• 沒有找到結果。

(2) hx, yi = hy, xi, ∀x, y ∈ X (*R)

N/A
N/A
Protected

Academic year: 2021

Share "(2) hx, yi = hy, xi, ∀x, y ∈ X (*R)"

Copied!
11
0
0

加載中.... (立即查看全文)

全文

(1)

§1 .D(

@ 1(.) ! X )$,l R!MwmX, Cb g= h, i : X × X → R

(x, y) 7→ g(x, y) = hx, yi

[D8Z

(1) hx, xi ≥ 0,hx, xi = 0 ⇔ x = 0 (u&R).

(2) hx, yi = hy, xi, ∀x, y ∈ X (*R).

(3) hλx + µy, zi = λhx, zi + µhy, zi, ∀λ, µ ∈ R, x, y ∈ X (-IRR)

sg= h, i>X !Y<O, (X, h, i) >OmX, hx, yi>x jy!

O, kxk =phx, xi>x !1,.

%1 URn= {(x1,· · · , xn)|xi ∈ R}>nmeT$,, [F!2&, Rn

>R !MwmX, >n ? *mX. Rn e !O h, i:

hx, yi =

n

X

i=1

xi· yi, ∀ x = (x1,· · · , xn), y= (y1,· · · , yn) ∈ Rn.

% 2 U C0[a, b]>X [a, b] uUE,!7Q!MwmX. &_

Oh, i D:

hf, gi = Z b

a

f(x) · g(x)dx.

$ 1 (Schwarz 3) ! (X, h, i, )>OmX, s

|hx, yi| ≤ kxk · kyk.

"Ftd x jy IRJ@.

H, x= 0(My = 0)#,dO!IRw h0, yi = h0 · 0, yi = 0h0, yi = 0.

(2)

-# SchwarzÆ"&t. D!x6= 0, y 6= 0,s* ∀ t ∈ R,e hx, xi − 2thx, yi + t2· hx, yi = hx − ty, x − tyi ≥ 0

⇒ ∆ = 4hx, yi2− 4hx, xihy, yi ≤ 0 (Æ &)

D!v.

@ 2 (() !X >4{QI,Cb ρ: X × X → R[D8Z (1) ρ(x, y) ≥ 0ρ(x, y) = 0 ⇔ x = y;

(2) ρ(x, y) = ρ(y, x);

(3) ρ(x, z) ≤ ρ(x, y) + ρ(y, z). (]Æ"&)

sρ>X!Y<)w(Mgp), (X, ρ)>)wmX(MgpmX), ρ(x, y)

>x, y xX!gp.

% 3 (.C #) ! (X, h, i)>OmX, s}

ρ(x, y) = kx − yk, ∀ x, y ∈ X.

Fρ &_2 !(1), (2), -]Æ"&Xt: ρ2(x, z) = kx − zk2 = hx − z, x − zi

= h(x − y) + (y − z), (x − y) + (y − z)i

= hx − y, x − yi + 2hx − y, y − zi + hy − z, y − zi

≤ hx − y, x − yi + 2kx − yk · ky − zk + hy − z, y − zi

= (kx − yk + ky − zk)2 = (ρ(x, y) + ρ(y, z))2.

`ρ >X !)w, >dOf!)w.

§2 (!8/

_V! (X, ρ) >)wmX. ! x∈ X, r > 0, U Br(x) = {y ∈ X | ρ(y, x) < r},

>[x >P, r >e!i.

(3)

@ 1 ( ) ! U > X !Q, C ∀ x ∈ U , h ∃ ε > 0, % Bε(x) ⊂ U , s U >iQ;o&mQX)iQ. CY<QI! Q (iQ) )

iQ,sx>Q.

F, X >iQ, -X)Q. De x!iQ>x !izl.

% 1 i>iQ: ! x ∈ Br(x0), s ρ(x, x0) < r,} ε= r − ρ(x, x0), s

y∈ Bε(x)#,d]Æ"&, e

ρ(y, x0) ≤ ρ(y, x) + ρ(x, x0) < ε + ρ(x, x0) = r,

t.y∈ Br(x0,SBε(x) ⊂ Br(x0).

o/kv {y ∈ X|d(y, x0) > r} >iQ, Q>, )Q.

-5 1 (1) eH,<iQx\>iQ; ],<iQx >iQ; (2)eH,<Qx >Q; ],<Qx\>Q.

