• 沒有找到結果。

Successful preparation and characterization of biotechnological grade agarose from indigenous Gelidium amansii of Taiwan

N/A
N/A
Protected

Academic year: 2021

Share "Successful preparation and characterization of biotechnological grade agarose from indigenous Gelidium amansii of Taiwan"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

ContentslistsavailableatSciVerseScienceDirect

Process

Biochemistry

j our na l h o me p ag e : w w w. e l s e v i e r . c o m / l o c a t e / p r o c b i o

Short

communication

Successful

preparation

and

characterization

of

biotechnological

grade

agarose

from

indigenous

Gelidium

amansii

of

Taiwan

Tzu-Pin

Wang

a,∗

,

Li-Lin

Chang

a

,

Sheng-Nan

Chang

b

,

Eng-Chi

Wang

a

,

Long-Chih

Hwang

a

,

Yen-Hsu

Chen

c,d

, Yun-Ming

Wang

e

aDepartmentofMedicinalandAppliedChemistry,KaohsiungMedicalUniversity,Kaohsiung80708,Taiwan bCardiovascularCenter,NationalTaiwanUniversityHospitalYun-LinBranch,Dou-Liu640,Taiwan cGraduateInstituteofMedicine,KaohsiungMedicalUniversity,Kaohsiung80708,Taiwan dDepartmentofInternalMedicine,KaohsiungMedicalUniversityHospital,Kaohsiung80708,Taiwan eDepartmentofBiologicalScienceandTechnology,NationalChiaoTungUniversity,Hsin-Chu300,Taiwan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5September2011 Receivedinrevisedform 20December2011 Accepted21December2011 Availableonline2January2012 Keywords:

Gelidiumamansii

Biotechnologicalgradeagarose EDTA

Strong-anionexchangeresin Isopropanolprecipitation

a

b

s

t

r

a

c

t

ThispaperreportsthefirstsuccessfulpreparationofbiotechnologicalgradeagarosefromGelidium aman-siifoundinTaiwan.Thescale-efficiencypreparationwasachievedbyshorteningEDTAtreatmenttime throughdispersingG.amansiiagarinwaterinthepresenceofheatandEDTA,removingagaropectin impuritywithaheat-compatibleandstrong-anionexchangeresin,andprecipitatingagarosewitha cost-effectiveisopropanolmethod.TheyieldofagarosefrompreparedG.amansiiagarwas11.3%.The acquiredagarosehasagelstrengthof853gcm−2,asulfatecontentof0.14%,apyruvatecontentof1.03%, adegreeofelectroendosmosisof0.16andverylimitedbindingaffinitytoDNA.Theexcellentproperties ofagarosefromG.amansiiofTaiwanconfirmitspotentialdiversebiotechnologicalapplications.This innovativeagarosepreparationmethodwiththesignificantlyimprovedscale-efficiencycanbemodified forlarge-scalepreparationofagaroseforuseinbiotechnologicalindustryandbiochemicalresearch.

©2011ElsevierLtd.Allrightsreserved.

1. Introduction

Agaranditssub-fraction,agarose,aretwoofthemost com-monlyusedpolysaccharidemixtures obtainedfrom marinered algae(Rhodophyta),whichincludesthecommerciallyimportant generaGelidium and Gracilaria.Agarosepreparationsfrom both generahaveimportantbiotechnologicalapplications[1,2]andare widelyexploitedinthefoodindustry[2,3].GelidiumandGracilaria haveplayed akey roleinthefield ofbiotechnologysinceKoch demonstrated agar was a suitable solid medium for growing microorganisms[1].For example,agarosegelelectrophoresis is currentlythepredominantmethodforroutinenucleicacid anal-ysis[1,2,4],andhasimplicationsinstudyingnucleicacid–protein interactions[5,6],proteinchemistry[7],andviralstructure[8].In addition,agarose-basedchromatographyisthepreferredmethod inbiomoleculeseparation[1,2].Moreover,agarsandagarosehave importantapplicationsinavarietyofareasincluding pharmaceu-tics,cosmetics,tissueengineering,cell-sizedliposomepreparation andcellencapsulation[2,9,10].

∗ Correspondingauthor.Tel.:+886073121101x2756;fax:+886073125339. E-mailaddress:tzupinw@cc.kmu.edu.tw(T.-P.Wang).

