• 沒有找到結果。

Applications to Fourier series

N/A
N/A
Protected

Academic year: 2022

Share "Applications to Fourier series"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

(February 19, 2005)

Applications to Fourier series

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/˜garrett/

We showed that the Fourier series of periodic C1 functions f on R1 converge uniformly (that is, in the Co metric), and also converge pointwise to the original f . Thus, in the one dimensional case, the Fourier series of periodic C1 functions do converge to the functions.

From the general discussion of L2 functions, we know that a sequence of L2 functions has a subsequence which converges pointwise. (In fact, that is how the limit is constructed in proving completeness of L2.) This applies to Fourier series, but pointedly does not say anything about the pointwise convergence of the whole sequence of partial sums.

Theorem:

There is a periodic continuous function f on [0, 1] (periodicity meaning that f (0) = f (1)) such that the Fourier series

X

n∈Z

f (n) eˆ 2πinx

of f does not converge at 0, where as usual f (n) =ˆ

Z 1 0

e−2πinxf (x) dx

The Banach-Steinhaus (Uniform Boundedness) theorem for Banach spaces V has as a special case that for a collection of continuous linear functionals {λα: α ∈ A} on V either there is a uniform bound M such that

α| ≤ M for all α ∈ A, or else there is v in the unit ball of V such that sup

α∈A

αv| = +∞

In fact, the collection of such v is dense in the unit ball, and is an intersection of a countable collection of dense open sets (called a Gδ).

Consider the functionals

λN(f ) = X

|n|≤N

f (n)ˆ

These are partial sums of the Fourier series of f evaluated at 0. Since

N(f )| ≤ Z 1

0

X

|n|≤N

e−2πinx

|f (x)| dx

≤ |f |· Z 1

0

X

|n|≤N

e−2πinx

dx = |f |· | X

|n|≤N

e−2πinx|1

The point is to show, rather, that equality holds, namely

N| = | X

|n|≤N

e−2πinx|1

and that as n → ∞ the latter L1-norms go to ∞.

First, summing the finite geometric series and doing a little adjustment gives X

|n|≤N

e−2πinx=e−2πiN x− e−2πi(−N −1)x

e−2πix− 1 = e2πi(N +12)x− e−2πi(N +12)x

eπix− e−πix = sin 2π(N +12)x sin πx

1

(2)

Paul Garrett: Applications to Fourier series (February 19, 2005) Applying to this the elementary inequality

| sin t| ≤ |t|

gives

Z 1 0

sin 2π(N +12)x sin πx

dx ≥ Z 1

0

| sin 2π(N + 1 2)x|1

xdx =

Z 2π(N +12) 0

| sin x|1 xdx

N

X

`=1

1

` Z 2π`

2π(`−1)

| sin x| dx ≥

N

X

`=1

1

` → ∞ as N → ∞. Thus, the L1-norms do go to ∞.

Let g(x) be the sign of the kernel

X

|n|≤N

e−2πinx=sin 2π(N +12)x sin πx

from above. Let gj be a sequence of periodic continuous functions with |gj| ≤ 1 and going to g pointwise.

Then by the dominated convergence theorem

lim

j λN(gj) = lim

j

Z 1 0

gj(x) X

|n|≤N

e−2πinxdx = Z 1

0

g(x) X

|n|≤N

e−2πinxdx = Z 1

0

| X

|n|≤N

e−2πinx| dx

That is, the L1-norm of the kernel really is the norm of the functional.

The Banach-Steinhaus theorem implies that there is f ∈ Co(R/Z) such that sup

N

N(f )| = +∞

That is, the Fourier series of f does not converge at 0. ///

The result can be strengthened by using Baire’s theorem again.

Theorem:

There is f ∈ Co(R/Z) such that for a dense Gδ of x in [0, 1]

sup

N

X

|n|≤N

f (n) eˆ 2πinx

= ∞

In fact, the set of such f is a dense Gδ in Co(R/Z).

Proof:

Take a dense countable set of points xj in the interval. Let λj,N be the continuous linear functionals on Co(R/Z) defined by

λj,N(f ) = X

|n|≤N

f (n) eˆ 2πinxj

As in the previous proof, the set Ej of functions f where sup

N

j,Nf | = +∞

is a dense Gδ, so the intersection

E = ∩jEj

is a dense Gδ. Also

s(f, x) = sup

N

| X

|n|≤N

f (n) eˆ 2πinxj|

2

(3)

Paul Garrett: Applications to Fourier series (February 19, 2005) is the sup of continuous functions, so is lower semicontinuous, and so for any f ∈ Co(R/Z)

{x ∈ [0, 1] : s(f, x) = +∞}

is a Gδ in [0, 1]. Then for f ∈ E, the corresponding Gδ contains a dense subset (the xi). ///

Lemma:

In a complete metric space X, d (with no isolated points), a dense Gδ is uncountable.