H, (1)! U1,· · · , Uk >iQ, ∀x ∈

k

T

i=1

Ui,d&_, ∃εi >0,% Bεi(x) ⊂ Ui, i = 1, · · · , k. } ε= min{εi|i = 1, · · · , k}, s Bε(x) ⊂

k

T

i=1

Ui,>

k

T

i=1

Ui >iQ,

iQ!&_tSk[;],<iQx >iQ. (2)rcQIp1

(A1∪ · · · ∪ Ak)c = Ac1∩ · · · ∩ Ach (T

α

Aα)c =S

α

Acα

R(1) Sk.

>xlJQ,AaPH!9 , 3G$,y!PH9 )Y}!.

@ 2 (:) ! {xn}n=1 > X %y, Cr x0 ∈ X, % ∀ ε > 0,

∃ N = N (ε), n≥ N #, xn∈ Bε(x0),s{xn} +PH x0,U>

n→∞lim xn= x0.

J (1) lim

n→∞xn= x0⇔ lim

n→∞ρ(xn, x0) = 0.

(2)d]Æ"&G (1) \Y,PHCr, s=Y.

-5 2 QIA >Qd A H+v%y!PHr A .

(4)

H, ! A >Q, {xn} ⊂ A,  lim

n→∞xn = x0. C x0 6∈ A, s ∃ ε0 >0,

% Bε0(x0) ⊂ Ac,  lim

n→∞xn = x0 ]@, ∃ N = N (ε0) % n ≥ N # xn∈ Bε0(x0),tj xn∈ AJ+! ` x0 ∈ A.

0x, CA H+v%y!PHr A ,sx06∈ A, j rn= n−1,C Brn(x0) ∩ A 6= ∅,s xn∈ Brn∩ A. - xn → x0, t)+. `,

∃n0 >0% Brn0(x0) ⊂ Ac,SAc >iQ, A>Q.

§3 (!9;

_! (x, ρ) >)wmX. ! {xn}n=1 > X %y. C ∀ ε > 0, ∃ N = N(ε), n, m≥ N #

ρ(xm, xn) < ε

s%y {xn} >Cauchy y(MNy).

@ 1 (9;) CX Cauchy yh>+v%y, s(X, ρ) ><

)wmX.

J (1) +v%y> Cauchyy;

(2) CauchyyCe+vy, "XY&+v (C6).

-5 1 (Rn,k · k) ><)wmX.

H, !{xn} >Rn %y, 3O5wQ&

xn= (x1n, x2n,· · · , xnn),

s

kxik− xil| ≤

n

X

j=1

(xjk− xji)2

1 2

= kxk− xlk

`,C{xn}>Cauchyy,s{xik}k=1 *<i= 1, 2, · · · , nh>Cauchyy,

-+v. ! lim

n→∞xik= xi0,s

n→∞lim xn= x0 = (x10, x20,· · · , xn0).

!A >X Q,sup{ρ(x, y)|x, y ∈ A} >A !ye, U>diamA. ye

eH!QI>eaQI.

(5)

D!&q) R1 X4nq!YQ&.

$ 1 !(X, ρ) >)wmX, sDyT8"W: (1) (X, ρ)><)wmX;

(2) (Cantor) Q4nqt:  F1 ⊃ F2 ⊃ · · · > Fn ⊃ · · · >Yy4m

Q, lim

n→+∞diamFn= 0,sr=Y!% a∈T n=1Fn.

(3)4nqt: (2)Fi Kye(e) h0!#eJ:`

.

H, (1)⇒(2): an ∈ Fn, d Fn ⊃ Fn+1 ⊃ · · · w {an, an+1,· · · } ⊂ Fn. `

, m > n#

ρ(am, an) ≤ diamFn→ 0 (n → ∞)

- {an} > Cauchy y, !PH> a, s a = lim

n→∞am ∈ Fn, ∀n ≥ 1, S a ∈

T

n=1

Fn. C|e b∈

T

n=1

Fn,s

ρ(a, b) ≤ diamFn→ 0 (n → ∞)

-a= b.

(2)⇒(3): t)F!.

(3)⇒(1). ! {an} > X  Cauchy y, >xvt)Y<+v%y, |S

v3DY<+vySk. d Cauchy y!&_, ∃ n1 < n2 < · · · , % m, n≥ nk #

ρ(am, an) < 1 2k+1.

j X ! Fk= ¯B2−k(ank), k = 1, 2, · · · . x∈ Fn+1 #, ρ(x, ank) ≤ ρ(x, ank+1) + ρ(ank+1, ank)

≤ 1

2k+1 + 1 2k+1 = 1

2k

t.x∈ Fk. SF1 ⊃ F2 ⊃ · · · ⊃ Fk > Fk+1 ⊃ · · · . |Y2, diam Fk≤ 2 · 2−k → 0, (k → +∞),

>ra∈

T

n=1

Fk. -e

0 ≤ ρ(a, ank) ≤ 2−k → 0 (k → +∞)

(6)

Sy{ank} +vha.

<)wmXeDec!V2bLnq.

@ 2 (>4A0) ! A > X !Q, b f : A → A C[D8

Z:

(∗)r, 0 ≤ q < 1, % ρ(f (a1), f (a2)) ≤ q · ρ(a1, a2), ∀ a1, a2 ∈ A.

sx>V2b .

$ 2 (>4A0F$) CA><)wmX (X, ρ)Q, f : A → A

>V2b , sr=Y!% a∈ A, % f(a) = a (Æ'%).

H, a0 ∈ A,$B#&_ A%y{an}D: an= f (an−1), n= 1, 2, · · · ,

s

ρ(an+1, an) = ρ (f (an), f (an−1)) ≤ q · ρ(an, an−1), ∀ n ≥ 1

-e

ρ(an+1, an) ≤ q · ρ(an, an−1) ≤ q2ρ(an−1, an−2) ≤ · · · ≤ qn· ρ(a1, a0), ∀n ≥ 0 ρ(am, an) ≤ ρ(am, am−1) + ρ(am−1, am−2) + · · · + ρ(an+1, an)

≤ (qm−1+ qm−2+ · · · + qn) · ρ(a1, a0)

≤ qn

1 − q · ρ(a1, a0) → 0, (m > n, n → ∞).

t.{an}> Cauchyy.!PH> a,sa∈ A,  ρ(f (a), a) ≤ ρ(f (a), f (an)) + ρ(f (an), f (a) + ρ(an, a)

≤ ρ · ρ(a, an) + qn· ρ(a1, a0) + ρ(an, a) → 0 (n → ∞)

t.f(a) = a.

=YR: f(b) = b,s

ρ(a, b) = ρ(f (a), f (b)) ≤ q · ρ(a, b)

t.ρ(a, b) = 0,- a= b.

(7)

§4 (!DI;

!S >)wmX (X, ρ) !Q, CS ⊂S

α

Gα, s {Gα} >S !Y<6

:. Gα h>iQ#,  {Gα} >i6:; |eeH<m0!6:>eH6 :,d{Gα} ;m0!6:>6:.

@ 1 (I;) CQI S !Hi6:(eeH6:, s S >

c}QI.

-5 1 c}QI>eaQ.

H, ! A >c}QI,  a∈ A, `> A⊂

S

n=1

Bn(a), > ∃ n1,· · · , nk,% A⊂S

ni

Bni(a) = BN(a), N = max{n1,· · · , nk}. ` A >eaQI. Dv

Ac >iQ. ($,  b ∈ A, j A ]Y% a,  0 < r(a) < 1 2ρ(a, b),

sBr(a)(a) ∩ Br(a)(b) = ∅, A ⊂ S

a∈A

Br(a)(a), dV!, r a1,· · · , ak ∈ A% A⊂

k

S

i=1

Br(ai(ai). }r = min

1≤i≤k{r(ai)}, sBr(b) ∩ Br(ai)(ai) = ∅, i = 1, · · · , k. - Br(b) ∩ A = ∅,S Ac >iQ, A>Q.

$ 1 !A >Rn Q, s[DT8"W: (1) A>c}QI;

(2) A >Tyc}QI, S A H%yhe+vy, 8yPH

rA ;

(3) A>eaQ.

H, (1) ⇒ (2). (0v/). !{an} >A %y, 3B+vh A%!

y, s ∀a ∈ A, ri Br(a)(a), % Br(a)(a) ,|De {an} eHK.

F, A ⊂ S

a∈A

Br(a)(a), dc}R, r a1,· · · , ak % A ⊂ Sk

i=1

Br(ai)(ai), 5

#, {an} |eHK Gr A,t)+!

(2) ⇒(3). Ev A ea, (0v/). C ∃ an ∈ A, % ρ(a0, an) → ∞ (n → ∞), sF {an} B+vy, t)+! qv A >Q, c0v/.

sran ∈ A, lim

n→∞an = a 6∈ A. {an} !Yyh+vh a6∈ A, tjTyc

+!

(8)

(3) ⇒ (0v/). ! A >eaQ, r A !i6: {Uα}, % 

HeH<m0hB/6: A. u27 I0 ⊃ A, [ I1  2n "5, eY

"5 I2 ⊂ I1, % I2 ∩ A Æ eH< Uα 6:. Zo;, Yt27 I1 ⊃ I2 ⊃ · · · , diam Im→ 0 (m → ∞). dQ4nq, r=Y!%a∈ ∩Im∩ A.

g`> {Uα} > A !i6:, >r α0 % a ∈ Uα0. h) m 5#e Im ⊂ Uα0. tjIm∩ AÆ eH< Uα 6:J+!

7+ Rn ea%ye+vy (∵ Dh Mt27).

@ 2 (Æ*&6)

§5 &<A0

L^YDuUE,!&_: f : R → R r x0 uU){, ∀ ε > 0, ∃ δ > 0

% |x − x0| < δ# |f (x) − f (x0)| < ε. c)wmX!kWkD;A:

@ 1 (&<A0) !f : X → Y >)wmX (X, ρ1), (Y, ρ2)xX!b ,

! x0 ∈ X. C ∀ ε > 0, ∃ δ > 0 % f(BδX(x0)) ⊂ BεY(f (x0)), s f rx0 

uU. C f uU, sf >uUb .

-5 1 (&<A0 ) ! f : X → Y >)wmXxX!b , x0 ∈ X.

s

(1) f rx0 uU*]+vhx0 !%yxn,he lim

n→∞f(xn) = f (x0);

(2) f >uUb *iQ V ⊂ Y , f−1(V ) >X iQ; (3) f >uUb *Q V ⊂ Y , f−1(V ) >X Q.

H, (1) “⇒” !f rx0 uU,s ∀ε > 0, ∃ δ > 0% f(BδX(x0) ⊂ BεY(f (x0)).

`>xn→ x0,>n5#xn∈ BδX(x0), - f(xn) ∈ BεY(f (x0)), Sf(xn) → f(x0).

“⇐” (0v/) C f r x0 uU, s ∃ ε0 > 0 % * δ = 1

n, ∃ xn ∈ BX1

n

(x0), -f(xn) 6∈ BεY0(f (x0)). Fxn→ x0,f(xn) 6→ f (x0),+! (2), (3): ~C6.

(9)

J (1) CA > X xQ, f : A → Y >b , s X !)wH~h A,

-A X>)wmX ()wmX), #k[&_ f !uUR, eo/!l

J.

(2) ! f : A → Y uU, C ∀ ε > 0, ∃ δ > 0 % ρ1(a1, a2) < δ # ρ2(f (a1), f (a2)) < ε, s f >Y}uUb .

$ 1 (&<A0D;) ! f : X → Y >uUb ,s

(1) f X c}QIb> Y c}QI;

(2) f rc}QIY}uU.

H, (1)! A>X c}QI, f(A)!i6: {Vα}, s{f−1(Vα)}>

A !i6:,- ∃ α1,· · · , αk % A⊂

k

S

i=1

f−1(Vαi). t. f(A) ⊂

k

S

i=1

Vαi. (2)! A >c}QI.C f r A Æ)Y}uU!, s ∃ ε0 >0, % * δ= 1

n, ∃ am, bn∈ A,%

ρ1(an, bn) < 1

n, ρ2(f (an), f (bn)) > ε0.

d§4 &q1, {an}G{bn}5 r+vy,Æ3!3")+v!, an→ a0, bn→ b0,s

ρ1(a0, b0) ≤ ρ1(a0, an) + ρ1(an, bn) + ρ1(bn, b0)

< 1

n+ ρ1(a0, an) + ρ1(bm, b0) → 0

Sa0 = b0. 

ε0< ρ2(f (an), f (bn)) ≤ ρ2(f (an), f (a0)) + ρ2(f (b0), f (bn)) → 0.

t)+!

7 uUb (uUE,)f : X → R rc}QIk[z, 

Nz.

@ 2 (Æ*&6) ! G> X !Q, C= x1, x2 ∈ G,hruU

b (uUI) σ : I = [0, 1] → X % σ(0) = x1, σ(1) = x2, σ(I) ⊂ G, sG

u9.

-5 2 R1 u9QI>X.

(10)

H, !G⊂ R1 u9, a, b ∈ G. Av [a, b] ⊂ G. ($, d&_,

ruUb f : [0, 1] → R,% f(0) = a, f (1) = b, f ([0, 1]) ⊂ G. f >Ymu

UE,, dbz&q, [a, b] ⊂ f ([0, 1]) ⊂ G.

