• 沒有找到結果。

SECTION 9.7: Applications of Taylor and Maclaurin Series

N/A
N/A
Protected

Academic year: 2022

Share "SECTION 9.7: Applications of Taylor and Maclaurin Series"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

SECTION 9.7: Applications of Taylor and Maclaurin Series

Exercise 7

Using the Maclaurin series for cosine, we have:

cos 5= 1 − 1 2!

 5π 180

2 + 1

4!

 5π 180

4

− · · ·

Since the Maclaurin series of cosine can be viewed as a alternating series, the error E will be bounded by the first omitted term, that is, if the (n + 1)−th term is the first omitted term, we have:

|E| ≤ 1 (2n)!

 5π 180

2n

Knowing that 180 < 0.1, we observe that n = 2 is sufficient. Therefore,

cos 5≈ 1 − 1 2!

 5π 180

2

≈ 0.99619.

Exercise 9

Using the Maclaurin series for ln(1 + x), we have:

ln 0.9 = ln(1 + (−0.1)) = (−0.1) −(−0.1)2

2 +(−0.1)3

3 −(−0.1)4 4 + · · · If the n−th term is the first omitted term, we can estimate the absolute value of the error as follows:

|E| =

X

k=n

1

k(0.1)k< 1 n

X

k=n

(0.1)k = 1 n

(0.1)n 1 − 0.1 = 10

9n(0.1)n.

When n = 4, |E| ≤ 1036(0.1)4 < 5 × 10−5, so we only need to compute the first three terms:

ln 0.9 ≈ (−0.1) −(−0.1)2

2 +(−0.1)3

3 ≈ −0.10533

Exercise 12

Using the Maclaurin series for tan−1x, we have:

tan−10.2 = 0.2 −(0.2)3

3 +(0.2)5 5 − · · · .

(2)

Since the Maclaurin series of tan−1x can be viewed as a alternating series when x = 0.2, the error E will be bounded by the first omitted term, that is, if the (n + 1)−th term is the first omitted term, we have:

|E| ≤ 1

2n + 1(0.2)2n+1

When n = 3, we have |E| ≤ 17(0.2)7< 0.0000128 < 5 × 10−5, hence comput- ing the first three nonzero terms is sufficient. Therefore,

tan−10.2 ≈ 0.2 −(0.2)3

3 +(0.2)5

5 ≈ 0.19740.

Exercise 14

Solution 1:

Using the Maclaurin series for ln(1 + x), we have:

ln3 2 = ln

 1 + 1

2



= 1 2−1

2

 1 2

2

+1 3

 1 2

3

−1 4

 1 2

4

+ · · · .

Since the Maclaurin series of ln(1 + x) can be viewed as a alternating series when x = 12, the error E will be bounded by the first omitted term, that is, if the n−th term is the first omitted term, we have:

|E| ≤ 1 n

 1 2

n

When n = 11,

|E| ≤ 1 11

 1 2

1

1 = 1

11 × 211 = 1

22528 < 1

20000 = 5 × 10−5. Therefore, it is sufficient to compute 10 nonzero terms:

ln3 2 ≈ ln

 1 + 1

2



= 1 2−1

2

 1 2

2

+ · · · − 1 10

 1 2

10

≈ 0.40543.

Solution 2:

It will often be useful to use the Maclaurin series of ln1+x1−xinstead of ln(1+x), which converges faster and is capable to evaluate ln u for any positive u:

ln1 + x

1 − x = ln(1 + x) − ln(1 − x)

=

 x −x2

2 +x3 3 −x4

4 + · · ·





−x −x2 2 −x3

3 −x4 4 − · · ·



=

X

n=0

2

2n + 1x2n+1.

