Motion estimation
Digital Visual Effectsg Yung-Yu Chuang
with slides by Michael Black and P. Anandan
Motion estimation
• Parametric motion (image alignment) T ki
• Tracking
• Optical flow
Parametric motion
direct method for image stitching
Tracking
Optical flow Three assumptions
• Brightness consistency S i l h
• Spatial coherence
• Temporal persistence
Brightness consistency
Image measurement (e g brightness) in a small region Image measurement (e.g. brightness) in a small region remain the same although their location may change.
Spatial coherence
• Neighboring points in the scene typically belong to the
• Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
• Since they also project to nearby pixels in the image, Since they also project to nearby pixels in the image, we expect spatial coherence in image flow.
Temporal persistence
The image motion of a surface patch changes gradually over time.
Image registration
Goal: register a template image T(x) and an input image I(x) where x (x y)T (warp I so that it image I(x), where x=(x,y)T. (warp I so that it matches T)
Image alignment: I(x) and T(x) are two images Tracking: T(x) is a small patch around a point p in Tracking: T(x) is a small patch around a point p in
the image at t. I(x) is the image at time t+1.
O ti l fl T( ) d I( ) t h f i
Optical flow: T(x) and I(x) are patches of images at t and t+1.
warp
T I
warp fixed
Simple approach (for translation)
• Minimize brightness difference
2
y x
y x T v y u x I v
u E
,
) 2
, ( ) , ( )
, (
Simple SSD algorithm
For each offset (u, v) ( ) compute E(u,v);
Choose (u, v) which minimizes E(u,v);
Problems:
Problems:
• Not efficient N b i l
• No sub-pixel accuracy
Lucas-Kanade algorithm Lucas Kanade algorithm
Newton’s method
• Root finding for f(x)=0 March x and test signs
• March x and test signs
• Determine Δx (small→slow; large→ miss)
Newton’s method
• Root finding for f(x)=0
Newton’s method
• Root finding for f(x)=0 T l ’ i
Taylor’s expansion:
1 '' ( )
2) ( ' ) ( )
(
f f ff 0
0
0 '' (
0)
2 ) 2
( ' ) ( )
(
x
f x f x
f x
f
) ( ) ' ( )
(
x f x f xf
(
x0 )
f(
x0)
f(
x0)
f
) (x
f) ( '
) (
n n
n f x
x
f
) ( '
) (
1
n n
n f x
x x f
x
)
(
xn fNewton’s method
• Root finding for f(x)=0
) (
f) ( '
) (
n n
n f x
x
f
) (
n fx0 x1
x2
Newton’s method
pick up x=x0 iiterate
) (x
compute
f
) ( '
) (
x f
x x f
update x by x+Δx til
until converge
Finding root is useful for optimization because Minimize g(x) → find root for f(x)=g’(x)=0
Minimize g(x) find root for f(x) g (x) 0
Lucas-Kanade algorithm
I x u y v T x y
v u
E( , )
( , ) ( , )
2y x
y y
,
) ( ) (
) (
y
x vI
uI y x I v y u x
I(( ,,y )) (( ,,y)) x y
I(x,y) T(x,y) uIx vIy
2y x
y
y x
y
,
) , ( ) , (
y x
y x
x I x y T x y uI vI
u I E
,
) , ( ) , ( 2 0
y x
y x
y I x y T x y uI vI
v I
E 2 ( , ) ( , )
0 v x,y
Lucas-Kanade algorithm
E Ix I x y T x y uIx vIy )
, ( ) , ( 2
0
xy x y y x y
u , ( , ) ( , )
E I I x y T x y uI vI
) ( ) ( 2
0
y x
y x
y I x y T x y uI vI
v , 2I ( , ) ( , ) 0
y
x xy
x y
x y
x x
y x I y x T I v
I u
I I
y x I y x T I v I I u
I
2
, ,
, 2
) ( ) (
) , ( ) , (
y x
y y
x y y
x y
xI u I v I T x y I x y
I
, ,
,
) , ( ) , (
2
xyx y
x y x y
x x
y x I y x T I
y x I y x T I v
u I I
I
I I I
, 2
, ,
2
) ( ) (
) , ( ) , (
y x
y y
x y y
x y
xI I v I T x y I x y
I
, , ,
) , ( ) , (
Lucas-Kanade algorithm
iterate
shift I(x y) with (u v) shift I(x,y) with (u,v)
compute gradient image Ix, Iy compute error image T(x y) I(x y) compute error image T(x,y)-I(x,y) compute Hessian matrix
solve the linear system solve the linear system (u,v)=(u,v)+(∆u,∆v) til
until converge
Ix2
IxIy
Ix
T(x,y) I(x,y)
y y x
x
y y
x
y x
y x y
x x
y x I y x T I
y y
v u I I
I
, 2
, ,
) , ( ) , (
) , ( ) , (
x,y x,y x,y
Parametric model
I x u y v T x y
v u
E( , )
( , ) ( , )
2y x
y y
,
) ( ) (
) (
W(x;p) x
p) ( ) ( ) 2
( I T
E Our goal is to find
pto minimize E(p)
xx p) W(x;
p) ( ) ( )
( I T
E
d
x
pto minimize E(p) for all x in T’s domain
T y x y
x p d d
d y
d
x , ( , )
p) translation W(x;
x xy
xx y
d x d
d
1
Ax d p)
affine W(x;
T
y yy yx
d y d
d ,
1 1
d Ax p) affine W(x;
T y x yy yx xy
xx d d d d d
d
p( , , , , , )
Parametric model
x
x Δp) p
W(x; ) ( ) 2
( T
minimize I
x
with respect to Δp
WΔp p p) W W(x;
Δp) p
W(x;
) (
)
( Δp
p p) W W(x;
Δp) p
W(x;
I
I
p Δp W p) x
W(x;
I
I( )
p x
WΔp x
p) W(x;
2
) ( )
( I T
minimize
x I p p p)
( ; ) ( )
(
Parametric model
image gradient
warped image target image
W 2
image gradient
x
x p Δp
p) W
W(x; ) ( )
( I T
I
Jacobian of the warp
x x
x x
p W p
W p
W p
W
W
n y y
y
n y
p W p
W p
W
p p
p p
W p p
W
2 1
2 1
p p1 p2 pn
Jacobian matrix
• The Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued function partial derivatives of a vector-valued function.
