• 沒有找到結果。

Steady-state pharmacokinetics and tissue distribution of anthraquinones of Rhei Rhizoma in rats

N/A
N/A
Protected

Academic year: 2021

Share "Steady-state pharmacokinetics and tissue distribution of anthraquinones of Rhei Rhizoma in rats"

Copied!
8
0
0

加載中.... (立即查看全文)

全文

(1)

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

(2)

ContentslistsavailableatScienceDirect

Journal of Ethnopharmacology

j ou rn a l h o m e pa g e:w w w . e l s e v i e r . c o m / l o c a t e / j e t h p h a r m

Steady-state pharmacokinetics and tissue distribution of anthraquinones of Rhei Rhizoma in rats

Chi-ShengShiaa,Shang-YuanTsaia,Jung-ChihLinb,Ming-LiLic,Miau-HwaKod,Pei-DawnLeeChaoa, Yu-ChingHuanga,Yu-ChiHoua,e,∗

aSchoolofPharmacy,CollegeofPharmacy,ChinaMedicalUniversity,Taichung,Taiwan

bDepartmentofIntegratedChineseandWesternMedicine,ChungShanMedicalUniversityHospital,Taichung,Taiwan

cCardiovascularDivision,SurgeryDepartment,ChinaMedicalUniversityHospital,Taichung,Taiwan

dDepartmentofAnatomy,CollegeofMedicine,ChinaMedicalUniversity,Taichung,Taiwan

eDepartmentofMedicalResearch,ChinaMedicalUniversityHospital,Taichung,Taiwan

a r t i c l e i n f o

Articlehistory:

Received1March2011

Receivedinrevisedform2August2011 Accepted2August2011

Available online 9 August 2011

Keywords:

Anthraquinone Tissuedistribution Pharmacokinetics Polyphenol

a b s t r a c t

Aimofthestudy:RheiRhizoma,therhizomeofRheumpalmatumL.(RP),isapopularherbinclinical Chinesemedicine.RPisabundantinpolyphenolicanthraquinones,whichhavebeenreportedtoshow variousbeneficialbioactivities.Thisstudyinvestigatedthepharmacokineticsandtissuedistributionof anthraquinonesfollowingseven-doseadministrationofRPdecoctiontorats.

Materialsandmethods:SixSprague-Dawleyratsweregiven2.0g/kgofRPtwicedailyforsevendosesand bloodsampleswerecollectedatdesignatedtimeafterthe7thdose.Anothersixratsweresacrificedat 30minafterthe7thdoseandorgansincludingliver,kidney,lungandbrainwerecollected.Serumand tissuespecimenswereassayedbyHPLCbeforeandafterhydrolysiswith␤-glucuronidaseandsulfatase, respectively.

Results:Pharmacokineticanalysisindicatedthattheanthraquinonesinserummainlypresentedasglu- curonides/sulfatesandcontainedhigherratioofsulfateswhencomparedwithsingle-doseadministration ofRP.Contrarytothefindinginserum,tissueanalysisdiscoveredmainlyfreeformofanthraquinonein mostorgansassayed,suchasaloe-emodinandrheininkidney,liver,lung;emodininliver,lung;trace ofchrysophanolinkidneyandliver.Inallbrains,neitherfreeformsnortheirglucuronides/sulfateshave beendetected.

Conclusions:Theglucuronides/sulfatesofanthraquinoneswerethemajorformsinbloodstream,whereas thefreeformsofmostanthraquinoneswerepredominantinkidneyandliver.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Anthraquinones are a group of polyphenolicconstituents in RheiRhizoma (the rhizome of Rheum palmatumL., RP), which is commonly usedin clinical Chinese medicineas potent laxa- tive,antibacterial, anti-inflammatory, anticancer,antispasmodic andcholereticagents(Shenand Li,1997;Shiaetal.,2011).The anthraquinonesofRPincludealoe-emodin,rhein,emodin,chryso- phanoland physcion(chemicalstructuresshown in Fig.1)and theirglycosides(Li,2002).Numerousstudiesreportedthatthese anthraquinones exhibited beneficial bioactivities such as anti- cancer(Shietal.,2001;Pecereetal.,2003;Kuoetal.,2004;Guo etal.,2007;Huangetal.,2007),antivirus(Shuangsuoetal.,2006),

∗ Correspondingauthorat:SchoolofPharmacy,ChinaMedicalUniversity,91 Hsueh-ShihRd,Taichung,Taiwan.Tel.:+886422053366x5107;

fax:+886422031028.

