivethe expressionofthe speedofsoundforthe relaxedmodels in this hierarchy, similar to Flåtten and Lund (2011) and Flåtten etal.(2010).

3.1. p-Relaxedmodel

Intheconsidered limit ofinstantaneousmechanicalrelaxation

μ

k j

μ

→ +∞, the model system (1) reduces to a hyperbolic single-velocitysingle-pressuremodel,whichisa generalizationof the five-equation two-phase flow model of Kapila et al. (2001). Thereducedpressureequilibriummodel,whichweshallalsocall p-relaxedmodel,canbe derived bymeans ofasymptoticanalysis techniques,cf.inparticularMurroneandGuillard(2005).Weshow thederivationfortheone-dimensionalcaseinAppendixA.Denot- ing withp the equilibriumpressure, we obtain thefollowing re- laxedsystem,composedof2N+d equations:

t

α

1+u·

∇α

1=K1

· u+

ρ 

1c121

N

j=2

Q1j

α

1

ρ

c2p

ρ

1c21

N

j,i=1 i> j

Qji

 

j

ρ

jc2j



i

ρ

ici2

+

ρ

c2p

ρ

1c21

×



(

1

(

gI− h1

)

+ c21

)

N

j=2

α

j

ρ

jc2j +

(

2

(

gI− h2

)

+ c22

) α

1

ρ

2c22



M, (11a)

t

α

k+u·

∇α

k=Kk

· u+

ρ 

kck2k

N

j=1 j=k

Qk j

α

k

ρ

c2p

ρ

kc2k

N

j,i=1 i> j

Qji

 

j

ρ

jc2j



i

ρ

ici2

+

ρ

c2p

α

k

ρ

kc2k

×

 

2

(

gI− h2

)

+c22

ρ

2c22



1

(

gI− h1

)

+c21

ρ

1c21

M, k=3,...,N, (11b)

(4)

t

( α

1

ρ

1

)

+

·

( α

1

ρ

1u

)

=M, (11c)

t

( α

2

ρ

2

)

+

·

( α

2

ρ

2u

)

=−M, (11d)

t

( α

k

ρ

k

)

+

·

( α

k

ρ

ku

)

=0, k=3,...,N, (11e)

t

( ρ

u

)

+

·

( ρ

uu+pI

)

=0, (11f)

tE+

·

((

E+p

)

u

)

=0, (11g) where

Kk=

ρ

c2p

α

k

N

j=1 j=k

α

j



1

ρ

kc2k − 1

ρ

jc2j

=

α

k

 ρ

c2p

ρ

kc2k− 1

. (12)

Intherelationsabovewehaveintroducedthepressureequilibrium speed of soundcp (ageneralization of Wood’ssound speed),de- finedby

c2p=



p

∂ρ

s1,...,sN,Y1,...,YN

, (13)

fromwhichweobtaintheexpression:

cp=

 ρ

N

k=1

α

k

ρ

kc2k



12

. (14)

As we mentioned above, the pressure equilibrium model (1) is indeed the physical flow model of interest. Similar to the two- phasecase(Saureletal.,2009;Zeinetal.,2010;PelantiandShyue (2014b)), thenon-equilibriummodel (11)withinstantaneous me- chanicalrelaxationisconvenienttoapproximatenumericallysolu- tionstothep-relaxedmodel.

Remark1. Forthetwo-phasecaseN=2thep-relaxedmodel(11) hasaformanalogoustothepressure-equilibriummodelpresented bySaurel etal.(2008),nonethelesswe remarkadifference inthe expressionofmasstransfertermappearinginthevolumefraction equation.Theequationfor

α

1obtainedfrom(11)forN=2canbe writtenas:

t

α

1+u·

∇α

1=K1

· u+

ζ

 

1

α

1 +

 α

22

Q +

ζ

 

1

(

gI− h1

)

+c21

α

1

+



2

(

gI− h2

)

