• 沒有找到結果。

High-strength Copper Alloy and Its Composite Electrodeposition 張靜芳、李春穎, 林招松, 張舜長

N/A
N/A
Protected

Academic year: 2022

Share "High-strength Copper Alloy and Its Composite Electrodeposition 張靜芳、李春穎, 林招松, 張舜長"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

High-strength Copper Alloy and Its Composite Electrodeposition 張靜芳、李春穎, 林招松, 張舜長

E-mail: 9419520@mail.dyu.edu.tw

ABSTRACT

Copper has been widely used in industrial applications due to its excellent conducting properties both in thermal and electrical aspects. However, the inferiority in mechanical strength makes the scope of its application restricted. Therefore, improving the mechanical strength, while retaining the conducting properties, becomes an important research topic. During the last decades, most studies in the composite electroplating concentrated on the enhancement of the codeposition of alumina in copper matrix. The discussion on the relationship between the material property and microstructure of the composite coating is rarely seen in the literature. A closed electroplating system was fabricated in this thesis and an experimental study on the effect of process parameters for this alumina/copper codeposition was conducted. The field-emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) were employed in the examination of the microstructure of the coating. On the other hands, X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and hardness tester were used to study the correlation between the microstructure and mechanical properties. The results showed that the addition of cobalt or thallium ion in the electrolyte can increase the amount of codeposited alumina. Nevertheless, the codeposited alumina was only found near the surface of the coating instead of uniform distribution through the thickness. It is concluded that for the acid electrolyte of copper sulfide, the additive of Tl or Co ion, pH of the solution and process parameters can used to tune the preferred orientation, defect of the microstructure and the hardness of the coating.

Keywords : Alumina, Composite Electroplating, Preferred Orientation Table of Contents

目錄 封面內頁 頁碼 簽名頁 授權書 iii 中文摘要 v 英文摘要 vi 誌謝 vii 目錄 viii 圖目錄 xi 表目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 本文架構 2 第二章 文獻探討 5 2.1 基本電鍍原理 5 2.2 複合電鍍共析機制 6 2.2.1 Guglielmi 二階段吸附機 制 6 2.2.3 Foster 之動力式 7 2.2.3 增子昇及虫明克彥之研究 8 2.2.4 近年之共沈積機制 10 2.4 粉末共鍍含量分析 11 第三章 實 驗方法 12 3.1 實驗設備 13 3.1.1 封閉式槽體 13 3.1.2 開放式槽體 18 3.2 鍍前處理 20 3.2.1 鍍液配置 20 3.2.2 氧化鋁粉前處理 22 3.2.3 陽極前處理 22 3.2.4 陰極前處理 23 3.2.4.1 銅基材前處理 23 3.2.4.2 不鏽鋼基材前處理 23 3.3 鍍層分析之各類試片製 作 24 3.3.1 微硬度試驗與橫截面金相試片 24 3.3.2 掃瞄式電子顯微鏡試片製作 25 3.3.3 X 光射線繞射儀量測 28 3.3.4 顆粒共 鍍量量測 28 3.3.5 穿透式電子顯微鏡試片製作 29 第四章 實驗結果 31 4.1 酸性硫酸銅 31 4.2 添加α-Al2O3 對鍍層結構之影 響 36 4.3 Co2+對複合鍍層之影響 39 4.3.1 Co2+對α-Al2O3 共鍍量之影響 39 4.3.2 Co2+對鍍層硬度值之影響 41 4.3.3 Co2+