E-mailaddress:hou5133@gmail.com(Y.-C.Hou).

antioxidation (Caiet al., 2004) and anti-diabetes (Zheng et al., 2008).Despitethesepositiveresults,itremainsunclearwhether thoseactivitiesfoundinvitrocanexistinvivo.

Our previous study documenting the pharmacokinetics of anthraquinones after single dosing of RP has pointed out that the free formsof aloe-emodin,emodin and chrysophanolwere notdetectedinbloodbyHPLC/UVdetection,whereas theirglu- curonides/sulfateswerepredominant.The onlyfreeformfound inthecirculationwasrhein,which alsopresentedmainlyasits glucuronides/sulfates(Shiaetal.,2009).Later,anotherourstudy reportingthetissuedistributionofflavonoidsofScutellariaeRadix (root of Scutellariaebaicalensis)disclosed thatthefree forms of baicaleinandwogoninwerethemajorformsinmanyorgans,in contradictiontothefindinginblood(Houetal.,2011).Therefore, inordertoelucidatetherealmolecularformsandconcentrations ofrhubarbanthraquinonesinthecirculationandinvariousorgans atthesteadystate,pharmacokineticandtissuedistributionstud- iesfollowingrepeateddosingofRPdecoctionwereconductedin rats.

0378-8741/$seefrontmatter © 2011 Elsevier Ireland Ltd. All rights reserved.

doi:10.1016/j.jep.2011.08.003

(3)

O O

HO OH

CH3

Aloe-emodin Rhein Emodin

Chrysophanol Physcion

O O

HO OH

CH3

H3CO O

O

HO OH

CH2OH

O O

HO OH

COOH

O O

HO OH

CH3

HO

Fig.1.Chemicalstructuresofanthraquinones.

2. Materialsandmethods 2.1. Chemicals

Aloe-emodin (purity95%),rhein(purity95%),emodin(purity 90%), chrysophanol (purity 98%), physcion (purity 95%), ␤- glucuronidase (type B 1,666,400units/g, from bovine liver), sulfatase(typeH1,14,400units/g,fromHelixpomatia,containing 300,000units/gof␤-glucuronidase)and2-methlylanthraquinone (purity95%)werepurchasedfromSigmaChemicalCo.(St.Louis, MO, U.S.A.). Acetonitrile, methanol and ethyl acetate were LC grade and purchased from Mallinckrodt Baker, Inc. (Phillips- burg, NJ, U.S.A.). l(+)-Ascorbic acid was obtained from RdH Laborchemikalien GmbH & Co. KG (Seelze, Germany). Other reagentswereHPLCgradeoranalyticalreagentgrade.Milli-Qplus water(Millipore,Bedford,MA,U.S.A.)wasusedthroughout this study.

2.2. Instrumentation

The HPLC apparatus included a pump (LC-10AT, Shimadzu, Japan),anUVspectrophotometricdetector(SPD-10AVP,Shimadzu, Japan), a fluorescence detector (RF-10A, Shimadzu, Japan) and chromatopac(C-R6A,Shimadzu,Japan)withanautomaticinjec- tor(SIL-10A,Shimadzu,Japan)andanAlltechApolloC18column (5␮m,4.6mm×150mm,Alltech,Deerfield,IL,USA).

2.3. PreparationofRPdecoction

TherhizomesofRheumpalmatumwaspurchasedfromaChinese drugstoreinTaichung,Taiwan.Theoriginofthecrudedrugwas identifiedmicroscopicallybythecorrespondingauthorDr.Yu-Chi Hou.Water(5l)wasaddedto250gcrudedrugsandheatingon agasstove.Afterboiling,gentleheatingwascontinueduntilthe volumereducedtoabout2.5landthenthemixturewasfiltered whilehot.Thefiltratewasgentlyboileduntilthevolumereduced tolessthan500mlandsufficientwaterwasaddedtomake500ml, whichwasimmediatelydividedintoaliquotsandfrozenat−20C forlateruse.