+c22

α

2

M, (15)

where K1=

ζ

(

ρ

2c22

ρ

1c21) and

ζ

=α α1α2

2ρ1c12+α1ρ2c22. The equation for the volume fraction

α

1 of the relaxed pressure-equilibrium modelreportedinSaureletal.(2008)is:

t

α

1+u·

∇α

1=K1

· u+

ζ

 

1

α

1 +



2

α

2

Q+

ζ



c21

α

1 +c22

α

2

M. (16) Weobservethatthetwoformulationsareequivalentonlywiththe followingdefinitionoftheinterfacechemicalpotentialgI: gI=

α

2



1h1+

α

1



2h2

α

2



1+

α

1



2 . (17)

Thisdefinitioningeneraldoesnot satisfythe sufficientcondition forentropyconsistency (6).Nevertheless,let usnote thatthenu- merical model in Saurel et al. (2008) considers either no mass transferorinfinite-ratemasstransfer, sothat thefactormultiply- ingMin(16)hasnoinfluenceinthesespecificcircumstances.

Remark 2. In our previous work (Pelanti and Shyue (2014b)) an additionaltermoftheformM/

ρ

Iwaswritteninthevolumefrac-

tion equation of the six-equation two-phase flow model corre- spondingto(1)forN=2,with

ρ

I representinganinterface den- sity.SimilartoFlåttenandLund(2011),thistermisnotincludedin thepresentmultiphasemodel(1).The purposeofthetermM/

ρ

I

in Pelanti and Shyue (2014b)) was to indicate the influence of themasstransferprocessontheevolutionofthevolumefraction.

Nonetheless,therigorousderivationofthepressure-relaxedmodel (11) fromthesystem(1) revealsthat indeedmasstransfer terms affect

α

kvia thepressure relaxationprocess,aswe observefrom thecontribution ofM appearingin (11a)and(11b)(and (15)for the caseN=2). Note that neglecting the term M/

ρ

I inthe six- equationtwo-phase modelofPelantiandShyue(2014b) doesnot affect the numerical model and the numerical results presented there,since

ν

= 0 or

ν

→+∞, andthe numericalprocedure for treatinginstantaneouschemicalrelaxationconsistsinimposingdi- rectlyalgebraicthermodynamicequilibriumconditions.

3.2.pT-relaxedmodels

Assuming instantaneous mechanical equilibrium

μ

jk

μ

→ +∞ for all the phases and thermal equilibrium

ϑ

k j

ϑ

→ +∞ for M phases, 2≤ M≤ N, we obtain a hyperbolic relaxed system of2N− M+ 1 + d equations characterized by the speedof sound cpT,M,definedby

1 cpT,M2 =



p

∂ρ

M

k=1Yksk,sM+1,...,sN,Y1,...,YN

, (18)

Fromthisdefinitionweobtaintheexpression:

1 cpT,M2 = 1

cp2+

ρ

T

M k=1Cpk

M−1

k=1

Cpk

M

j=k+1

Cp j

 

j

ρ

jc2j



k

ρ

kc2k

2

, (19)

where T denotes the equilibrium temperature, Cpk=

α

k

ρ

k

κ

pk,

κ

pk=(

hk/

Tk)pk (specificheat atconstant pressure),andwe re- call k=(

pk/

Ekk. Let us note that in the particular case of thermalequilibriumforallthephases,M=N,thereducedsingle- pressuresingle-temperaturepT-relaxedmultiphasemodel hasthe conservativeform:

t

( α

1

ρ

1

)

+

·

( α

1

ρ

1u

)

=M, (20)

t

( α

2

ρ

2

)

+

·

( α

2

ρ

2u

)

=−M, (21)

t

( α

k

ρ

k

)

+

·

( α

k

ρ

ku

)

=0, k=3,...,N, (22)

t

( ρ

u

)

+

·

( ρ

uu+pI

)

=0, (23)

tE+

·

((

E+p

)

u

)

=0. (24) The two-phase (N=2) version of this modelwas considered for instanceinLundandAursand(2012),andmorerecentlyinSaurel etal.(2016).