Theadvantagesofusingagaroseinscienceandindustryderive from its ability to form macroporous matrices with thermore-versiblehysteresisandahighgelstrength,itsnon-toxicityafter hydrogelformation,anditsmaintenanceofaminimalgel back-groundafterrapidstaininganddestaining[2,4,11].Theseessential agarosepropertiesareattributedtothealternating1,3-linked ␤-d-galactose and 1,4-linked 3,6-anhydro-␣-l-galactose repeating unitscalledagarobiose(Fig.1;R1=R2=R3=H)whichpolymerize

into a long chain [12,13]. The monosaccharideunits of natural agaroseareoftenmodifiedwithchargedgroupssuchassulfate andpyruvatewhichtransformsagaroseintoagaropectin(Fig.1). However,presenceofagaropectinisundesirablefortheagarose preparedfor biotechnologicalapplications [4,14–16].The nega-tivepropertiesofagaropectinaretheconsequenceofunsaturated chemicalbondsinthesulfate andpyruvatesubstitutions;these bondsbestowhighUVabsorptioninagarosegelsandinterferewith thedetectionofnucleicacidsafterelectrophoresis[4,15]. Addition-ally,thesesubstitutionscausesignificantbiomoleculeadsorption onagarosematrices[4,15].Agaroseusedinfundamentalresearch andbiotechnologyisrequiredtohaveaminimalamountofsulfate andpyruvatemodifications.

Preparation of agarose for biotechnological applications has beenextensivelystudiedaftertheseminalworkofAraki[12,13]. 1359-5113/$–seefrontmatter©2011ElsevierLtd.Allrightsreserved.

(2)

Fig.1.Thegenericstructureofagaroseandagaropectincomposedofrepeating unitsofthedisaccharide,agarobiose.Thestructuraldifferencesbetweenagarose andagaropectinareindicatedbysubstitutionswithvariousfunctionalgroupsatR1,

R2andR3.

Various methods have been developed to prepare high-grade agarosefromeitherhighqualityagarsorlow-gradeagarose. Prepa-rationhasincludedfractionalprecipitationmethods[14,15,17–19] suchasisopropanol(IPA)precipitation,adsorptionmethods[20,21] suchasaluminumhydroxidetreatment,orchromatography meth-ods[14] suchas DEAEion exchangechromatography. Prepared agaroseisgenerallyevaluatedusingparameterswhichincludegel strength,thetemperaturesatwhichitsolidifiesandmelts,sulfate content,pyruvatecontent,andelectrophoreticpropertiesofthegel [1,15].Typically,biotechnologicalgradeagarosehasagelstrength ofatleast1000gcm−2,agelationtemperatureof36◦C,amelting temperatureof85◦C,asulfatecontentof0–0.15%(w/w),a pyru-vatecontentof0–0.1%(w/w)andadegreeofelectroendosmosis (EEO)at1.0%(w/w)agaroseconcentrationof0.04orless[15].

Asapotentialsourceforhighqualityagarose,Gelidiumamansiiis veryabundantinnortheasternTaiwanandhaslongbeenastaple intraditionalTaiwanesediets.G.amansiiagariseasilyprepared fromthe alga by heating, filteringand coolingwithout chemi-caltreatments[4],whichisinsharpcontrasttothatofGracilaria agarpreparationrequiredmorecomplicatedprocedures[22]. Var-iousG.amansiiapplicationsunderscoretheimportanceofthealgal extractsfortheTaiwanesefoodindustryandsuggestaplausible roleinthepharmaceuticalindustry[23].However,todate,there hasbeennoattempttouseTaiwaneseG.amansiitopreparehigh qualityagaroseforbiotechnologicaluse.

Inthisstudy,highqualityagarosewaspreparedfromindigenous Taiwanesealgae.Theuniqueandscale-efficientmethodforagarose preparation adoptsthree critical procedures:heatdispersionof G.amansiiforefficientEDTAchelationwhilesignificantly reduc-ingtreatmenttimefrom4dto1d,effectiveseparationofagarose fromimpuritiesbyaheat-compatibleanionexchangeresin,anda cost-effectiveIPAprecipitation.ItslowabsorptionunderUV illumi-nation,goodelectrophoreticproperties,andlackofDNAadsorption intheagarosegelareindicativeoftheexcellentchemicaland phys-icalpropertiesofagarosepreparedusingindigenousTaiwaneseG. amansii.Oursuccessfulmethodtopreparebiotechnologicalgrade agarosefromG.amansiinativetoTaiwanwiththescale-efficiency revealssignificantpotentialinbiotechnologyapplications.Finally, theinnovativepreparationmethodcanbemodifiedto accommo-dateindustrial-scaleproduction.