(3)

Substitute 0.2 for x in the Maclaurin series above, we get:

ln3

2 = ln1 + 0.2

1 − 0.2= 2 × 0.2 +2

3(0.2)3+2

5(0.2)5+2

7(0.2)7+ · · · . If the (n + 1)−th term is the first omitted term, we can estimate the absolute value of the error as follows:

|E| =

X

k=n

2

2k + 1(0.2)2k+1< 1 n

X

k=n

(0.2)2k+1= 1 n

(0.2)2n+1 1 − 0.04 = 25

24n(0.2)2n+1. If n = 3, |E| < 2572517 = 72×51 5 < 200001 = 5 × 10−5, hence it is accurate enough to compute three nonzero terms:

ln3

2 ≈ 2 × 0.2 +2

3(0.2)3+2

5(0.2)5≈ 0.40546.

Exercise 22

Solution 1:

lim

x→0

sin x2 sinh x= lim

x→0

x23!1(x2)3+ · · · x +3!1x3+ · · · = lim

x→0

x − 16x5+ · · · 1 + 16x2+ · · · =0

1 = 0.

Solution 2:

Using the l’Hˆopital’s rule, we can get:

lim

x→0

sin x2 sinh x = lim

x→0

2x cos x2 cosh x = 0

1 = 0.

Exercise 25

x→0lim

2 sin 3x − 3 sin 2x 5x − tan−15x = lim

x→0

2 3x −3!1(3x)3+ · · · − 3 2x −3!1(2x)3+ · · · 5x − 5x −13(5x)3+15(5x)5− · · ·

= lim

x→0

54−246 x3+ Ax5+ · · ·

125

3 x3− Bx5+ · · ·

= lim

x→0

−5 + Ax2+ · · ·

125

3 − Bx2+ · · · = − 3 25.

(A and B are constants which are not necessary to compute explicitly here in order to evaluate the limit.)

(4)

Exercise 26

We first compute the first nonzero term of the Maclaurin series of the nom- inator and the denominator:

sin(sin x) − x = sin

 x − x3

6 + · · ·



− x

=

" x − x3

6 + · · ·



−1 6

 x − x3

6 + · · ·

3 + · · ·

#

− x

=

 x − 1

6 +1 6



x3+ Ax5+ · · ·



− x

= −1

3x3+ Ax5+ · · · x(cos(sin x) − 1) = x

 cos

 x − x3

6 + · · ·



− 1



= x



1 − 1 2

 x −x3

6 + · · ·



− 1



= x



−1

2x2+ Bx4+ · · ·



= −1

2x3+ Bx5+ · · ·

(A and B are constants which are not necessary to compute explicitly here in order to evaluate the limit.)

Therefore,

x→0lim

sin(sin x) − x

x(cos(sin x) − 1) = lim

x→0

13x3+ Ax5+ · · ·

12x3+ Bx5+ · · ·

= lim

x→0

13+ Ax2+ · · ·

12+ Bx2+ · · · = −13

12 =2 3.

Exercise 27

Solution 1:

lim

x→0

sinh x − sin x cosh x − cos x

= lim

x→0

x + 3!1x3+5!1x5+7!1x7+ · · · − x − 3!1x3+5!1x57!1x7+ · · · 1 + 2!1x2+4!1x4+6!1x6+ · · · − 1 −2!1x2+4!1x46!1x6+ · · ·

= lim

x→0

2 3!1x3+7!1x7+ · · · 2 2!1x2+6!1x6+ · · · = lim

x→0 1

3!x + 7!1x5+ · · ·

1

2! +6!1x4+ · · · =0 1 = 0.

(5)

Solution 2:

Using the l’Hˆopital’s rule twice, we can get:

x→0lim

sinh x − sin x cosh x − cos x = lim

x→0

cosh x − cos x sinh x + sin x = lim

x→0

sinh x + sin x cosh x + cos x= 0

2 = 0.

參考文獻

相關文件

[12.3] The Integral Test; Basic Comparison, Limit Comparison.. [12.7] Taylor Polynomials and Taylor Series

Each limit represents the derivative of some function f at some

Its radius of convergence

Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. (a) The quantity of the drug in the body after the first tablet is

The Alternating Series Test fails because b n is not decreasing (even we only consider

[This series can be constructed by virtue of the result of Exercise 51(b).] This series will have partial sums   that oscillate in value back and forth across .. All

[r]