• 沒有找到結果。

• The baryon EDMs from chiral perturbation theory

N/A
N/A
Protected

Academic year: 2022

Share "• The baryon EDMs from chiral perturbation theory"

Copied!
51
0
0

全文

(1)

Theta-term physics

Ulf-G. Meißner, Univ. Bonn & FZ J ¨ ulich

Supported by BMBF 05P15PCFN1 by DFG, SFB/TR-110 by CAS, PIFI by Volkswagen Stftung

(2)

CONTENTS

• Introduction

• The baryon EDMs from chiral perturbation theory

• The neutron EDM from 2+1 flavor lattice QCD

• EDMs of light nuclei and models of CP violation

• Hadrons at finite theta

• Summary & outlook

(3)

Introduction

(4)

QCD with a θ-TERM

• QCD has non-trivial topological vacua: |θi = P

n

ei n θ|ni, n ∈ Z

• QCD in the presence of the θ-term

LQCD = −1

4GaµνGa,µν + X

flavors

¯

q (iD/ − M) q + θ0 g2

32π2 Gaµνa,µν

| {z }

∼ ~Ea · ~Ba

⇒ This leads to strong CP-violation

⇒ A non-vanishing vacuum angle θ0 entails dn 6= 0 (also dp 6= 0)

dN ≈ |θ0| e Mπ2

m3 ≈ 10−160| e cm → θ0 = O(10−10)

(5)

CONNECTION to the QUARK MASSES

5

• Shift under axial rotations:

θ → ¯θ = θ − 2Nfα

• Influences the diagonalization of the quark mass matrix:

θ = θ + arg (det M)¯

⇒ QCD mass term for small values of θ:

Lmass = muuu + m¯ ddd + m¯ sss¯ + i ¯θ mumdms

mumd + mums + mdms uγ¯ 5u + ¯dγ5d + ¯sγ5s

| {z }

ps density

? no physical effect if one mq vanishes

? however, this is excluded by QCD phenomenology

(6)

EXPERIMENTS on the NEUTRON EDM

• performed and projected experiments (UCN):

1950 1970 1990 2010

PSI MultiCell

3He−UCN

Beams UCN

d [e cm]

n

10−32 10−28 10−24 10−20

SM SUSY

year of experiment

QCD θ

10

10

10

−10

−12

−14

(7)

The baryon EDM in chiral perturbation theory

Ottnad, Kubis, UGM, Guo, Phys. Lett. B 687 (2008) 42 Guo, UGM, JHEP 1212 (2012) 097

(8)

BARYON EDMs - BASIC DEFINITIONS

• Baryon electromagnetic form factors in the presence of strong CP -violation [or other sources of it]

hp0| Jemν |pi = ¯u (p0) Γν q2 u (p) Γν = γνF1 q2 − i

2mB σµνqµF2 q2 − 1

2mB σµνqµγ5F3 q2

+ . . . q2 = (p0 − p)2

• Dipole moments and radii:

dB = F3,B(0)

2mB , red2 = 6dF3(q2) dq2

q2=0

• Similar formulae for light nuclei [see later]

000000 000 111111 111

p

p

q

(9)

BARYON EDMs - CALCULATIONS

• non-perturbative methods: baryon chiral perturbation theory and/or lattice QCD

• study the nucleon/baryon electric dipole form factors in baryon CHPT

? already quite a number of investigations (mostly the neutron)

Crewther, Veneziano, Witten, Pich, de Rafael, . . ., Borasoy, Narison, Hockings, van Kolck, de Vries, . . .

? complete one-loop calculation Ottnad, Kubis, M., Guo, Phys. Lett. B 687 (2008) 42

? based on Leffa, φ0, B] supplemented by power counting

• LQCD calculations for θ and CP-violating form factors become available

⇒ must address quark mass and finite volume corrections

⇒ fruitful interplay between LQCD and CHPT/EFT practitioners

(10)

EFFECTIVE LAGRANGIAN

• Effective Lagrangian based on U (3)L × U (3)R symmetry:

Herrera-Sikl ´ody et al., Borasoy

Leff = L[U, B] , U = expr 2 3

i F0η0

| {z }

U (1)

+ 2i Fφφ

| {z }

SU (3)



• Power counting [δ = small parameter]: Kaiser, Leutwyler, . . .

p = O (δ) , mq = O δ2

, 1/Nc = O δ2

• Determination of the low-energy constants

− meson sector: meson masses, η-η0 mixing, . . .