對鍍層結構之影響 43 4.4 Tl+對複合鍍層之影響 46 4.4.1 Tl+對α-Al2O3 共鍍量之影響 46 4.4.2 Tl+對鍍層硬度值之影響 48 4.4.3 Tl+對鍍層結構之影響 50 4.5 pH 對鍍層結構之影響 51 4.6 槽體對鍍層結構之影響 53 4.7 鍍層橫截面觀察 55 4.8 穿透 式電子顯微鏡觀察鍍層微結構 57 第五章 結論 61 參考文獻 63 圖目錄 圖2.1 電鍍示意圖 5 圖2.2 Guglielmi 二階段吸附機制 7 圖2.3 現階段共沈積機制模型 9 圖3.1 本研究實驗規劃整體流程圖 12 圖3.2 封閉式複合電鍍裝置是意圖 15 圖3.3 開放式複合 電鍍裝置是意圖 16 圖3.4 電解槽體示意圖 16 圖3.5 陽極壓克力蓋示意圖 17 圖3.6 陰極壓克力蓋示意圖 17 圖3.7 開放式複合 電鍍裝置示意圖 19 圖3.8 SEI 觀察複合鍍層 27 圖3.9 橫截面TEM 試片製作流程圖 30 圖4.1 純銅電鍍鍍層金相圖,1000X 33 圖4.2 純銅電鍍鍍層的表面形貌 34 圖4.3 電解槽不同角度放置示意圖制 35 圖4.4 銅及Cu-Al2O3 複合鍍層的XRD 圖 37 圖4.5 Cu-Al2O3 鍍層之表面形貌 38 圖4.6 Co2+添加量對顆粒共鍍之影響 40 圖4.7 銅鈷複合電鍍硬度值 41 圖4.8 複合鍍層 金相圖,1000X 42 圖4.9 添加Co2+對鍍層優選方位的影響 44 圖4.10 橫截面TEM 照片 45 圖4.11 Tl+添加量對顆粒共鍍量之 影響 47 圖4.12 Tl+添加量對鍍層硬度值之影響 48 圖4.13 添加Tl+後鍍層之表面形貌 49 圖4.14 添加Tl+對鍍層優選方位的 影響 50 圖4.15 改變pH 值對鍍層優選方位的影響 52 圖4.16 槽體對鍍層優選方位的影響 54 圖4.17 以背向電子影像觀察鍍層 橫截面 56 圖4.18 穿透式電子顯微鏡觀察鍍層微結構,脈衝電鍍Cu-Co(0.5g/l) -Al2O3,脈衝週期:1/2 鍍層微結構 58 圖4.19 穿透式電子顯微鏡觀察鍍層微結構,Cu- Co(0.5g/l)-Al2O3- (N2 攪拌)鍍層微結 59 圖4.20 橫截面TEM 照片顯示氧化 鋁粉吸附於鍍層表面 60 表目錄 表1.1 常用複合鍍層之金屬與材料微粒 4 表3.1 硫酸銅基本鍍液之組成 21 表3.2 銅鈷複合電 鍍鍍液之組成 21 表3.3 銅鉈複合電鍍鍍液之組成 21 表3.4 複合鍍層之化學腐蝕液的組成 25 表4.1 純銅電鍍之操作條件 32 表4.2 Cu/α-Al2O3 電鍍之操 36 表4.3 添加Co2+之操作條件 39 表4.4 添加Tl+之操作條件 46

REFERENCES

(2)

[1]張允誠,胡如南,向榮,1997,電鍍手冊,國防工業出版社 [2]曾貨梁,陳均武等人編著,1997,電鍍工藝手冊,機械工業出版社 [3]L. P’eter, A. Czira’ki and L. Poga’ny, 2001, “Microstructure and Giant Magnetoresistance of Electrodeposited Co-Cu/Cu Multilayers,”

Journal of the Electrochemical Society, 14, 83, C168.

[4]曾貨梁,吳仲達,陳鈞武,呂佩仁,秦月文,1997,電鍍工業手冊,機械工業出版社 [5]N. Guglielmi, 1972, “Kinetics of the Deposition of Inert Particles from Electrolytic Baths,” Journal of the Electrochemical Society, 119, 1009.

[6]J. Foster and B. Cameron, 1976, “The Effect of Current Density and Agitation on the Formation of Electrodeposited Composite Coatings,”

Transactions of the Institute of Metal Finishing, 54, 178.