2.4. QuantitationofRPdecoctionanditsacidhydrolysate

Rhubarbdecoction(3.0ml)wasmixedwith7.0mlofmethanol and centrifuged to remove polysaccharide. Then the properly diluted rhubarb decoction (100␮l) was added with 100␮l of 2-methylanthraquinone solution (50.0␮g/ml in methanol) as internalstandardand20␮lweresubjectedtoHPLCanalysis.The mobilephaseconsistedofacetonitrile(A)–0.1%phosphoricacid (B)andprogramedin agradientmannerasfollows:A/B: 50/50 (0–10min),85/15(15–22min)and50/50(27min).Thedetection wavelengthwassetat250nmandtheflowratewas1.0ml/min.

Acid hydrolysis of 1ml of the decoction was conducted by adding1mlof1.2NHClandthehydrolysiswasconductedat80C inawaterbathfor6h.Thehydrolysatewasthenaddedwithsuffi- cientmethanoltomake2.0mlbeforeHPLCanalysis.Thecontents of glycosides of aloe-emodin, rhein, emodin, chrysophanoland physcionweredeterminedbysubtractingtheconcentrations of eachaglyconeinthedecoctionfromthoseofcorrespondentagly- coneinthedecoctionhydrolysate.

2.5. Animals

MaleSprague-DawleyratsweresuppliedbyNationalLabora- toryAnimal Center(Taipei, Taiwan) and keptinAnimal Center ofChineseMedicalUniversity.Theanimalstudyadheredto“The Guidebook forthe Careand Useof LaboratoryAnimals(2002)”

(PublishedbytheChineseSocietyfortheAnimalScience,Taiwan, ROC).TheanimalprotocolwasapprovedbyInstitutionalAnimal CareandUseCommittee(IACUC)ofChinaMedicalUniversity.Rats werehousedina12-hlight–darkcycle,constanttemperatureenvi- ronmentpriortostudy.

2.6. Drugadministration,bloodandtissuecollection

Forpharmacokineticstudy,sixratsweighing390–440gwere fastedfor12hbeforedrugadministration.Afterfasting,ratswere administeredorallywith2.0g/kgofRPdecoctiontwicedailyfor7 dosesviagastricgavageinordertoreachsteady-state.Inthe4th daymorning,bloodsamples(0.6ml)werewithdrawnfromrats underanesthesiawithisofluraneat15,30,60,120,240,480,720 and1440minafterthe7thdoseviacardiopuncture.Thebloodsam- pleswerecollectedin microtubesand centrifugedat10,000×g

(4)

for15mintoobtaintheserum,whichwasstoredat−20Cuntil analysis.

For tissue distribution study, six rats weighing 350–450g wereadministeredRPdecoctionwiththesamedosageregimen describedaboveinpharmacokineticstudy.Inthe4thdaymorning, ratsweresacrificedat30minafterthe7thdoseandabloodsam- plewascollectedviacadiopuncture.Followingimmediatesystemic perfusionwithcoldsaline,organsincludingliver,lung,kidneyand brainwereremoved,washedwithcoldsaline, blotteddry with filterpaperandthenaccuratelyweighed.Thetissueswerehomog- enizedwithcoldsaline(3g/5ml)andthehomogenateswerestored at−30Cuntilanalysis.

2.7. Quantitationofanthraquinonesandtheir glucuronides/sulfatesinserumandtissues

Thedeterminationofanthraquinoneconcentrationsinserum andtissuehomogenatesfollowedapreviousmethodwithminor modification(Shiaet al.,2009).For theassayofanthraquinone aglycones, 100␮l of serum or tissue homogenate was mixed with 50␮l of pH 5 acetate buffer and 50␮l of ascorbic acid (100mg/ml). Themixture wasacidifiedwith50␮lof 0.1N HCl andpartitionedwith250␮lofethylacetate(containing1␮g/ml of2-methylantraquinoneasinternalstandard).Theethylacetate layerwasevaporatedunderN2 gastodrynessandreconstituted with50␮lofmethanol,then20␮lwassubjectedtoHPLCanalysis.