(11)

EFFECTIVE LAGRANGIAN

• U (3) × U (3) effective meson-baryon Lagragian Borasoy (2000)

LφB = i TrBγ¯ µ[Dµ, B] − ˚m Tr[ ¯BB] − D/F

2 TrBγ¯ µγ5[uµ, B]± +bD/F TrB¯χ+ − iA(U − U), B

± + b0 Tr[ ¯BB] Trχ+ − iA(U − U) +4A w100

6

F0 η0Tr[ ¯BB] + i

w13/140 θ¯0 + w13/14

6

F0 η0

TrBσ¯ µνγ5[Fµν+ , B]± +w16/17 TrBσ¯ µν[Fµν+ , B]± + w0

2 TrBγ¯ µγ5BTr[uµ]

• tree-level LECs: w13, w14, w130 , w014 [some get renormalized]

• loop LECs: w100 , w0

• further LECs are absorbed in masses, magnetic moments, etc

¯

}

more later!

(12)

BARYON EDMS at ONE LOOP

Guo, UGM, JHEP12 (2012) 097

• Consider the ground state baryon octet (N, Λ, Σ, , Ξ)

,→ not only interesting in itself, but also provides sufficient data to fix LECs

• tree-level contributions to baryon EDMs α = 144V0(2)V3(1)/(F0FπMη0)2:

d(n) = d(Λ)/2 = −d(Σ0)/2 = d(Ξ0) = 8e ¯θ0 αw13 + w130  /3 d(p) = d(Σ+) = −4e ¯θ0 α (w13 + 3w14) + w130 + 3w140  /3

d(Σ) = d(Ξ) = −4e ¯θ0 α (w13 − 3w14) + w130 − 3w014 /3

• Charged particles feature more loop contributions than neutral ones ,→ Neutron case: {π, p} and {K+, Σ}

,→ Proton case: {π+, n}, {π08, η0), p}, {K+, Σ0(Λ)} and {K0, Σ+}

(13)

FEYNMAN GRAPHS for F

3B

(q

2

)

• tree (a,b) and one-loop (c,d,e,f) graphs (complete one-loop)

η0

(a)

(d) (e) (f)

(b) (c)

• other loop graphs (see Ottnad et al.) mutually cancel ⊗ CP-odd

(14)

NEUTRON LOOP CONTRIBUTIONS

• one-loop contributions to the neutron EDM (other neutral baryons similar):

F3,nloop(q2)

2mN = V0(2)e ¯θ0 π2Fπ4

(

(D + F ) (bD + bF )

×

"

1 − ln Mµ2π2 + σπ ln σσπ−1

π+1 + π(2Mπ2−q2)

2mN

−q2 arctan

−q2 2Mπ

#

−(D − F ) (bD − bF )

"

1 − ln Mµ2K2 + σK ln σσK−1

K+1

+√π

−q2

2M2

K−q2

2mN − 8 (bD − bF ) MK2 − Mπ2

× arctan

−q2 2MK

#)

h

σπ(K) = q

1 − 4Mπ(K)2 /q2i

• only known masses and couplings !

(15)

PROTON LOOP CONTRIBUTIONS

15

• one-loop contributions to the proton EDM (other charged baryons similar):

F3,ploop(q2)

2mN = −V0(2)e ¯θ02Fπ4

(

6(D + F ) (bD + bF )

×

"

1 − ln M

2 π

µ2 + σπ ln σσπ−1

π+1 + 3πM2m π

N + π(2Mπ2−q2)

2mN

−q2 arctan

−q2 2Mπ

#

+4 (DbD + 3F bF )



1 − ln M

2 K

µ2 + σK ln σσK−1

K+1 + πMm K

N



+√

−q2 arctan

−q2 2MK



(DbD+3F bF)

2mN 2MK2 − q2 +8 MK2 − Mπ2

F b2D + 3b2F  − 23DbD (bD − 3bF )



+mπ

N



6(D − F ) (bD − bF ) MK + (D − 3F ) (bD − 3bF ) Mη8 +2F

2 π

F02 (2D − 3w0) 2bD + 3b0 + 6w100 

| {z }

≡ β

Mη0

)

(16)

MAKING PREDICTIONS

• Close inspection of the tree and one-loop expressions reveals

⇒ only two combinations of LECs appear at NLO in all baryon EDMs:

wa(µ) ≡ αw13 + w130 r(µ)

wb(µ) ≡ 3[αw14 + w140 r(µ)] + V0(2)β

4πF02Fπ2maveMη0

• use this formalism to analyze lattice data → next section

• there are relations free of LECs such as dΣ0 + dΛ ∼ MK2 − Mπ2

F b2D + 2DbDbF + 3F b2F  + O(δ4) dn − dΞ0 ∼ (DbD + F bF) 

2 ln M

2 K

Mπ2 + πMπm−MK

ave

 +M

K MK2 − Mπ2

Db2D + 2F bDbF + Db2F  + O(δ4)

(17)

The neutron EDM from 2+1 flavor lattice QCD

Guo, Horsley, UGM, Nakamura, Rakow, Schierholz, Zanotti, Phys. Rev. Lett. 115 (2015) 062001 [arXiv:1502.02295]

(18)

LATTICE FORMULATION: GENERALITIES

• work around the SU(3) symmetry point, keeping the singlet mass ¯m fixed:

¯

m = (mu + md + ms)/3 Bietenholz et al., Phys. Rev. D84 (2010) 054059

⇒ keeps the kaon mass low for varying strange quark masses constrained polynomials fits

⇒ works fine for Nf = 2 + 1 [mu = md = m`]

0.00 0.25 0.50 0.75 1.00 1.25

0.8 0.9 1.0 1.1 1.2

MNO/XN [Octet]

experiment N(lll) Λ(lls) Σ(lls) Ξ(lss) sym. pt.