m
F
:
Rn
R)
, ,
(
x1 x2 xnF
)) ,
, ( ),
, , ( ), ,
, (
(
f1 x1 x2
xn f2 x1 x2
xn
fm x1 x2
xn
f
for
) ,
,
(
1 2 nF x x x
J
xn
f x
f
11 1
) ,
, (
or
2
1 f fm
f
m mn
f f
1 )
, ,
(
x1 x2
xn
xm
xmn1
Δx x x
Δx
x
) ( ) ( )
(
F JFF
Jacobian matrix
0 , 0 , 2
3:
R
RF t
rsin cos
cos
sin sin
r vr u
)
, , ( ) , ,
(
r t u vF
t t t v r
cos
u u u
t t r t
) , ,
(
v v v
u u r r u
JF
v v r v
sin sin cos sin sin cos sin sin cos
cos cos
sin
r r
r r
cos sin 0
cos s
s cos s
s
r
Parametric model
image gradient
warped image target image
W 2
image gradient
x
x p Δp
p) W
W(x; ) ( )
( I T
I
Jacobian of the warp
x x
x x
p W p
W p
W p
W
W
n y y
y
n y
p W p
W p
W
p p
p p
W p p
W
2 1
2 1
p p1 p2 pn
Jacobian of the warp
Wx Wx Wx Wx
y y
y
n y
x
W W
W
p p
p Wp
p W
2 1
For example for affine
p p1 p2 pn
For example, for affine
xx xy x dxx x dxyy dx y
d x d
d (1 )
p) 1
W(x;
y yy
yx y
yy
yx y d x d y d
d d
d (1 )
1 1 p)
W(x;
1 0 0
0
0 1 0 0
y x
y x
p W
y
p
dxx dyx dxy dyy dx dy
Parametric model
WΔp x
p) W(x;
2
) ( )
( I T
min
Iarg
x
x p Δp
p)
W(x; ) ( )
( I T
I
W (W( )) WΔ ( )0 I I I T
T
min
Δparg
x
x p Δp
p) W p W(x;
W ( ) ( )
0 I I I T
T
x
p) W(x;
p x H W
Δp 1 I T( ) I( )
T
WT W
x p
W p
H I W I
(Approximated) Hessian
Lucas-Kanade algorithm
iterate
1) warp I with W(x;p) 1) warp I with W(x;p)
2) compute error image T(x,y)-I(W(x,p)) 3) compute gradient image with W(x p)I 3) compute gradient image with W(x,p) 4) evaluate Jacobian at (x;p)
5) compute p
W
W
I
I
5) compute
6) compute Hessian
7) t
p
I
W T
7) compute 8) solve
9) d t b
x
p) W(x;
p x
W T( ) I( ) I
Δp
9) update p by p+Δ
until converge
Δp
W x W(x;p)
H
Δp 1 I T( ) I( )
T
x
p) W(x;
p x H
Δp I T( ) I( )
x
p) W(x;
p x H W
Δp 1 I T( ) I( )
T
Coarse-to-fine strategy
J Jw fi I
ain
J I
J warp Jw refine I
a
+
J warp Jw refine I
a
pyramid construction
pyramid construction
a
+
J warp Jw refine I
a
+
a
outApplication of image alignment Direct vs feature-based
• Direct methods use all information and can be very accurate but they depend on the fragile very accurate, but they depend on the fragile
“brightness constancy” assumption.
• Iterative approaches require initialization
• Iterative approaches require initialization.
• Not robust to illumination change and noise images
images.
• In early days, direct method is better.
• Feature based methods are now more robust and potentially faster
and potentially faster.
• Even better, it can recognize panorama without initialization
initialization.
Tracking Tracking
Tracking
(u, v)
I(x,y,t) (u, v) I(x+u,y+v,t+1)
Tracking
0 ) , , ( ) 1 , ,
(xu yv t I x y t brightness constancy I
0 ) , , ( ) , , ( ) , , ( ) , , ( ) , ,
(x y t uI x y t vI x y t I x y t I x y t
I x y t
0 ) , , ( ) , , ( ) , ,
(x y t vI x y t I x y t
uIx yy t
0
I v I u
IxuIyvIt 0 optical flow constraint equation I optical flow constraint equation
Optical flow constraint equation
Multiple constraints Area-based method
• Assume spatial smoothness
Area-based method
• Assume spatial smoothness
y x
t y
xu I v I
I v
u
E( , ) 2
y x,
Area-based method
must be invertible must be invertible
Area-based method
• The eigenvalues tell us about the local image structure
structure.
• They also tell us how well we can estimate the fl i b th di ti
flow in both directions.
• Link to Harris corner detector.
Textured area
Edge Homogenous area
KLT tracking
• Select features by
M i f b i di i il i
, ) ( 1 2 min
• Monitor features by measuring dissimilarity
Aperture problem
Aperture problem Aperture problem
Demo for aperture problem
• http://www.sandlotscience.com/Distortions/Br eathing Square htm
eathing_Square.htm
• http://www.sandlotscience.com/Ambiguous/Ba b l Ill i ht
rberpole_Illusion.htm
Aperture problem
• Larger window reduces ambiguity, but easily violates spatial smoothness assumption
violates spatial smoothness assumption
KLT tracking
http://www ces clemson edu/~stb/klt/
http://www.ces.clemson.edu/ stb/klt/
KLT tracking
http://www ces clemson edu/~stb/klt/
http://www.ces.clemson.edu/ stb/klt/
SIFT tracking (matching actually)
Frame 0 Frame 10
SIFT tracking
Frame 0 Frame 100
SIFT tracking
Frame 0 Frame 200
KLT vs SIFT tracking
• KLT has larger accumulating error; partly because our KLT implementation doesn’t have because our KLT implementation doesn t have affine transformation?
SIFT i i i l b t
• SIFT is surprisingly robust
• Combination of SIFT and KLT (example)
http://www.frc.ri.cmu.edu/projects/buzzard/smalls/
Rotoscoping (Max Fleischer 1914)
1937
Tracking for rotoscoping
Tracking for rotoscoping Waking life (2001)
A Scanner Darkly (2006)
• Rotoshop, a proprietary software. Each minute of animation required 500 hours of work
of animation required 500 hours of work.
Optical flow Optical flow
Single-motion assumption
Violated by
M i di i i
• Motion discontinuity
• Shadows
• Transparency
• Specular reflection
• Specular reflection
• …
Multiple motion
Multiple motion Simple problem: fit a line
Least-square fit Least-square fit
Robust statistics
• Recover the best fit for the majorityof the data
data
• Detect and reject outliers
Approach
Robust weighting
T t d d ti
Truncated quadratic
Robust weighting
G & M Cl
Geman & McClure
Robust estimation Fragmented occlusion
Regularization and dense optical flow
• Neighboring points in the scene typically belong to the
• Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
• Since they also project to nearby pixels in the image, Since they also project to nearby pixels in the image, we expect spatial coherence in image flow.
Input image Horizontal ti
Vertical motion
motion motion
Application of optical flow
video video matching
Input for the NPR algorithm Brushes
Edge clipping Gradient
Smooth gradient Textured brush
Edge clipping Temporal artifacts
Frame-by-frame application of the NPR algorithm
Temporal coherence References
• B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, Proceedings of the 1981 DARPA Image U d di W k h 1981 121 130
Understanding Workshop, 1981, pp121-130.
• Bergen, J. R. and Anandan, P. and Hanna, K. J. and Hingorani, R., Hierarchical Model-Based Motion Estimation, ECCV 1992, pp237-252.
• J. Shi and C. Tomasi, Good Features to Track, CVPR 1994, pp593-600.
• Michael Black and P. Anandan, The Robust Estimation of Multiple Motions:
Parametric and Piecewise-Smooth Flow Fields, Computer Vision and Image , p g Understanding 1996, pp75-104.
• S. Baker and I. Matthews, Lucas-Kanade 20 Years On: A Unifying
Framework, International Journal of Computer Vision, 56(3), 2004, pp221 , p , ( ), , pp - 255.
• Peter Litwinowicz, Processing Images and Video for An Impressionist Eff t SIGGRAPH 1997
Effects, SIGGRAPH 1997.
• Aseem Agarwala, Aaron Hertzman, David Salesin and Steven Seitz, Keyframe-Based Tracking for Rotoscoping and Animation, SIGGRAPH 2004, pp584-591.