Forthequantitationofglucuronidesandsulfates,100␮lofserum ortissuewasmixedwith50␮lof␤-glucuronidaseandsulfatase, respectively,inpH5acetatebuffer(1000units/ml)and 50␮lof ascorbicacid(100mg/ml),thenincubatedat37Cfor10min,which hadbeendeterminedbyapreliminarytimestudy.Afterhydroly- sis,theserumortissuehomogenatewasacidifiedwith50␮lof 0.1NHClandthelaterprocessesfollowedthosedescribedabove.

Themobilephaseconsistedofacetonitrile(A)and0.1%phospho- ricacid(B),andagradientelutionprogramwasrunasfollows:

A/B:50/50(0–10min),85/15(15min),80/20(20min)and50/50 (25min).Forserumassay,thewavelengthofUVdetectorwasset at250nm.Fortissueassay,fluorescencedetectionwasperformed withwavelengthsof435and515nmforexcitationandemission, respectively.Theflowratewas1.0ml/min.

For calibrator preparation, 100␮l of serum or tissue homogenate each spiked with various concentrations of anthraquinones was added with 50␮l of pH 5 buffer. The laterprocedurewasthesameasthatdescribedaboveforserum sample.Thecalibrationgraphwasplottedbylinearregressionof thepeakarearatios(anthraquinonestointernalstandard)against concentrationsofanthraquinones.

The systemsuitability wasevaluated through intra-day and inter-dayanalysisofprecisionandaccuracy.Recoverywasassessed bycomparingthepeakareaobtainedfromextractedsamplespiked withstandards tothat obtainedfrom unextractedstandards in extracted sample matrix, which represents100% recovery.The lowerlimitofquantitation(LLOQ)representsthelowestconcentra- tionofanalysisinasamplethatcanbedeterminedwithacceptable precisionand accuracy,whereaslimit ofdetection(LOD) repre- sentsthelowestconcentrationofanalysisinasamplethatcanbe detected(withS/N>3).

2.8. Dataanalysis

Thepeakserum ortissueconcentration(Cmax)wasobtained fromexperimentalobservation.Thepharmacokineticparameters were analyzed by noncompartmentmodel withthe aidof the program WinNonlin (version 1.1 SCI software, Statistical Con- sulting, Inc., Apex, NC, U.S.A.). The area under the serum or tissue concentration–time curve (AUC0–t) was calculated using

Table1

Contents(␮g/ml)ofaloe-emodin,rhein,emodin,chrysophanolandphyscioninRP decoctionbeforeandafteracidhydrolysis.

Constituents Beforehydrolysis Afterhydrolysis

Aloe-emodin 119.5 613.6

Rhein 577.9 910.1

Emodin 114.4 552.6

Chrysophanol 90.5 471.1

Physcion 38.9 199.5

trapezoidal rule to the last point. The concentrations of anthraquinone sulfates in tissue were obtained by subtract- ing theconcentration of anthraquinoneglucuronides from that ofcorrespondent anthraquinoneglucuronides/sulfates.Unpaired Student’st-testwasusedforstatisticalcomparisontakingp<0.05 assignificant.

3. Results

3.1. QuantitationofanthraquinonesinRPdecoction

ThequantitationofanthraquinonesinRPdecoctionwasper- formed by HPLC analysis before and after acid hydrolysis. The concentrationsofeachanthraquinoneintheRPdecoctionbefore andafteracidhydrolysiswereshowninTable1.Themostabun- dant anthraquinone in RP decoction was rhein and the least wasphyscioneitherbeforeorafteracidhydrolysis.Aloe-emodin, emodin,chrysophanolandphyscionwerepredominantlypresent inglycosideforms,whereasrheinmainlyexistedinfreeform.

3.2. Quantitationofanthraquinonesandtheir glucuronides/sulfatesinserumandtissues

The quantitation of anthraquinones and their glu- curonides/sulfates in serum essentially employed a method published previously (Shia et al., 2009). The serum analysis revealedthatrhein freeformwaspresentin allspecimens, and emodinfreeformexistedonlytransientlyintheearlyphaseafter dosing,whereasthefreeformsofaloe-emodin,chrysophanoland physcion were not detected.The glucuronides/sulfates of aloe- emodin,rhein,emodinandchrysophanolpredominantlyexisted inbloodstream,whilenotraceofphyscionglucuronides/sulfates had been detected. The mean serum concentration–time pro- files of each anthraquinone afterthe 7th dose of RPdecoction in six rats are shown in Fig. 2. All profiles revealed a second peak, a clear indication of enterohepatic circulation for these anthraquinones. The pharmacokinetic parameters of rhein free form, glucuronides/sulfates (G/S) and glucuronides (G) of each anthraquinonearelistedinTable2.Thesystemicexposures(area under the concentration–time curve, AUC) of anthraquinones ranked as follows: rhein G/S>rhein>emodin G/S>aloe-emodin G/S>chrysophanolG/S.