(5)

3.3.pTg-relaxedmodels

We now assume instantaneous mechanical equilibrium

μ

jk

μ

→+∞ for all the phases, thermal equilibrium

ϑ

k j

ϑ

→+∞ for M phases, 2≤ M≤ N, and, additionally, we consider instanta- neouschemical relaxationbetweentheliquidandvaporphases1 and2,

ν

→+∞.Weconsiderthat atleasttheliquid–vaporphase pairisinthermalequilibrium.Withthesehypothesesweobtaina hyperbolicrelaxedsystemof2(N− M+ 1)+ d equationscharacter- izedbyaspeedofsoundcpTg,M,definedby

cpTg,M2=



p

∂ρ

M

k=1Yksk,sM+1,...,sN,Y3,...,YN

, (25)

fromwhichweobtain

1

cpTg,M2 = 1

cpT,M2 +

ρ

T

M k=1Cpk



M k=1



kCpk

ρ

kc2k −1 T



dT dp

sat

M

k=1

Cpk



2

, (26)

wherewehaveintroduced thederivatives(dT/dp)sat evaluated on theliquid–vaporsaturationcurve.Asexpected(cf.e.g.Stewartand Wendroff,1984), analogouslyto the two-phase case(Flåtten and Lund, 2011), it is easy to observe from (14), (19), and (26) that sub-characteristic conditionshold, namelythe speed of sound of the N-phase mixture is reduced whenever an additional equilib- riumassumptionisintroduced:

cpTg≡ cpTg,N≤ cpTg,M, cpT ≡ cpT,N≤ cpT,M, and

cpTg<cpT <cp<cf. (27)

Letusnotethat in theparticularcaseof thermalequilibriumfor allthe phases,M=N,the reducedpTg-relaxedmultiphase model corresponds tothe well known Homogeneous EquilibriumModel (HEM)(Stewart and Wendroff,1984), composed ofthe conserva- tionlawsforthemixture density

ρ

, themixturemomentum

ρ

u, andthe mixturetotal energy E. The derivation of theexpression ofthespeedofsoundforthe consideredhierarchyofmultiphase flowmodelsisdetailedinAppendixB.Weconcludethissectionby showinginFig.1thebehaviorofthesoundspeedfordifferentlev- elsofactivation ofinstantaneous mechanical,thermalandchemi- calrelaxationforathree-phasemixturemadeofliquidwater,wa- tervaporandair(non-condensablegas).Hereweplotthespeedof soundversus thevolumefractionofthetotalgaseous component

α

gv=

α

v+

α

g fora fixedratio

α

g/

α

v=0.5,where here

α

v is the

vaporvolumefraction,and

α

gisthenon-condensablegasvolume fraction.The referencepressure is p=105 Pa, and the reference temperatureisthecorresponding saturationtemperature. Thepa- rametersusedfortheequationsofstateofthephasesarethesame asthoseofthecavitation tubeexperimentinSection5.2(Experi- ment5.2.1).

4. Numericalmethod

We focus now on the numerical approximation of the multi- phasesystem (1),whichwe can write in compactvectorial form denotingwithq∈R3N−1+d thevectoroftheunknowns:

tq+

· F

(

q

)

+

ς (

q,

q

)

=

ψ

μ

(

q

)

+

ψ

ϑ

(

q

)

+

ψ

ν

(

q

)

, (28a)

Fig. 1. Speed of sound for a three-phase mixture made of liquid water, water vapor and air versus the total gaseous volume fraction αvg = αv + αg . We use the sub- scripts l,v,g to indicate the liquid phase, the vapor phase and the non-condensable gas phase, respectively. c f , c pT = c pT,3 , c pT(jk) = c pT,2 , c pTg = c pTg,3 , c pT(jk)g = c pTg,2 are the speeds defined in (10), (14), (19) , and (26) . Here the notation T ( jk ), j, k = l , v , g , specifies the two phases for which thermal equilibrium is assumed (for instance c pT(lv) denotes the speed of sound for a mixture characterized by pressure equilib- rium for all the phases and thermal equilibrium for the liquid and vapor pair only).

q=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

α

1

α

3

..