2. Materialsandmethods

The materials and detailed experimental methods are described in Supplementaldata.

3. Results

3.1. TemperatureandconcentrationoptimizationsofEDTA treatmentsforagarosepreparation

Twoessentialdeterminantsofagarosesuitabilityfor biotechno-logicalapplicationsaretheconcentrationofsulfateandpyruvate [15].Kirkpatricketal.basedontheiranalysismethodstoconclude thatagarosewithasulfatecontentof0–0.15%(w/w)andapyruvate contentof0–0.1%(w/w)isrequiredtoqualifyasbiotechnological grade[15].Treatingagarorlow-gradeagarosewithEDTA effec-tivelyreducestheconcentrationofbothofsulfateandpyruvate inthesampleswhenusedincombinationwithsubsequent separa-tionmethodssuchasadsorption[21]andIPAprecipitation[15].The originalmethodofBartelingused20mMEDTAinthefirstagarwash for2dand10mMEDTAinthesecondagarwashforanother2dat roomtemperature[21].Wereasonedthathigherconcentrationsof EDTAinthepresenceofheatwouldresultinmoreeffectiveEDTA chelationofdivalentcationsfromtheagaropectinandfacilitate preparationofbiotechnologicalgradeagarose.

Increasing both the temperature of the agar solution and theEDTAconcentrationto30mMduringincubationsignificantly reducedthecontentofsulfateandpyruvateinthepreparedagarose (Fig.2).First,45◦C wasselected astheincubationtemperature oftheagarsolutionduringEDTAtreatmentduetoa concernof energyconsumptionbytheprolongedincubation.Inaddition,the EDTAconcentrationswerechangedfrom20mMto40mMforthe firstwashand10to20mMforthesecondwash.Themethodof Bartelingrequires4dtocompletetwoEDTAwashes[21],a pro-cesstootime-consumingforindustrialprocessingrequirements. Therefore,thetimeofeachEDTAwashwasshortenedtoonly12h toallowtheoverallEDTAtreatmentstepscompletedin1d.Results indicatedthattheoptimalconditionsforagarosepreparationwere 30mMEDTAforthefirstwash,15mMEDTAforthesecondwash, and an incubationtime of 12hfor each washat 45◦C (Fig. 2). Since45◦Cmightnot betheoptimaltemperaturefor theEDTA treatment,the30mM/15mMEDTAwashstepswereconductedat severaldifferentincubationtemperaturestodeterminethe opti-maltemperaturetofurtherreducesulfateandpyruvatecontents. Incubationoftheagarsolutionat50◦Cduringthe30mM/15mM EDTAtreatmentstepprovidedthelowestagarosesulfateand pyru-vatecontent(Fig.2).Itisconcludedthatthe30mM/15mMEDTA treatmentwithanincubationtimeof12hforeachwashat50◦Cis theoptimalEDTAtreatmentmethodtoprepareG.amansiiagarose. 3.2. Biotechnologicalgradeagarosepreparationwithexcellent electrophoreticproperties

WefurthersubstitutedtheAl(OH)3adsorptionmethodwithion

exchangecolumnchromatographytoobtainagarosewithlower sulfateandpyruvatecontenttomeetthedemandsof biotechno-logicalapplications.Aprerequisitetoeffectivelyremovingmore oftheextensivelymodifiedagaropectinfromtheagarose prepara-tionduringionexchangecolumnchromatographyistocompletely dissolveagarose,generallyrequiredtomaintainthesolution tem-peratureover80◦C,inanaqueoussolutioncontainingionexchange resin.Thestudywasthusmotivatedtoexploitcommercially avail-able,heat-stable,andstronganionexchangeresins.Theproperties ofthehydrophilicSuperQ-650Manion exchangeresinare ideal for preparing agarose suitable for biotechnological applications (Table1).However,thesulfateandpyruvatecontentinthe pre-paredagarosewerestillnotlowenoughtomeetbiotechnological graderequirements[0.99%sulfatecontent(w/w);1.40%pyruvate content(w/w)].