π K η ρ K* φ N Λ Σ Ξ Σ* Ξ* Ω 0

500 1000 1500 2000

M [MeV]

(19)

LATTICE FORMULATION at FIXED TOPOLOGY

19

• The θ-term on the lattice [at fixed topological charge Q]:

S = S0 + Sθ, Sθ = i θ Q, Q = − 1

64π2 µνρσ a4 X

x

GbµνGbρσ ∈ Z

• rotate the θ-term into the fermionic part of the action Baluni (1979)

Sθ = − i

3θ ˆma4 X

x

¯

5u + ¯dγ5d + ¯sγ5s ˆ

m−1 = 1 3



m−1u + m−1d + m−1s 

= 1 3



2m−1` + m−1s 

• take the vacuum angle imaginary: θ = i ¯θ [th’y analytic at θ = 0]

⇒ Sθ = ¯θ m` ms

2ms + m` a4 X

x

¯

5u + ¯dγ5d + ¯sγ5s

⇒ real action, vanishes at m and m

(20)

LATTICE SET-UP

• Wilson fermions with a clover term & Symanzik improved gluon action (SLiNC) Sq = S0q + Sθq = a4 X

x

¯ q



D − 1

4cSW σµν Gµν + mq + λ 2a γ5

 q

• lattice set-ups (β = 5.50)

# κ` κs V Mπ [MeV] MK [MeV] λ

1 0.1209 0.1209 243 × 48 465 465 0.003 2 0.1209 0.1209 243 × 48 465 465 0.005 3 0.1210 0.1206 243 × 48 360 505 0.003 4 0.1210 0.1206 243 × 48 360 505 0.005 5 0.1210 0.1206 323 × 64 360 505 0.003 6 0.1211 0.1205 323 × 64 310 520 0.003

• a = 0.074(2)m from the average baryon octet mass

• only ensembles 1 to 4 in the PRL publication

(21)

LATTICE SET-UP: TOPOLOGICAL CHARGE

21

• keep the singlet mass ¯m fixed at its physical value and vary δmq = mq − ¯m

λ = ¯θ 2a m` ms

2ms + m`, amq = 1

q 1

0,c, κ0,c = 0.1211

• Ensembles carry topological charge, hQi ∼ ¯m

topological charge distribution #4 average topological charge

0.05 0.1 0.15 0.2

-8 -6 -4 -2 0 2 4

p(Q)

Q 0.05

0.1 0.15 0.2

-8 -6 -4 -2 0 2 4

p(Q)

Q 0.05

0.1 0.15 0.2

-8 -6 -4 -2 0 2 4

p(Q)

Q

-3 -2.5 -2 -1.5 -1 -0.5 0

0 0.5 1 1.5 2 2.5 3

hQi

θ¯ -3

-2.5 -2 -1.5 -1 -0.5 0

0 0.5 1 1.5 2 2.5 3

hQi

θ¯ -3

-2.5 -2 -1.5 -1 -0.5 0

0 0.5 1 1.5 2 2.5 3

hQi

θ¯

(22)

i

EVALUATION

• at non-vanishing θ, Dirac spinors pick up a phase ∼ α(θ)

→ can be obtained from a ratio of two-point functions

Tr[GθN N(t; 0)Γ4γ5]

Tr[GθN N(t; 0)Γ4] = i sin 2α(θ)

1 + cos 2α(θ) -0.2

-0.15 -0.1 -0.05 0

0 0.5 1 1.5 2 2.5 3

¯α(¯θ)

θ¯ -0.2

-0.15 -0.1 -0.05 0

0 0.5 1 1.5 2 2.5 3

¯α(¯θ)

θ¯

mπ= 465MeV mπ= 360MeV

• flavor-singlet ps density interacts with the nucleon through quark-line disconnected diagrams only

*

γ5 γµ

+

• Form factor F3(q2) extracted from a ratio of 3-point and 2-point functions

generalizing the method of Capitani et al., Nucl. Phys. Proc. Suppl. 73 (1999) 294