Theassaymethodoftissuehomogenateswasestablishedand validated in this study. The calibration ranges of aloe-emodin (0.04–4.0␮g/ml), rhein (0.01–20.0␮g/ml), emodin and chryso- phanol(0.01–2.0␮g/ml)invarioustissuehomogenateswerewith goodlinearities.Themethodvalidationindicated thatallcoeffi- cientsofvariation inintra-runandinter-runanalysisofvarious tissuehomogenateswerebelow9.9%,andtherelativeerrorswere below 19.2%. For liver homogenate, theLLOQs and LODs were 0.04and0.01␮g/mlforaloe-emodinandchrysophanol,0.08and 0.02␮g/ml for rhein, 0.06 and 0.01␮g/ml for emodin, respec- tively. For kidney homogenate,the LLOQsand LODswere0.01 and0.006␮g/mlforaloe-emodin,0.06and0.04␮g/mlforrhein, 0.08and0.005␮g/mlforemodin,0.06and0.01␮g/mlforchryso- phanol.Forlunghomogenate,theLLOQsandLODswere0.008and

(5)

Table2

Pharmacokineticparametersofanthraquinonesandtheirglucuronides/sulfates(G/S)andglucuronide(G)after7thdoseofRP(2g/kg)insixrats.

Constituents Metabolites Cmax(nmol/ml) AUC0–720(nmolmin/ml) MRT0–720(min)

Aloe-emodin G/S 2.1±0.3 288.0±63.4 147.5±19.4

G 1.5±0.2 151.7±30.9 105.5±20.1

Rhein Freeform 5.8±0.7 1250.2±167.0 243.1±23.2

G/S 17.1±1.7 3209.4±398.0 236.8±13.1

G 9.3±1.3 1725.1±294.3 215.5±28.2

Emodin G/S 3.7±0.3 717.0±62.8 235.9±15.2

G 2.1±0.3 391.5±70.7 203.6±24.1

Chrysophanol G/S 1.8±0.2 161.6±47.6 93.5±22.4

G 1.4±0.2 117.6±27.6 136.5±44.2

Cmax,themaximumconcentration(nmol/ml).

AUC0–t,theareaunderconcentration–timecurvetothelasttime(nmolmin/ml).

MRT0–t,themeanresidencetime(min).

Dataexpressedasmean±S.E.

0.002␮g/mlforaloe-emodin,0.04and0.01␮g/mlforrhein,0.006 and0.002␮g/mlforemodin,0.004and 0.001␮g/ml forchryso- phanol,respectively.Therecoveriesofanthraquinonesfromliver, kidneyandlungwere68.6–84.2%,78.0–111.1%and76.9–109.4%, respectively,attestedconcentrations.

Tissue analysis had detectedthe free forms of aloe-emodin, rhein,emodinandchrysophanolinmanyorgansasshowninFig.3.

Thetissuecontentsofeachanthraquinonefreeformwererankedas follows:kidney,liver>lungforaloe-emodin;kidney>liver>lung forrhein;liver>lungforemodin;onlytracesofchrysophanolin

kidney andliver. Amongthe assayedorgans, theconcentration ofrheinfreeforminkidneywasthehighest(24␮g/g)andeven muchhigherthanserumconcentration(14␮g/ml). Withregard totheconcentrationsofglucuronides/sulfates,notracesofthem werefoundinliver.OnlytracesofSofaloe-emodin,rhein,emodin werefoundinlung.BothGandSofaloe-emodin,rhein,emodinand chrysophanolwerepresentinkidney,butinmuchlowerconcen- trationsthantheirfreeforms.NeitherphyscionnoritsG/Shadbeen detectedinalltissuesassayed.Inaddition,thefreeformsandthe G/Sofeachanthraquinonewerenotdetectedinallbrains(Fig.4).