Thepreparationofbiotechnologicalgradeagarosewasachieved byfurtherpurifyingagaroseusinganimprovedIPAprecipitation

(3)

17.50% 10.00% 12.50% 15.00% 2.50% 5.00% 7.50% Contents 0.00% Original G. ammsii G. ammsii agar RT, 2d, 0.02 M EDTA only RT, 2d, 0.02 M EDTA, Al(OH)3, IPA 45°C, 12h, 0.02 M EDTA, Al(OH)3, IPA 45°C, 12h, 0.03 M EDTA, Al(OH)3, IPA 45°C, 12h, 0.04 M EDTA, Al(OH)3, IPA 50°C, 12h, 0.03 M EDTA, Al(OH)3, IPA 40°C, 12h, 0.03 M EDTA, Al(OH)3, IPA RT, 2d, 0.03 M EDTA, Al(OH)3, IPA Method of Preparation

Fig.2.SulfateandpyruvatecontentinG.amansii,G.amansiiagarandG.amansiiagarosepreparedbyvariousmethods.Thecontentofsulfate(blackbar)andpyruvate(gray bar)insamplesweredeterminedbythemethodsdetailedinSection2.Dataareexpressedasmeans±standarddeviationsoftriplicatedetermination.

Table1

ChemicalandphysicalpropertiesofbiotechnologicalgradeagarosepreparedfromTaiwaneseG.amansiicomparedtocommerciallyavailableagarose.Dataareexpressedas means±standarddeviationsoftriplicatedetermination.

Agarosesamples Sulfatecontent

(%,w/w)

Pyruvatecontent (%,w/w)

Gelstrength

(gcm−2) Gelling(C) temperature Meltingtemperature(C) DegreeofEEO

SuperQ-650M(fromthisstudy) 0.14±0.01 1.03±0.07 853±11 34±0 75.8±0.3 0.16±0.01

SeaKemLE(Lonza) 0.35±0.01 1.07±0.10 945±16 36±1.5a,b >90a,b 0.22±0.01

BIO-41027(Bioline) 5.36±0.28 0.44±0.04 154±10 37–39a 88–90a 0.18±0.01

aDataprovidedbythemanufacturers(http://lonza.com/group/en.htmlandhttp://bioline.gene-quantification.info/). b Measuredin1.5%agarosegels.

method.Kirkpatricketal.previouslydemonstratedthatthe addi-tionofIPAtoagarosesolutions(2:1volumeratioofIPAtoagarose solution)couldselectivelyprecipitateagarose[15].Withthegoal ofdeveloping a morecost-effective IPAprecipitationprocedure by decreasing volume of IPA without sacrificing the efficiency of agarose precipitation, the volume of IPA was systematically reducedtodeterminethesmallestvolumeofIPArequiredto effec-tivelyprecipitateagarose(Fig.S1).Theresultsindicatedthat,by usinga1.5:1volumeratioofIPAtoagarosesolution,theagarose yieldswerecomparabletothatofa2:1ratio.Thus,avolumeratio ofIPAtoagarosesolutionof1.5wasdeterminedtobetheoptimal conditionfortheIPAprecipitationinpreparingbiotechnological grade agarose. The prepared agarose had sulfate and pyruvate contentsof 0.14% and1.03%, respectively (Table1 and Fig.S1). Theselevelswerelowerorcomparabletotwocommercial biotech-nologicalgradeagaroseproducts(LonzaSeaKemLE andBioline BIO-41027).Thelowsulfateandpyruvatecontentsofthe SuperQ-650M-preparedagarosealsocontributedagoodEEOvalueof0.16, whichisbetterthantwocommonlyused,commercial biotechno-logicalgradeagaroseproducts.