Proof:

Suppose that

E =\

n

Un = {x1, x2 . . .}

is a dense Gδ, where the sets Un are (necessarily dense) open. Let Vn= Un− {x1, . . . , xn}

Then Vn is still dense (by the assumption that there are no isolated points) and open, but T

nVn = φ,

contradicting the Baire theorem. ///

Theorem:

(Riemann-Lebesgue Lemma) Let f ∈ L1[0, 1]. Then f (n) → 0ˆ

Proof:

Finite linear combinations of exponentials are dense in Co(R/Z) in sup norm, and Co[0, 1] is dense in L1[0, 1]. That is, given f ∈ L1there is g ∈ Co(R/Z) such that |f − g|1< ε and a finite linear combination h of exponentials such that |g − h|< ε. Since the sup-norm dominates the L1-norm, |f − h|1< 2ε.

Given such h, for large-enough n the Fourier coefficients are simply 0, by orthogonality of distinct exponentials. Thus,

| ˆf (n)| =

Z 1 0

(f (x) − h(x)) e−2πinxdx

≤ |f − h|1< 2ε

This proves the Riemann-Lebesgue Lemma. ///

Theorem:

(corollary of Baire and Open Mapping) It is not true that every sequence an→ 0 occurs as the collection of Fourier coefficients of an L1function.

Proof:

Let c0 be the collection of sequences {an: n ∈ Z} of complex numbers such that

n→∞lim an= 0 with norm

|{an}| = sup

n

|an| This norm makes c0a Banach space. Let T : L1→ c0 by

T f = { ˆf (n) : n ∈ Z} ∈ c0 Since

| ˆf (n)| =

Z 1 0

f (x) e−2πinxdx

≤ Z 1

0

|f (x)| dx = |f |1

it is clear that |T | ≤ 1. In fact, taking f (x) = 1 shows that |T | = 1.

We check that T is injective: if ˆf (n) = 0 for every n for some L1 function f , then for any trigonometric polynomial h we have

Z 1 0

f (x) h(x) dx = 0

3

(4)

Paul Garrett: Applications to Fourier series (February 19, 2005)

and by dominated convergence (and density of trigonometric polynomials) the same holds for all continuous h. From Lusin’s theorem and (again) dominated convergence, the same applies with h being a characteristic function of a measurable set. Thus f = 0, proving injectivity of T .

If T were surjective from L1 to c0, then the Open Mapping Theorem would assure the existence of δ > 0 such that for every L1function f

| ˆf |≥ δ |f |1 Let

fN(x) = X

|n|≤N

e−2πinx

On one hand, the sup norm of ˆfN is certainly 1. On the other hand, the computation above shows that the L1 norm of fN goes to ∞ as N →= ∞. Thus, there is no such δ > 0. Thus, T cannot be surjective.

///

Remark:

For any locally compact Hausdorff space X we can define

Co(X) = Coo(X) = {f ∈ Co(X) : for each ε > 0 there is compact K such that |f (x)| < ε off K}

and show that with sup norm this space is complete.

4

參考文獻

相關文件

(a) Define what it means to say that {f n } is pointwise convergent on D.. (b) Define what it means to say that {f n } is uniformly convergent

Calculus Inverse Functions (Continued) October 3, 2018.. Proof If f is continuous, then, being one-to-one, f either increases throughout (a, b) or it de- creases throughout

Hence if we know g, the restriction of f to the boundary of S 1 , and express g as an infinite series of the form (1.2), then we can find (solve for) f.. We need the notion of

Determine whether the following sequence of functions {f n } converges pointwise on the indicated interval2. (a) Suppose that {f n } is a sequence of bounded (not

Remember the definition of Laurent series of a function about an isolated singularity, and the principal part and the analytic part of the Laurent series.. Remember the definition

Date: Monday, Jun 17, 2002 Instructor: Shu-Yen Pan1. No credit will be given for an answer

We see that if half the triangles overlap we get just what we want; bring the left zero-point of the right-hand triangle over to hit at the middle of the base of the left-hand

We say that the series converges if the partial sums converge and denote the limit by.. It is usually not easy to determine whether a