(23)

i 23

FORM FACTOR RATIOS

• Extracting F3θ,n¯ (q2)/F1θ,p¯ (q2) at finite θ:

easier extrapolation to q2 = 0

-0.3 -0.2 -0.1 0

0 0.1 0.2 0.3

¯ θ,n 3¯ F/F

¯ θ,p 1

(aq)2 -0.3

-0.2 -0.1 0

0 0.1 0.2 0.3

¯ θ,n 3¯ F/F

¯ θ,p 1

(aq)2 -0.3

-0.2 -0.1 0

0 0.1 0.2 0.3

¯ θ,n 3¯ F/F

¯ θ,p 1

(aq)2

mπ= 465MeV , 243× 48

-0.5 -0.4 -0.3 -0.2 -0.1 0

0 0.05 0.1 0.15 0.2

¯ θ,n 3¯ F

/F

¯ θ,p 1

-0.5 -0.4 -0.3 -0.2 -0.1 0

0 0.05 0.1 0.15 0.2

¯ θ,n 3¯ F

/F

¯ θ,p 1

-0.5 -0.4 -0.3 -0.2 -0.1 0

0 0.05 0.1 0.15 0.2

¯ θ,n 3¯ F

/F

¯ θ,p 1

mπ= 360MeV , 323× 64

-0.8 -0.6 -0.4 -0.2 0

0 0.05 0.1 0.15 0.2

¯ θ,n 3¯ F

/F

¯ θ,p 1

-0.8 -0.6 -0.4 -0.2 0

0 0.05 0.1 0.15 0.2

¯ θ,n 3¯ F

/F

¯ θ,p 1

-0.8 -0.6 -0.4 -0.2 0

0 0.05 0.1 0.15 0.2

¯ θ,n 3¯ F

/F

¯ θ,p 1

mπ= 310MeV , 323× 64

Mπ = 465 MeV

Mπ = 360 MeV Mπ = 310 MeV

new

(24)

RESULTS

• Form factor as a fct of ¯θ

• continue θ and F3θ(0) to real values

• expand around θ = 0 : F3θ(0) = F3(1)(0)θ + . . .

→ dn = eF3(1)(0)θ/2mN

• chiral extrapolation with 2MK2 + Mπ2 =const.

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

0 0.5 1 1.5 2 2.5 3

¯ θ,n¯ F

R 3(0)

θ¯ -0.7

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

0 0.5 1 1.5 2 2.5 3

¯ θ,n¯ F

R 3(0)

θ¯ -0.7

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

0 0.5 1 1.5 2 2.5 3

¯ θ,n¯ F

R 3(0)

θ¯

mπ= 465MeV mπ= 360MeV

→ wa(µ = 1 GeV) = 0.04(1) GeV−1

→ dn = −0.0039(2)(9) [e fm θ]

→ |θ| . 7.4 × 10−11

• proton under analysis

-0.05 -0.04 -0.03 -0.02 -0.01 0

0 0.1 0.2 0.3

dn[efmθ]

m2π[GeV2] -0.05

-0.04 -0.03 -0.02 -0.01 0

0 0.1 0.2 0.3

dn[efmθ]

m2π[GeV2] -0.05

-0.04 -0.03 -0.02 -0.01 0

0 0.1 0.2 0.3

dn[efmθ]

m2π[GeV2] -0.05

-0.04 -0.03 -0.02 -0.01 0

0 0.1 0.2 0.3

dn[efmθ]

m2π[GeV2] new

(25)

OTHER RESULTS

• Neutron EDM using Nf = 2 + 1 + 1 twisted mass fermions

|dn| = 0.045(6)(1)|θ| e fm, one ensemble @ Mπ = 373 MeV

Alexandrou et al., Phys. Rev. D 93 (2016) 074503

• Neutron EDM and tensor charges from LQCD

dn < 4 × 10−28 e cm in split SUSY w/ gaugino mass unification

Bhattacharya et al., Phys. Rev. Lett. 115 (2015) 212002

• other groups are close to announce numbers

domain wall fermions Nf = 2 + 1, low pion masses, various volumes

Shintani et al., Phys. Rev. D 93 (2016) 094503

nucleon EDM from gradient flow, tested in quenched QCD

Shindler et al., Phys. Rev. D 92 (2015) 094518

(26)

EDMs of light nuclei and models of CP violation

Bsaisou, Hanhart, Liebig, UGM, Nogga, Wirzba, Eur. Phys. J. A 49: 31 (2013)

Bsaisou, de Vries, Hanhart, Liebig, UGM, Minosi, Nogga, Wirzba, JHEP 03 (2015) 104 Bsaisou, UGM, Nogga, Wirzba, Annals Phys. 359 (2015) 317

Wirzba, Bsaisou, Nogga, Int. J. Mod. Phys. E 26 (2017) 1740031

see also: de Vries, Hockings, Mereghetti, van Kolck, Timmermans (2005 - 2015) Yamanaka, Hiyama (2015-2017)

(27)