α

.N

α

1

ρ

1

α

2

ρ

2

..

α

N.

ρ

N

ρ

u

α

1E1

α

2E2

..

α

N.EN

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

, F

(

q

)

=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

0 0 .. .

α

10

ρ

1u

α

2

ρ

2u

..

α

N

ρ

.Nu

ρ

uu+



N

k=1

α

kpk

 α

1

(

E1+p1

)

u I

α

2

(

E2+p2

)

u ..

α

N

(

EN.+pN

)

u

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

,

ς (

q,

q

)

=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

u·

∇α

1

u·

∇α

3

.. .

u·

∇α

N

0 0 .. . 0

ϒ

01

ϒ

2

..

ϒ

.N

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

, (28b)

(6)

ψ

μ

(

q

)

=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎣

N j=1P1j

N j=1P3j

..

N.

j=1PN j

0 0 .. . 0 0

−N

j=1pI1jP1j

−N

j=1pI2jP2j

.. .

−N

j=1pIN jPN j

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎦

,

ψ

θ

(

q

)

=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎣

0 0 .. . 0 0 0 .. . 0

N0

j=1Q1j

N j=1Q2j

..

N .

j=1QN j

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎦

,

ψ

ν

(

q

)

=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

0 0 .. . 0

−MM .. . 0

0

gI+|u2|2

M

gI+|u2|2

M .. . 0

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

, (28c)

with ϒk(q,

q) defined in (1i). Above we have put into evi-

dencethe conservative portionof thespatialderivative contribu- tions in thesystemas

· F(q),andwe have indicated thenon- conservative term as

ς

(q,

q). The source terms

ψ

μ(q),

ψ

θ(q),

ψ

ν(q)containmechanical,thermalandchemicalrelaxationterms, respectively,asexpressedin(2).

To numerically solve the system (28) we use the same tech- niques that we have developed for the two-phase model in Pelanti andShyue (2014b).Afractional step methodisemployed, where we alternate between the solution of the homogeneous system

tq+

· F(q)+

ς

(q,

q)=0 and the solution of a se- quence of systems of ordinary differential equations (ODEs) that take into account the relaxationsource terms

ψ

μ,

ψ

ϑ, and

ψ

ν. AsinPelantiandShyue(2014b),theresultingmethodismixture- energy-consistent, inthesense that (i) itguaranteesconservation atthediscretelevelofthemixturetotalenergy;(ii)itguarantees consistencybyconstructionofthevaluesoftherelaxedstateswith the mixturepressure law.The method hasbeenimplemented by usingthelibrariesoftheclawpacksoftware(LeVeque).

4.1. Solutionofthehomogeneoussystem

To solvethe hyperbolic homogeneous portion of(28) we em- ploy the wave-propagation algorithms of LeVeque (2002, 1997), which are aclass of Godunov-typefinite volumemethods to ap- proximate hyperbolicsystemsofpartialdifferentialequations.We shallconsiderhereforsimplicitytheone-dimensional caseinthe xdirection(d=1),andwereferthereadertoLeVeque(2002)for a comprehensivepresentationofthesenumericalschemes. Hence we consider here the solution of the one dimensional system

tq+

xf(q)+

ς

(q,

xq)=0,q∈R3N (asobtainedbysettingu=u and

=

x in(28)).We assumea gridwithcellsofuniformsize

x,andwedenotewithQin theapproximatesolutionof thesys- tematthe ith celland attime tn, i∈Z, n∈N.The second-order wavepropagationalgorithmhastheform

Qin+1=Qin



t



x

(

A+



Qi−1/2+A



Qi+1/2

)



t



x

(

Fih+1/2− Fih−1/2

)