Theexcellentbiotechnologicalpropertiesofthe SuperQ-650M-preparedagarosewere demonstratedwhen DNA sampleswere analyzedsimultaneouslybyelectrophoresisingelspreparedfrom eithertheSuperQ-650MortheLonzaSeaKemLEagarose(Fig.3). TheSuperQ-650M-preparedagarosegelprovidedbetterDNA res-olution even through with a slightly higher background signal whencomparedtothatofthegelpreparedusingLonzaSeaKem agarose(signal intensity,quantifiedbyImageQuantsoftware,of 9×105inSeaKemgelandof1.1×106inSuperQ-650M-prepared

gel).Moreover,netDNAbandsignalsafterelectrophoresisinthe SuperQ-650M-preparedagarosegel hadhigher intensitycounts and,thus,betterDNAdetectionsensitivitythanthatoftheSeaKem

agarose(netsignalintensityof202bp=6.6× 106 intheSeaKem

gel and 7.3×106 in the SuperQ-650M-prepared gel for 202bp

DNA).Similarly,evidenceofbetterelectrophoreticpropertiesof theSuperQ-650M-preparedagarosegelwasprovidedwhen com-paredwithelectrophoresisresultsoftheBiolineagarosegel(results notshown).TheSuperQ-650M-preparedagarosegelalsoshowed nodetectableDNAbindingability(Fig.S2).Theoutstanding elec-trophoreticresultsobtainedwhenusinggelspreparedusingthe SuperQ-650Magaroseareconsistentwiththerelativelylow sul-fateandpyruvatecontent,andalowdegreeofEEOoftheagarose, whichfurthersupportsthepotentialoftheG.amansiiagarosefor diversebiotechnologicalapplications.

Fig.3.Comparisonofexcellentgelelectrophoresispropertiesof SuperQ-650M-preparedagarose and SeaKem LEagarose. DNA usedfor gel electrophoresis containedmostly100-bpand202-bpDNAfragmentsamplifiedfromthepGEM-T vectorasdescribedinSection2.ADNAsample(32ngof202bpand36ngof100bp) wasloadedintoeachwellof3%gelspreparedfromtheSeaKemLE(left)orfrom theSuperQ-M650-prepared(right)agaroseinTBE,andelectrophoresedinbothgels simultaneouslyinthesamestandardelectrophoresisunit.TriplicateDNAsamples wereappliedtoeachagarosegeltoensureresultreproducibility.Thetoparrow indi-catesthelocationofthe202-bpDNAmarker;thebottomarrowrepresentsmigration ofthe100-bpDNAmarkerafterelectrophoresis.

(4)

3.3. Physicalpropertiesofthebiotechnologicalgradedagarose The physical parameters for the SuperQ-650M-prepared agarosewerecomparedtoLonzaSeaKemLEandBiolineBIO-41027 agarose(Table1).Whilethegelstrengthwasslightlylowerthan thatofSeaKemagarose,theSuperQ-650M-preparedagarosehad moredesirable lowergelling andmelting temperatures, critical propertiestoexploitagarosein nucleicacidgelelectrophoresis applications.Theappropriatephysicalpropertiesofthe SuperQ-650M-preparedagarosemeettherequirementsforapplicationsin biotechnology.

4. Discussion

Successfulpreparationofbiotechnologicalgradeagarosefrom indigenousG.amansiiofTaiwanwithscale-generatedefficiency wasattainedbydecreasingEDTAtreatmenttime,incorporating anovelanionexchangeresintopurifyagarosefromimpurities, anddecreasingtherequiredvolumeofIPAtoeffectivelyprecipitate agarose.WashingG.amansiiagarinthepresenceofhigherEDTA concentrations andelevated temperaturesnotonly contributed decreasesofthedegreeofEEOandthelevelsofsulfateand pyru-vateinthepreparedagarosebutalsosignificantlyreducedtheEDTA washingtimefrom4dto1dwhicheliminates3dfrompreviously reportedEDTAmethods[15,21].

Ionexchangecolumnchromatographywasindispensableinthis studytoobtainagarosesuitableforbiotechnologicalapplication. EssentialpropertiesoftheSuperQ-650Mresinallowedforamore effective separation of agaropectinfrom solutions and resulted in agarose with lower sulfate and pyruvate content and good electrophoreticproperties(Table1andFig.3).However,special precautionmustbetakenduringtheagarose-SuperQ-650Mresin incubationtopreventdamageduringmixing.Unattendedmixing whilesuspendingtheSuperQ-650Mresinintheagarosesolution canrupturetheresin beads. Resindebriscan passthroughthe filterdisk, contaminatetheagarose,anddeleteriouslyaffectthe electrophoreticpropertiesofthepreparedagarosegel.Asstatedin MaterialsandmethodsinSupplementarydata,wecarefullystirred agarosemixturesbyhandfor30mintoensuretheanionexchange resinremainedsuspendedinsolutionwhileavoidingbreakageof theSuperQ-650Mresin.Weneverobserveddebrisofthe SuperQ-650Mresininagarosepreparationifthesamevigilantmeasures weretaken.