MOTIVATION

27

• Why nuclei? ⇒ non-trivial test of the θ-scenario and other models of CPV

⇒ allow access to other CP-violating couplings

⇒ allow to disentangle various model of CPV

• two-flavor effective Lagrangian in standard heavy baryon formulation

Bernard, UGM, Kaiser, Int.J.Mod.Phys. E4 (1995) 193

LπN

CP = − dnN(1 − τ3)SµvνN Fµν − dpN(1 + τ3)SµvνN Fµν + (mN∆) π3π2 + g0N~π · ~τ N + g1Nπ3N

+ C1NN Dµ(NSµN ) + C2N~τ N · Dµ(N~τ SµN )

• various contributions at next-to-leading order:

∗ single nucleon EDMs – dn, dp

∗ CP-violating 3-pion and pion-nucleon couplings – ∆, g0, g1

∗ CP-violating nucleon-nucleon contact interactions – C , C

(28)

CP-VIOLATING NUCLEAR OPERATORS

• EDM matrix element (A =2H, 3He, 3H) [Breit frame]:

iqF3A(q2)

2mA = D

A; MJ = J

0(q)

A; MJ = JE

, dA = lim

q2→0

F3A(q2) 2mA

• CP-violating transition current (only linear terms):

µ = Jµ

CP+ V

CPG Jµ + Jµ G V

CP+ · · · [G = 2N, 3N Greens function]

= + + +

J˜µ

(a) (b) (c) (d)

• single nucleon current (a):

Jiµ = 2e 

1 + τ(i)3 

vµ , Jµ

CP,i = 12 h

dn 

1 − τ(i)3 

+ dp 

1 + τ(i)3 i

i~q · ~σ(i) vµ

(29)

CP-VIOLATING NUCLEAR OPERATORS continued

irreducible 2N potential (b) + (c):

V N N

CP,ij (~ki) = i gA 2Fπ

~ki

~ki2 + Mπ2 g0(ij)(i) · ~τ(j) + i gA

4Fπ

~ki

~ki2 + Mπ2 h

g1 + ∆ fg1(|~ki|)i 

~

σ(ij)+ τ(ij) + ~σ(ij) τ(ij)+  + i

2

β2Mπ2~ki

~ki2 + β2Mπ2 h

C1(ij) + C2(ij)(i) · ~τ(j) i

fg1(k) = −15 32

gA2 MπmN πFπ2

"

1 + 1 + 2~k2/(4Mπ2)

3|~k |/(2Mπ) arctan |~k | 2Mπ

!

− 1 3

!#

• ∆ fg1 induced from 3-pion vertex

• β → ∞ in calcs, used as diagnostic tool









(30)

CP-VIOLATING NUCLEAR OPERATORS continued

• irreducible 3N potential (d):

V 3N

CP (~k1, ~k2, ~k3) = −i∆mNgA3

4Fπ3 δabδc3 + δacδb3 + δbcδa3 τ(1)a τ(2)b τ(3)c

× (~σ(1) · ~k1)(~σ(2) · ~k2)(~σ(3) · ~k3) h~k12 + Mπ2i h~k22 + Mπ2i h~k32 + Mπ2i

• evaluate 2N and 3N bound states using Faddeev equations hψA| ˜JµAi = hψA|Jµ

CP + V

CPG Jµ + Jµ G V

CP + · · · |ψAi

• employ wave functions from chiral EFT at N2LO (precise enough)

• uncertainty from varying the cut-off in the chiral EFT, better for 2H

(31)

RESULTS for LIGHT NUCLEI

• evaluating the nuclear matrix elements gives:

d2H = (0.936±0.008)(dn+dp)+(0.183±0.002)g1−(0.646±0.023) ∆ fg1 e fm d3He = (0.90 ± 0.01) dn − (0.03 ± 0.01)dp − (0.017 ± 0.006) ∆

− (0.61 ± 0.14) ∆ fg1 − (0.11 ± 0.01)g0 − (0.14 ± 0.02)g1

− [(0.04 ± 0.02)C1 − (0.09 ± 0.02)C2] × fm−3 e fm

d3H = −(0.03 ± 0.01) dn + (0.92 ± 0.01)dp − (0.017 ± 0.006) ∆

− (0.61 ± 0.14) ∆ fg1 − (0.11 ± 0.01)g0 − (0.14 ± 0.02)g1 + [(0.04 ± 0.02)C1 − (0.09 ± 0.02)C2] × fm−3 e fm

⇒ various models of CP violation give different predictions for the various coupling constants

[Note: terms ∼ C3,4 only relevant for L-R symm. models not given]

(32)

BSM OPERATORS at LOW ENERGIES

• translate (B)SM sources of P- and T-odd interactions into tailored EFTs

qEDM qCEDM gCEDM

...