. (29) Here AQi+1/2 are the so-called fluctuations arising from Rie- mannproblemsatcellinterfaces (i+1/2)betweenadjacentcells iand (i+1),andFih+1/2 arecorrection termsfor(formal)second- order accuracy. To define the fluctuations, a Riemann solver (cf.GodlewskiandRaviart,1996;Toro,1997;LeVeque,2002)must beprovided.Thesolutionstructuredefinedbyagivensolverfora Riemann problem withleft and rightdata q and qr can be ex- pressed in general by a set of M waves Wl and corresponding speedssl,M3N.Forexample,fortheHLLC-typesolverdescribed belowM=3.Thesumofthe wavesmustbe equaltothe initial jumpinthevectorqofthesystemvariables:



q≡ qr− q=M

l=1

Wl. (30)

Moreover,foranyvariableofthemodelsystemgovernedbyacon- servativeequation theinitialjump intheassociatedfluxfunction mustbe recoveredby the sumofwavesmultipliedby thecorre- sponding speeds. In the considered modelthe conserved quanti- tiesare

α

k

ρ

k,k=1,...,N,and

ρ

u,thereforeinordertoguarantee

conservationweneed:



f(ξ )≡ f(ξ )

(

qr

)

− f(ξ )

(

q

)

=M

l=1

slWl(ξ ) (31)

for

ξ

=N,. . .,2N, where f(ξ) is the

ξ

th component of the flux

vector f, andWl(ξ ) denotes the

ξ

th component ofthe lth wave,

l=1,. . .,M. It is clear that conservation of the partial densities ensuresconservationofthemixturedensity

ρ

=N

k=1

α

k

ρ

k.Inad- dition,we must ensure conservationof themixture total energy,



fE≡ fE

(

qr

)

− fE

(

q

)

=

M l=1

sl

N

k=1

Wl(2N+k), (32) where fE=u(E+N

k=1

α

kpk) is the flux function associated to the mixture total energy E. Once the Riemann solution struc- ture

{

Wil+1/2,sli+1/2

}

l=1,...,M arising at each celledge xi+1/2 isde- fined through a Riemann solver, the fluctuations AQi+1/2 and thehigher-order(second-order)correctionfluxesFih+1/2in(29)are computedas

A±



Qi+1/2=

M l=1

(

sli+1/2

)

±Wil+1/2, (33)

wherewe haveused the notations+=max(s,0),s=min(s,0), and

Fih+1/2=1 2

M l=1



sli+1/2

 

1−



t



x



sli+1/2



Wil+1h/2, (34)

whereWil+1h/2 areamodifiedversionofWil+1/2obtainedbyapply- ingtoWil+1/2alimiterfunction(cf.LeVeque,2002).

One difficulty in the solution of the homogeneous portion of themultiphasesystem(28)isthepresenceofthenon-conservative products ϒk in the phasic energy equations. Although a discus- sion ofthe treatment of non-conservative terms is not the main focusofthepresentwork,it isimportanttorecall theassociated issuesandchallenges.Itiswellknownthatafirstdifficultyofnon- conservative hyperbolic systems is the lack of a notion of weak

參考文獻

相關文件

As a remedy, using higher order schemes, like WENO (Weighted Essentially Non-Oscillatory) scheme [24], to solve compressible multiphase flows is also found in the

Shock diffraction in 2-phase mixture Cavitating Richtmyer-Meshkov instability High pressure fuel injector.. Homogeneous relaxation

Mathematically, 5-equation model approaches to same relaxation limits as HRM, but is difficult to solve numerically to ensure solution to be feasible.. 5 -equation

A mixture-energy-consistent 6-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves. Modelling phase transition in metastable

Compute interface normal, using method such as Gradient or least squares of Youngs or Puckett Determine interface location by iterative bisection..

The natural structure for two vari- ables is often a rectangular array with columns corresponding to the categories of one vari- able and rows to categories of the second

The disadvantage of the inversion methods of that type, the encountered dependence of discretization and truncation error on the free parameters, is removed by

Particularly, combining the numerical results of the two papers, we may obtain such a conclusion that the merit function method based on ϕ p has a better a global convergence and