Time (min)

0 200 400 600 800

serum concentration(nmol/ml)

0.0 0.5 1.0 1.5 2.0

Chrysophanol G/S Chrysophanol G Time (min)

0 200 400 600 800

serum concentration(nmol/ml)

0.0 0.5 1.0 1.5 2.0 2.5

Aloe-emodin G/S Aloe-emodin G

Time (min)

0 200 400 600 800

serum concentration(nmol/ml)

0 2 4 6 8 10 12 14 16 18

Rhein Rhein G/S Rhein G

Time (min) 2

0 00 400 6 00 800

serum concentration (nmol/ml)

0 1 2 3 4 5

Emodin G/S Emodin G

a b

c d

Fig.2.Mean(±S.E.)serumconcentration–timeprofilesofanthraquinonesandtheirglucuronides/sulfates(G/S)andglucuronides(G)afterthe7thdoseofRP(2g/kg)insix rats.(a)Aloe-emodin,(b)rhein,(c)emodin,and(d)chrysophanol.

(6)

Organs

serum liver lung kidney brain

Concentration (nmol/mL)

0.0 0.5 1.0 1.5 2.0 2.5

Concentration (nmol/g)

0.0 0.5 1.0 1.5 2.0 Aloe-emodin 2.5

Aloe-emodin G Aloe-emodin S

Organs

serum liver lung kidney brain

Concentration (nmol/mL)

0 5 10 15 20 25 30

Concentration (nmol/g)

0 5 10 15 20 25 Rhein 30

Rhein G Rhein S

Organs

serum liver lung kidney brain

Concentration (nmol/mL)

0 1 2 3 4 5 6

Concentration (nmol/g)

0 1 2 3 4 5 Emodin 6

Emodin G Emodin S

Organs

serum liver lung kidney brain

Concentration (nmol/mL)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Concentration (nmol/g)

0.0 0.5 1.0 1.5 2.0 2.5 Chrysophanol 3.0

Chrysophanol G Chrysophanol S

a b

c d

Fig.3. Concentrationsofanthraquinonesandtheirsulfates(S)andglucuronide(G)inserum(nmol/ml)andvarioustissues(nmol/g)afterthe7thdoseofRP(2g/kg)insix rats.(a)Aloe-emodin,(b)rhein,(c)emodin,and(d)chrysophanol.

Fig.4. Tissuedistributionsofanthraquinonesafterthe7thdoseofRPinrats(P,parentform;S,sulfates;G,glucuronides;A,aloe-emodin;R,rhein;E,emodin;andC, chrysophanol).

數據

Fig. 1. Chemical structures of anthraquinones.
Fig. 2. Mean (±S.E.) serum concentration–time profiles of anthraquinones and their glucuronides/sulfates (G/S) and glucuronides (G) after the 7th dose of RP (2 g/kg) in six rats
Fig. 4. Tissue distributions of anthraquinones after the 7th dose of RP in rats (P, parent form; S, sulfates; G, glucuronides; A, aloe-emodin; R, rhein; E, emodin; and C, chrysophanol).

參考文獻

相關文件

in 1971 to describe benign bone formations in oral soft tissue, previously referred to as soft tissue osteomas. (2) A mass of dense lamellar bone, which is easily differentiated

Exposure to radiation causes damage to living tissue, resulting in skin burns, radiation sickness and death at high doses and cancer, tumors and genetic damage at low

the prediction of protein secondary structure, multi-class protein fold recognition, and the prediction of human signal peptide cleavage sites.. By using similar data, we

6 《中論·觀因緣品》,《佛藏要籍選刊》第 9 冊,上海古籍出版社 1994 年版,第 1

Mie–Gr¨uneisen equa- tion of state (1), we want to use an Eulerian formulation of the equations as in the form described in (2), and to employ a state-of-the-art shock capturing

The first row shows the eyespot with white inner ring, black middle ring, and yellow outer ring in Bicyclus anynana.. The second row provides the eyespot with black inner ring

Breu and Kirk- patrick [35] (see [4]) improved this by giving O(nm 2 )-time algorithms for the domination and the total domination problems and an O(n 2.376 )-time algorithm for

The main tool in our reconstruction method is the complex geometri- cal optics (CGO) solutions with polynomial-type phase functions for the Helmholtz equation.. This type of