N, π, γ, ...

q, G, γ, H

H H

q, γ, G

100GeV

10GeV

≪ 1GeV

4q

q

q

N

g

Fig. courtesy of A. Wirzba, J. de Vries

EFT

(33)

GLOSSARY OF CPV HADRONIC VERTICES

33

• Leading dimension-6 terms plus dimension-4 θ-term [beyond CKM]:

LCP = − ¯θ gs2

64π2µνρσGaµνGaρσ

| {z }

θ-term

− i 2

X

q=u,d

dqqγ¯ 5σµνF µνq

| {z }

qEDM

− i 2

X

q=u,d

qqγ¯ 5 1

aσµνGaµνq

| {z }

qCEDM +dW

6 fabcµναβGaαβGbµρGc ρν

| {z }

gCEDM

+ X

i,j,k,l=u,d

Cijkl4qiΓqjkΓ0ql

| {z }

4qEDM

• Note that the 4q-terms from L-R symmetric models are treated separately

2 2 4q 2

(34)

SCALING OF CPV HADRONIC VERTICES

• from the θ term to BSM sources

coupling g0 g1 d0, d1 (mN∆) C1,2(C3,4)

CP, isospin

CP, IC

CP, IV

CP, IC+IV

CP, IV

CP, IC (IV) θ-term O(1) O(Mπ/mN) O(Mπ2/m2N) O(Mπ2/m2N) O(Mπ2/m2N)

qEDM O(αEM/(4π)) O(αEM/(4π)) O(1) O(αEM/(4π)) O(αEM/(4π))

qCEDM O(1) O(1) O(Mπ2/m2N) O(Mπ2/m2N) O(Mπ2/m2N) gCEDM O(Mπ2/m2N)? O(Mπ2/m2N)? O(1) O(Mπ2/m2N) O(1)

4qLR O(Mπ2/m2N) O(1) O(Mπ3/m3N) O(Mπ/mN) O(Mπ2/m2N) 4q O(Mπ2/m2N)? O(Mπ2/m2N)? O(1) O(Mπ2/m2N) O(1)

?) Goldstone theorem → relative O(Mπ2/m2N) suppression of πN interactions

(35)

SPECIFIC CALCULATIONS

• Nuclear contribution from the QCD θ-term:

dθ2H − 0.94 dθp + dθn

= θ · (0.89 ± 0.30) · 10¯ −16 e cm dθ3He − 0.90 dθn + 0.03 dθp = − ¯θ · (1.01 ± 0.42) · 10−16 e cm dθ3H − 0.92 dθp + 0.03 dθn = θ · (2.37 ± 0.42) · 10¯ −16 e cm.

• Nuclear contribution from the FQLR-term:

dLR2H − 0.94 dLRp + dLRn 

= −∆ · (2.1 ± 0.5) e fm dLR3He − 0.90 dLRn + 0.03 dLRp = −∆ · (1.7 ± 0.5 e fm dLR3H − 0.92 dLRp + 0.03 dLRn = −∆ · (1.7 ± 0.5 e fm

(36)

TESTING STRATEGIES

• Deuteron EDM might distinguish between ¯θ and other scenarios allows extraction of the g1 coupling through dD − 0.94(dp + dn)

3He (or 3H) EDM necessary for a proper test of ¯θ and LR scenarios

• a2HDM scenario: both helion & triton EDMs would be needed

• Deuteron & helion work as complementary isospin filters of EDMs

• gCEDM, 4q chiral singlet: disentanglement difficult, may be lattice calcs?

• ultimate progress may come from combining LQCD and experiments

• of course, these various models also predict EDMs for leptons etc.

⇒ precision calcs in hadronic physics are an absolute must!

(37)

Hadrons at finite theta

Acharya, Guo, Mai, UGM, Guo, Phys. Rev. D 92 (2015) 054023 Guo, UGM, Phys. Lett. B 749 (2015) 728

(38)

WHY FINITE THETA?

• A tiny θ poses problems to anthropic reasoning

Banks et al. (2008), ..., Kaloper, Terning (2017)

• A small but not tiny θ significantly alters element generation

Ubaldi (2010)

• Lattice QCD requires an understanding of QCD at fixed topology

Brower, Chandasekhan, Negele, Wiese (2003), and many follow-ups

• Interesting QCD phase structure at θ ∼ π

di Vecchia, Veneziano, Witten (1980), Creutz (1995), Smilga (1999)

⇒ Study the pion, the sigma and the rho-meson in (unitarized) CHPT at NLO Step 1: Pion properties and scattering amplitude at finite θ

Step 2: Unitarize Tππ(θ) to get θ-dep. mass & width of σ(500), ρ(770)

(39)

PION PROPERTIES at FINITE THETA

• In the presence of θ, vacuum alignment: U (x) = U0 U (x)˜

| {z }

GBs

• Ground state form minimizing the potential energy (2 flavors):

V2 = −Σ

2 Tr n

U0 eiθ/2 + U0 e−iθ/2

Mo

• Parametrization of U (x):

U0 = diag{e, e−iϕ}, U = e˜ i

2Φ/F, Φ = 1

2

π0

+

√2π −π0

!