[7] 增子昇, 虫明克彥, 1977 , “Electrodeposition of Ni-Al2O3 Composites on Rotating Cylinder Electrode,” 金屬表面技術, 28, 10, 534.

[8]增子昇,虫明克彥,1980,“Deposition Kinetics of Alumina Particle During Electroplating of Nickel-Alumina Composites,” 金屬表面技 術, 31, 10, 523.

[9]增子昇,虫明克彥,1980,“Deposition Kinetics of Alumina Particle During Electroplating of Nickel-Alumina Composites,” 金屬表面技 術, 31, 10, 541.

[10]增子昇,虫明克彥,1985,“分散型複合電鍍,” Denki Kagaku, 53, 1, 45.

[11]J. P. Celis, J. R. Roos and C. Buelens, 1987, “A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix,”

Journal of the Electrochemical Society, 134, 1402.

[12]J. Fransaer, J. P. Celis and J. R. Roos, 1992, “Analysis of the Electrolytic Codepostion of Non-Brownian Particles with Metals,” Journal of the Electrochemical Society, 139, 413.

[13]J. P. Celis, J. R. Roos and C. Buelens and J. Fransaer, 1991,“Mechanism of Electrolytic Composite Plating: Survey and Trends,”

Transactions of the Institute of Metal Finishing, 69, 4, 133.

[14]T. W. Tomaszewski, L. C. Tomaszewski and H. Brown, 1969,“Codeposition of Finely Dispersed Particles with Metals,” Plating, 1234.

[15]J. R. Roos, J. P. Celis and J. A. Helsen, 1977, “Codeposition of Alpha- and Gamma-Alumina with Copper from Copper Sulphate Baths,”

Transactions of the Institute of Metal Finishing, 55, 113.

[16]E. S. Chen, G. R. Lakshiminarayanan, F. K. Sauter, 1971, “The Codeposition of Alumina and Titania with Copper, ”Metallurgical Transactions, 2, 937.

[17]G. Wu, N. Li, D. Zhou and K. Mitsuo, 2004, “Electrodeposited Co-Ni-Al2O3 Composite Coatings,” Surface and Coatings Technology, 176, 157.

[18]V. V. Grinina and Y. M. Pokukarov, 1985, “Effect of Periodic Current on the Incorporation of Foreign Particles in Electrolytic Copper Deposits,” Insititute of Physical Chemistry, Academy of Sciences of the USSR, Nov., Russia.

[19]李建成,1987,“銅/氧化鋁複合電鍍動力學之研究,”碩士論文,國立清華大學化學工程學系 [20]H. Hayashi, S. Izumi and I. Tari, 1993, “Codeposition of α-Alumina Particles from Acid Copper Sulfate Bath,” Journal of the Electrochemical Society, 140, 2.

[21]謝培煥,2002,“鎳-氧化鋁複合電鍍行為對鍍層性質之影響,”碩士論文,國立成功大學化學工程學系 [22]蔡梨暖,2002,“鈷銅 合金電鍍之研究,碩士論文,大葉大學機械工程研究所 [23]C. S. Lin, C. Y. Lee, C. F. Chang, C. H. Chang, 2005, “Annealing Behavior of Electrodeposited Ni-TiO2 Composite Coatings,”Surface and Coatings Technology, in press.

參考文獻

相關文件

好了既然 Z[x] 中的 ideal 不一定是 principle ideal 那麼我們就不能學 Proposition 7.2.11 的方法得到 Z[x] 中的 irreducible element 就是 prime element 了..

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =>

We explicitly saw the dimensional reason for the occurrence of the magnetic catalysis on the basis of the scaling argument. However, the precise form of gap depends

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix

incapable to extract any quantities from QCD, nor to tackle the most interesting physics, namely, the spontaneously chiral symmetry breaking and the color confinement.. 

• Formation of massive primordial stars as origin of objects in the early universe. • Supernova explosions might be visible to the most

An Analysis of the January Effect of the United State, Taiwan and South Korean Stock Market, Asia Pacific Journal of Management, 9,