ThedevelopmentofamethodtoreducetherequiredIPA vol-umeforeffectiveagaroseprecipitationisalsoanimportantfinding ofthecurrentstudy.ByusinglessIPAduringthepreparationof agarose,industryoperationcostscanbereduced.Inaddition,the improvedIPAprecipitationmethodcanbeamore environmen-tallyfriendlyprocessifIPAisaccidentallyreleasedduringindustrial agarosepreparation.

The SuperQ-650M-prepared agarose demonstrated physical propertiescomparableorbetterthantwocommerciallyavailable agarose products (Table 1). Specifically, the SuperQ-650M-preparedagarosehaslowergellingandmeltingtemperatures,and comparable gelstrengththan thoseof SeaKemLEgel. Interest-ingly, thegel strength andthe sulfate and pyruvate contentof boththeLonzaandBiolineagarose,whichweremeasuredinthe currentstudy,differedfromthosereportedbythemanufacturers. Discrepanciesinvaluesbetweenreportedphysicalandchemical parametersandthosepresentedinthisstudymaybetheresultof differingmeasurementmethods.Nostandardprotocolsforagarose characterizationhavebeenacceptedbyacademiaorindustry. Cur-rentresults,therefore,providenobasisfordisputingtheaccuracy ofagarosespecificationsdocumentedbythemanufacturers. Nev-ertheless,theSuperQ-650M-preparedagaroseunequivocallyoffers

idealpropertiesforbiotechnologicalapplications.Researchis pro-ceedingtoimproveandrefinetheprocedurestoenableindustrial productionofagarosefromindigenousG.amansiiofTaiwanasa waytoachieveitsfulleconomicpotential.

Authorcontributions

T.-P.W.designed,analyzeddataandwrotemanuscript;L.-L.C. performedresearchandanalyzeddata;S.-N.C.providedexpertise, performedresearchandanalyzeddata;E.-C.W.providedexpertise; L.-C.H.providedusefulreagents;Y.-H.C.provideduseful discus-sionsandanalytictools;Y.-M.W.providedusefuldiscussionsand analyzeddata.

Conflictofintereststatement

Nonedeclared.

Acknowledgments

TheauthorsthankYu-ZhengSuandYi-JhenLinfortechnical assistance,andDrs.SusanFetzerandScottSeveranceforcritical readingofthemanuscript.TheauthorsalsothankDr.Jenn-Shou Tsaiof theDepartmentof FoodScienceat theNationalTaiwan OceanUniversity forpreparationof theG.amansii agarand the NationalKaohsiungMarineUniversity,Kaohsiung,Taiwanfor per-missiontousetherheometertomeasuregelstrength.Thiswork wassupportedwithagrantfromtheSmallBusinessInnovation Research (SBIR) program, Ministry of Economic Affairs, Taiwan (1Z1000103) allocated to T.-P. W. The funding agency has no involvementinstudydesign;inthecollection,analysisand inter-pretation ofdata; in thewriting of themanuscript;and in the decisiontosubmitthearticleforpublication.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.procbio.2011.12.015.

References

[1]RennDW.Agarandagarose:indispensablepartnersinbiotechnology.IndEng ChemProdResDev1984;23:17–21.

[2]RinaudoM.Mainpropertiesandcurrentapplicationsofsomepolysaccharides asbiomaterials.PolymInt2008;57:397–430.

[3]MitsuikiM,MizunoA,MotokiM.Determinationofmolecularweightofagars andeffectofthemolecularweightontheglasstransition.JAgricFoodChem 1999;47:473–8.

[4]SerwerP.Agarosegels:propertiesanduseforelectrophoresis.Electrophoresis 1983;4:375–82.