⇒ tan ϕ = − tan θ2,  = md − mu

mu + md , ¯m = 12(mu + md)

• LO pion mass: Brower et al. (2003)

˚2 θ q

2 2 θ

(40)

PION PROPERTIES at FINITE THETA

• NLO pion mass:

Mπ2+(θ) = ˚M2(θ)+

4(θ) F 2

1

32π2 ln

2(θ)

µ2 + 2lr3 + 2l7  (1 − 2) tan(θ/2) 1 + 2 tan2(θ/2)

2!

Mπ20(θ) = Mπ2+(θ) − 2l7

4(θ) F2

2

cos4(θ/2) 1 + 2 tan2(θ/2)2

• LO and NLO pion mass in the isospin limit mu = md: LO: Mπ2(θ) = 2B ¯m cos θ2

NLO: Mπ2(θ) = M2(θ) + M4(θ) F2

1

32π2 ln M2(θ)

µ2 + 2lr3 + 2l7 tan2 θ 2

| {z }

extra term

!

? extra term ∼ l7 vanishes at θ = 0 Gasser, Leutwyler (1985)

2

(41)

PION-PION SCATTERING at FINITE THETA







(b) 

(a) (c) (d) (e)

• Scattering to one loop: T (s, t, u) = A(s, t, u)

| {z }

tree,O(p2)

+ B(s, t, u)

| {z }

loop,O(p4)

+ C(s, t, u)

| {z }

tree,O(p4)

A(s, t, u) = s − ˚Mθ2

F2 , B(s, t, u) = . . ., C(s, t, u) = . . .

• LECs are not θ-dependent, see e.g. F

• but use here θ-dependent l1,2 (defined at the pion mass) lri = γi

32π2

¯l + ln

θ2 µ2

!

, γ1 = 13, γ2 = 23

(42)

GENERATING the SIGMA and the RHO

• Two lightest SU(2) non-GB mesons: σ(500) and ρ(770)

• Can be generated by resummation (unitarization) of CHPT ππ amplitudes

Truong (1988) and many others

• Use IAM (Inverse Amplitude Method), enforce Adler zeros (suppress indices) T (s) = (T2(s))2

T2(s) − T4(s) + A(s)

A(s) = T4(s2) − (s2 − sA)(s − s2)(T20(s) − T40(s)) s − sA

? T (sA) = 0 → T2(s2) = 0, T2(s2 + s4) + T4(s2 + s4) = 0

? li from Hanhart et al. (2008)

? σ and ρ poles: √

sσ = (443.1 − i 217.4) MeV

√sρ = (751.9 − i 75.4) MeV

(43)

SIGMA and RHO PROPERTIES at FINITE THETA

• Use the θ-dependent Tππ in the IAM

⇒ θ-dependent σ and ρ properties:

Mass [GeV] Width [GeV]

Mρ Γσ

Mσ Γρ

• only visible changes for sizeable values of θ

(44)

SUMMARY & OUTLOOK

• Baryon EDMs evaluated in U(3) × U(3) CHPT at NLO ,→ Chiral extrapolation formulae worked out

,→ Only two LECs at complete one-loop order ,→ Finite volume corrections available

• LQCD calculation of the neutron EDM for 2+1 flavors ,→ simulation at various pion masses & lattice volumes

,→ working with an imaginary θ [th’y assumed to be analytic at θ = 0]

,→ using CHPT, a precise value of dn at the physical point emerges:

dn = −0.0039(2)(9) [e fm θ]

(45)

SUMMARY & OUTLOOK

• Theory of nuclear EDMs

,→ general formulas as functions of all NLO CP-violating operators ,→ explicit calculations for 2H, 3He, 3H

,→ testing strategies for various specific models in and beyond the SM ,→ UCN experiments on-going

,→ protons and charged light nuclei: storage ring measurements

,→ JEDI collaboration performs proof-of-principle exp. for the proton at COSY for details, see http://collaborations.fz-juelich.de/ikp/jedi/

• Hadrons at finite theta

,→ Pion mass and pion-pion scattering amplitude at NLO for fixed θ ,→ θ-dependent σ(500) and ρ(770) mass and width

(46)

OUTLOOK: AXION PHYSICS

46

• Peccei-Quinn mechanism: a(x) → a(x) − θfa Peccei, Quinn (1977)

SCP/ = 1

2 (∂µa(x))2 + i 3

a(x)

fa mˆ X

x

¯

5u + ¯dγ5d + ¯sγ5s

• Axion mass (mean field): m2afa2 ' 2

t , χt = hQ2i

V ' (190 MeV)4

• Evaluate as before with: λ = a fa

m` ms

2ms + m` ≡ a finv

• Surprising first result:

0 0.02 0.04 0.06 0.08 0.1

-0.01 -0.1 -1 -10 -100 ma

0.01 0.1 1 10 100 0 0.02 0.04 0.06 0.08 0.1

Lattice χt/fa

0.01 0.1 1 10 100 0 0.02 0.04 0.06 0.08 0.1

Lattice χt/fa

→ stay tuned

PRELIMINARY

(47)

SPARES

(48)

Finite volume effects for baryon EDMs

Akan, Guo, UGM, Phys.Lett. B 736 (2014) 163

(49)

CALCULATIONAL SCHEME

• Lattice QCD operates in a finite volume

⇒ must consider finite volume corrections

⇒ LO nEDM corrections known O’Connell, Savage (2006)

• work in the limit of infinite time and large volumes L3

• momenta quantized pn = 2π~n/L

→ mode sums: i

Z d4p

(2π)4 → i L3

X

~ n

Z dp0

• finite volume corrections: δL[Q] = Q(L) − Q(∞)

,→ these are entirely generated by loops

• here: perform NLO calculations for all baryon EDMs Guo, UGM (2012)

(50)

RESULTS for the NEUTRON EDM

• At LO, recover the results of O’Connell and Savage

• Find sizeable NLO corrections → must be included

δL[dn]/dloopn δLNLO[dn]/δLLO[dn]

MΠ=138 MeV MΠ=200 MeV MΠ=300 MeV MΠ=400 MeV

3 4 5 6 7

10-4 0.001 0.01 0.1 1

L @fmD

L@dndnloop

3 4 5 6 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0

L @fmD

L@dnL@dnLO D

• available also for the proton and the hyperons

(51)

參考文獻

相關文件

 After RT alone or combined with chemotherapy, the patients were evaluated at 1-month intervals for the first year, at 2-month intervals during the second year, every 3

Leukoplakia is the most common potentially malignant disorder of the oral mucosa. The prevalence is approxi- mately 1% while the annual malignant transformation ranges from 2% to 3%.

Animal or vegetable fats and oils and their fractiors, boiled, oxidised, dehydrated, sulphurised, blown, polymerised by heat in vacuum or in inert gas or otherwise chemically

Milk and cream, in powder, granule or other solid form, of a fat content, by weight, exceeding 1.5%, not containing added sugar or other sweetening matter.

Then we can draw a right triangle with angle θ as in Figure 3 and deduce from the Pythagorean Theorem that the third side has length.. This enables us to read from the

The Matlab fprintf function uses single quotes to define the format string. The fprintf function

The best way to picture a vector field is to draw the arrow representing the vector F(x, y) starting at the point (x, y).. Of course, it’s impossible to do this for all points (x,

Interface positions at different instants: experimental (left) and numerical results computed without (Simulation 1, middle) and with (Simulation 2, right)

To proceed, we construct a t-motive M S for this purpose, so that it has the GP property and its “periods”Ψ S (θ) from rigid analytic trivialization generate also the field K S ,

Reading Task 6: Genre Structure and Language Features. • Now let’s look at how language features (e.g. sentence patterns) are connected to the structure

• Introduction of language arts elements into the junior forms in preparation for LA electives.. Curriculum design for

Then, we tested the influence of θ for the rate of convergence of Algorithm 4.1, by using this algorithm with α = 15 and four different θ to solve a test ex- ample generated as

Then, it is easy to see that there are 9 problems for which the iterative numbers of the algorithm using ψ α,θ,p in the case of θ = 1 and p = 3 are less than the one of the

(i) spectral factorization associated with circular cones; (ii) smooth and nonsmooth analysis for f L θ given as in (7); (iii) the so-called L θ -convexity; and (iv) L θ

Using this formalism we derive an exact differential equation for the partition function of two-dimensional gravity as a function of the string coupling constant that governs the

The CME drastically changes the time evolution of the chiral fluid in a B-field. - Chiral fluid is not stable against a small perturbation on v

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix

By kinematic constraints, we mean two kinds of constraints imposing on the 4-momenta of the invisible particles: the mass shell constraints and the measured missing transverse

„ A host connecting to the outside network is allocated an external IP address from the address pool managed by NAT... Flavors of

Given an undirected graph with nonnegative edge lengths and nonnegative vertex weights, the routing requirement of a pair of vertices is assumed to be the product of their weights.

For a 4-connected plane triangulation G with at least four exterior vertices, the size of the grid can be reduced to (n/2 − 1) × (n/2) [13], [24], which is optimal in the sense

The representativeness indices will be employed to build up the assessment architecture of recreational resources at river bank, and the fussy analytic hierarchy process

Thus an order fulfillment model and Bin shipping model for production planner is proposed to meet the requirements of the LED-CM plants, and at last a simulation