$ 2 (&<A0D&6;) uUb u9!QIb>u9

QI.

H, ! G⊂ X u9, f : X → Y uU.  y1, y2 ∈ f (G), sr x1, x2 ∈ G % f(x1) = y1, f (x2) = y2. d&_, ruUb σ : [0, 1] → X

% σ(0) = x1, σ(1) = x2, σ([0, 1]) ⊂ G. 7Ib f ◦ σ : [0, 1] → Y uU,  f◦ σ(0) = f (x1) = y1, f ◦ σ(1) = f (x2) = y2, f ◦ σ([0, 1]) ⊂ f (G). f ◦ σf) f(G)

u^y1, y2 !.

7+ !f : X → R>uUE,, G ⊂ X u9.

(1) Cr x1, x2 ∈ G, % f(x1) · f (x2) < 0, sr x0 ∈ G % f(x0) = 0;

(2) *h8Z f(x1) ≤ y ≤ f (x2) !] y, Y&r x ∈ G % y= f (x).

b f : R2 → R>.mE,. R2 !%c (x, y)'. !(x0, y0) ∈ R2,C∃ A ∈ R, % = ε >0, ∃ δ > 0% 

0 < k(x, y) − (x0, y0)k =p(x − x0)2+ (y − y0)2 < δ

#,

|f (x, y) − A| < ε,

ff r (x0, y0) ePH ( PH), U>

(x,y)→(xlim0,y0)f(x, y) = A

M

x→x0lim

y→y0

f(x, y) = A.

C*hY<?&! y,PH lim

x→x0

f(x, y) = ϕ(y) r, sk[&_PH

y→ylim0

x→xlim0

f(x, y) = lim

y→y0

ϕ(y).

o/#&_ lim

x→x0

y→ylim0

f(x, y),3>nPH.

(11)

% 1 (1) lim

(x,y)→(0,0)

x2y2 x2+ y2 = 0



∵ x2y2 x2+ y2 ≤ 1

2xy ≤ 1

4px2+ y2

 . (2) xy

x2+ y2 r (0, 0) BPH (5 j y= xG y= x2.) (3) f (x, y) = x · sin1

y. d|f (x, y)| ≤ x w lim

(x,y)→(0,0)f(x, y) = 0,  lim

y→0f(x, y)

Ær. (4) lim

y→0lim

x→0

xy

x2+ y2 = lim

x→0lim

y→0

xy

x2+ y2 = 0,d (2), PHÆr.

$ 3 C lim

(x,y)→(a,b)f(x, y) = A, ∀ y 6= b, lim

x→af(x, y) = ϕ(y) r,s

y→blimlim

x→af(x, y) = lim

y→bϕ(y) = A

C∀ x 6= a, lim

y→bf(x, y)Xr,s

x→alimlim

y→bf(x, y) = A = lim

y→blim

x→af(x, y).

H, [A eH>s. dV!, ∀ ε > 0, ∃ δ > 0,  0 <p(x − a)2+ (y − b)2 < δ

#|f (x, y) − A| < ε

2. ?&y,}x→ a,

limx→af(x, y) − A ≤

ε

2 < ε, ∀ 0 < |y − b| < δ 2.

t.

y→blim lim

x→af(x, y) = A.

參考文獻

相關文件

Pseudo colors of velocity divergence: Down-flow phase. ISCM II &amp; EPMESC XII, 29 November–3 December, 2009

Have shown results in 1 , 2 &amp; 3 D to demonstrate feasibility of method for inviscid compressible flow

Estimate the sufficient statistics of the complete data X given the observed data Y and current parameter values,. Maximize the X-likelihood associated

二年愛班有 7 位同學假日相約去爬山,秀秀帶了 113 個聖女小番茄分給大家品嚐,已知男生每 人分得 14 個,女生每人分得 17 個,剛好分完所有的小番茄,假設男生有

The Seed project, REEL to REAL (R2R): Learning English and Developing 21st Century Skills through Film-making in Key Stage 2, aims to explore ways to use film-making as a means

We point out that extending the concepts of r-convex and quasi-convex functions to the setting associated with second-order cone, which be- longs to symmetric cones, is not easy

Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.... Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R

when certain additional symmetry Y is present, topological invariants of TCIs protected by symmetry X can be inferred by the Y -symmetry eigenvalues of energy