[5]Serwer P, Hayes SJ, Moreno ET, Louie D, Watson RH, Son M. Pulsed fieldagarosegelelectrophoresisinthestudyofmorphogenesis:packaging ofdouble-strandedDNAinthecapsidsofbacteriophages.Electrophoresis 1993;14:271–7.

[6]Serwer P, Wright ET, Hakala K, Weintraub ST, Su M, Jiang W. DNA packaging-associatedhyper-capsidexpansionofbacteriophageT3.JMolBiol 2010;397:361–74.

[7]EasomRA,DebuysereMS,OlsonMS,SerwerP.Sizedeterminationof multien-zymecomplexesusingtwo-dimensionalagarosegelelectrophoresis.Proteins: StructFunctBioinform1989;5:224–32.

[8]GabashviliIS,KhanSA,HayesSJ,SerwerP.PolymorphismofbacteriophageT7. JMolBiol1997;273:658–67.

[9]HorgerKS,EstesDJ,CaponeR,MayerM.Filmsofagaroseenablerapidformation ofgiantliposomesinsolutionsofphysiologicionicstrength.JAmChemSoc 2009;131:1810–9.

[10]HuntNC,GroverLM.Cellencapsulationusingbiopolymergelsforregenerative medicine.BiotechnolLett2010;32:733–42.

[11]ArnottS,FulmerA,ScottWE,DeaICM,MoorhouseR,ReesDA.Theagarose dou-blehelixanditsfunctioninagarosegelstructure.JMolBiol1974;90:269–84. [12]ArakiC.Acetylationoftheagar-likesubstanceofGelidiumamansii.JChemSoc

Jpn1937;58:1338–50.

[13] ArakiC.Structureoftheagaroseconstituentofagar-agar.BullChemSocJpn 1956;29:543–4.

(5)

[14]DuckworthM,YapheW.Preparationofagarosebyfractionationfromthe spec-trumofpolysaccharidesinagar.AnalBiochem1971;44:636–41.

[15]KirkpatrickFH,GuiseleyKB,ProvoncheeR,NochumsonS.FMCCorp.,USA.High gelstrengthlowelectroendosmosisagaroseforrapidelectrophoresis.USPatent 4,983,268;1991.

[16]ReesDA,WelshEJ.Secondaryandtertiarystructureofpolysaccharidesin solu-tionsandgels.AngewChemIntEd1977;16:214–24.

[17] HegenauerJC,NaceGW.Animprovedmethodforpreparingagarose.Biochim BiophysActa1965;111:334–6.

[18] HjerténS.Anewmethodforpreparationofagaroseforgelelectrophoresis. BiochimBiophysActa1962;62:445–9.

[19]RussellB,MeadTH,PolsonA.Amethodofpreparingagarose.BiochimBiophys Acta1964;86:169–74.

[20]AllanGG,JohnsonPG,LaiYZ,SarkanenKV.Marinepolymers:partI.Anew procedureforthefractionationofagar.CarbohydrRes1971;17:234–6. [21]BartelingSJ.Asimplemethodforthepreparationofagarose. ClinChem

1969;15:1002–5.

[22]UpcroftP,UpcroftJA.Comparisonofpropertiesofagaroseforelectrophoresis ofDNA.JChromatogr1993;618:79–93.

[23]ChenYH,TuCJ,WuHT.Growth-inhibitoryeffectsoftheredalgaGelidium amansiionculturedcells.BiolPharmBull2004;27:180–4.

參考文獻

相關文件

6 《中論·觀因緣品》,《佛藏要籍選刊》第 9 冊,上海古籍出版社 1994 年版,第 1

The first row shows the eyespot with white inner ring, black middle ring, and yellow outer ring in Bicyclus anynana.. The second row provides the eyespot with black inner ring

Reading Task 6: Genre Structure and Language Features. • Now let’s look at how language features (e.g. sentence patterns) are connected to the structure

(1) Western musical terms and names of composers commonly used in the teaching of Music are included in this glossary.. (2) The Western musical terms and names of composers

APSM is the basic rank of the Primary School Master/Mistress (PSM) grade that has been created in aided primary schools with effect from the 1994/95 school year.

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

mathematical statistics, statistical methods, regression, survival data analysis, categorical data analysis, multivariate statistical methods, experimental design.

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix