• 沒有找到結果。

Let ω be a k-form on Rm

N/A
N/A
Protected

Academic year: 2022

Share "Let ω be a k-form on Rm"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

1. Pushforward and Pull Back

Let f : Rn→ Rm be a smooth function. For each p ∈ Rn, we define the push-forward dfp: Tp(Rn) → Tf (p)(Rm)

of f at p by

dfp(vp) = (Df (p)(v))f (p)

where Df (p) is the derivative of f at p. The push-forward dfp of f at p is also called a tangent map.

If g : Rm → R is a smooth function, we define the pull back of g via f by f(g) = g ◦ f.

Let ω be a k-form on Rm. We want to define a k-form fω on Rn as follows. For each p ∈ Rn, let (v1)p, · · · , (vk)p be vectors in Tp(Rn). We set

(fω)(p)((v1)p, · · · , (vk)p) = ω(f (p)) (dfp((v1)p), · · · , dfp((vk)p)) .

One can show that (fω)(p) : Tp(Rn)⊕k → R is an alternating k-linear form on Tp(Rn)⊕k for each p ∈ Rn. Hence the function

fω : Rn→ Λr(TRn)

sending p to (fω)(p) defines a k-form on Rn and is called the pull back of ω via f.

Let {x1, · · · , xn} be the coordinate functions on Rnand {y1, · · · , ym} be coordinate func- tions on Rm. If f : Rn → Rm, we define fi : Rn → R by fi = yi ◦ f for 1 ≤ i ≤ m.

Then

f (x1, · · · , xn) = (f1(x1, · · · , xn), · · · , fm(x1, · · · , xm)).

Let us compute fdyk for 1 ≤ k ≤ m. Let p ∈ Rn. By linear algebra, in terms of the basis {(dxi)p : 1 ≤ i ≤ n} for Tp(Rn), the linear functional (fdyk)(p) is given by

(fdyk)(p) =

n

X

i=1

(fdyk)(p)((ei)p)(dxi)p.

Remark. Let V be a n dimensional vector space over a field F. Let {v1, · · · , vn} be a basis for V and {ϕ1, · · · , ϕn} ⊂ V be the dual basis to {v1, · · · , vn}. For any θ ∈ V,

θ =

n

X

i=1

θ(vii. By definition,

(fdyk)(p)((ei)p) = (dyk)f (p)(dfp((ei)p)) = (dyk)f (p)(Df (p)(ei)f (p))

= (dyk)f (p) ∂f1

∂xi(p), · · · ,∂fm

∂xi (p)



f (p)

= ∂fk

∂xi(p).

We obtain that

(fdyk)(p) =

n

X

i=1

∂fk

∂xi(p)(dxi)p for any p ∈ Rn. For each 1 ≤ k ≤ m, one has

fdyk=

n

X

i=1

∂fk

∂xidxi. Since dfk=Pn

i=1

∂fk

∂xidxi, we also obtain that

fdyk= dfk = d(yk◦ f ) = d(fyk).

1

(2)

2

Theorem 1.1. Let f : Rn→ Rm be a smooth function. Then (1) fdyk =

n

X

i=1

∂fk

∂xidxi = dfk.

(2) f1+ ω2) = fω1+ fω2 for any r forms ω1 and ω2 on Rm.

(3) f(gω) = f(g)fω for any smooth function g : Rm → R and for any smooth r-form ω on Rm.

(4) f1∧ · · · ∧ ψr) = fψ1∧ · · · ∧ fψr for any smooth one form ψ1, · · · , ψr on Rm. (5) f(ω ∧ η) = fω ∧ fη for any r form ω any s form η on Rm.

(6) f(drω) = dr(fω) for any r-form ω.

Proof. We have proved the first identity.

(2) Let p ∈ Rn. For any vectors v1, · · · , vr vectors in Tp(Rn), f1+ ω2)(p)(v1, · · · , vr) = (ω1+ ω2)(f (p))(dfp(v1), · · · , dfp(vr))

= ω1(f (p))(dfp(v1), · · · , dfp(vr)) + ω2(f (p))(dfp(v1), · · · , dfp(vr))

= (fω1)(p)(v1, · · · , vr) + (fω2)(p)(v1, · · · , fr)

= (fω1+ fω2) (p)(v1, · · · , vr).

This implies that f1+ ω2)(p) = (fω1+ fω2) (p) for any p ∈ Rn which implies the desired identity.

The proof of (3) is left to the reader.

Let p ∈ Rn and (v1)p, · · · , (vr)p be vectors in Tp(Rn). Then

f1∧ · · · ∧ ψr)(p)((v1)p, · · · , (vr)p) = (ψ1∧ · · · ∧ ψr)(f (p))(dfp(v1)p, · · · , dfp(vr)p)

= det(ψi(f (p))(dfp(vj)p))

= det((fψi)(p)(vj)p)

= (fψ1∧ · · · ∧ fψr)(p)((v1)p, · · · , (vr)p).

We find that f1 ∧ · · · ∧ ψr)(p) = (fψ1 ∧ · · · ∧ fψr)(p) for any p ∈ Rn which gives f1∧ · · · ∧ ψr) = fψ1∧ · · · ∧ fψr.

(5) follows from (4). Let ω =P

IωIdxI and η =P

JηJdxJ. Then f(ω ∧ η) =X

I,J

fIηJ)f(dxI∧ dxJ)

=X

I,J

fωIfηJfdxI∧ fdxJ

= fω ∧ fη.

(6) For simplicity, we denote dr by d. Let ω = P

IωI(x)dxI. Hence dω =P

II∧ dxI. By (1), (2), (3), (5),

f(dω) =X

I

fI∧ fdxI

=X

I

fI∧ dfI.

(3)

3

If we can show that the statement is true for smooth functions, then fI = d(fωI). By d2= 0, we have d(fωI∧ dfI) = (dfωI) ∧ dfI and hence by (3), we have

f(dω) =X

I

d(fωI) ∧ dfI= d X

I

fωI· fdxI

!

= d f X

I

ωIdxI

!!

= d(fω).

Let g be a smooth function on Rm. Then dg =

m

X

j=1

∂g

∂yj

dyj. By chain rule,

f(dg) =

m

X

j=1

∂g

∂yj

fdyj =

m

X

j=1 n

X

k=1

∂g

∂yj

∂fj

∂xk

dxk= d(g ◦ f ) = d(fg).

Hence the equation f(dg) = d(fg) is equivalent to the chain rules of derivatives of func- tions.

 Theorem 1.2. Let f : Rn→ Rn be a smooth function. Then

f(dx1∧ · · · ∧ dxn) = Jf(x)dx1∧ · · · ∧ dxn where Jf(x) = det(Df (x)) is the Jacobian of f at x.

Proof. This is left to the reader as an exercise.



Department of Mathematics, National Cheng Kung University, Taiwan, fjmliou@mail.ncku.edu.tw NCTS, Mathematics

參考文獻

相關文件

Department of Mathematics National Cheng Kung

Department of Mathematics National Cheng Kung

Department of Mathematics National Cheng Kung

Department of Mathematics National Cheng Kung

Department of Mathematics National Cheng Kung

Department of Mathematics National Cheng Kung

Department of Mathematics National Cheng Kung

Department of Mathematics National Cheng Kung