Theta-term physics
Ulf-G. Meißner, Univ. Bonn & FZ J ¨ ulich
Supported by BMBF 05P15PCFN1 by DFG, SFB/TR-110 by CAS, PIFI by Volkswagen Stftung
CONTENTS
• Introduction
• The baryon EDMs from chiral perturbation theory
• The neutron EDM from 2+1 flavor lattice QCD
• EDMs of light nuclei and models of CP violation
• Hadrons at finite theta
• Summary & outlook
Introduction
QCD with a θ-TERM
• QCD has non-trivial topological vacua: |θi = P
n
ei n θ|ni, n ∈ Z
• QCD in the presence of the θ-term
LQCD = −1
4GaµνGa,µν + X
flavors
¯
q (iD/ − M) q + θ0 g2
32π2 GaµνG˜a,µν
| {z }
∼ ~Ea · ~Ba
⇒ This leads to strong CP-violation
⇒ A non-vanishing vacuum angle θ0 entails dn 6= 0 (also dp 6= 0)
dN ≈ |θ0| e Mπ2
m3 ≈ 10−16|θ0| e cm → θ0 = O(10−10)
CONNECTION to the QUARK MASSES
5• Shift under axial rotations:
θ → ¯θ = θ − 2Nfα
• Influences the diagonalization of the quark mass matrix:
θ = θ + arg (det M)¯
⇒ QCD mass term for small values of θ:
Lmass = muuu + m¯ ddd + m¯ sss¯ + i ¯θ mumdms
mumd + mums + mdms uγ¯ 5u + ¯dγ5d + ¯sγ5s
| {z }
ps density
? no physical effect if one mq vanishes
? however, this is excluded by QCD phenomenology
EXPERIMENTS on the NEUTRON EDM
• performed and projected experiments (UCN):
1950 1970 1990 2010
PSI MultiCell
3He−UCN
Beams UCN
d [e cm]
n10−32 10−28 10−24 10−20
SM SUSY
year of experiment
QCD θ
10
10
10
−10
−12
−14
The baryon EDM in chiral perturbation theory
Ottnad, Kubis, UGM, Guo, Phys. Lett. B 687 (2008) 42 Guo, UGM, JHEP 1212 (2012) 097
BARYON EDMs - BASIC DEFINITIONS
• Baryon electromagnetic form factors in the presence of strong CP -violation [or other sources of it]
hp0| Jemν |pi = ¯u (p0) Γν q2 u (p) Γν = γνF1 q2 − i
2mB σµνqµF2 q2 − 1
2mB σµνqµγ5F3 q2
+ . . . q2 = (p0 − p)2
• Dipole moments and radii:
dB = F3,B(0)
2mB , red2 = 6dF3(q2) dq2
q2=0
• Similar formulae for light nuclei [see later]
000000 000 111111 111
p
p
q
BARYON EDMs - CALCULATIONS
• non-perturbative methods: baryon chiral perturbation theory and/or lattice QCD
• study the nucleon/baryon electric dipole form factors in baryon CHPT
? already quite a number of investigations (mostly the neutron)
Crewther, Veneziano, Witten, Pich, de Rafael, . . ., Borasoy, Narison, Hockings, van Kolck, de Vries, . . .
? complete one-loop calculation Ottnad, Kubis, M., Guo, Phys. Lett. B 687 (2008) 42
? based on Leff[φa, φ0, B] supplemented by power counting
• LQCD calculations for θ and CP-violating form factors become available
⇒ must address quark mass and finite volume corrections
⇒ fruitful interplay between LQCD and CHPT/EFT practitioners
EFFECTIVE LAGRANGIAN
• Effective Lagrangian based on U (3)L × U (3)R symmetry:
Herrera-Sikl ´ody et al., Borasoy
Leff = L[U, B] , U = expr 2 3
i F0η0
| {z }
U (1)
+ 2i Fφφ
| {z }
SU (3)
• Power counting [δ = small parameter]: Kaiser, Leutwyler, . . .
p = O (δ) , mq = O δ2
, 1/Nc = O δ2
• Determination of the low-energy constants
− meson sector: meson masses, η-η0 mixing, . . .
EFFECTIVE LAGRANGIAN
• U (3) × U (3) effective meson-baryon Lagragian Borasoy (2000)
LφB = i TrBγ¯ µ[Dµ, B] − ˚m Tr[ ¯BB] − D/F
2 TrBγ¯ µγ5[uµ, B]± +bD/F TrB¯χ+ − iA(U − U†), B
± + b0 Tr[ ¯BB] Trχ+ − iA(U − U†) +4A w100
√6
F0 η0Tr[ ¯BB] + i
w13/140 θ¯0 + w13/14
√6
F0 η0
TrBσ¯ µνγ5[Fµν+ , B]± +w16/17 TrBσ¯ µν[Fµν+ , B]± + w0
2 TrBγ¯ µγ5BTr[uµ]
• tree-level LECs: w13, w14, w130 , w014 [some get renormalized]
• loop LECs: w100 , w0
• further LECs are absorbed in masses, magnetic moments, etc
¯
}
more later!BARYON EDMS at ONE LOOP
Guo, UGM, JHEP12 (2012) 097
• Consider the ground state baryon octet (N, Λ, Σ, , Ξ)
,→ not only interesting in itself, but also provides sufficient data to fix LECs
• tree-level contributions to baryon EDMs α = 144V0(2)V3(1)/(F0FπMη0)2:
d(n) = d(Λ)/2 = −d(Σ0)/2 = d(Ξ0) = 8e ¯θ0 αw13 + w130 /3 d(p) = d(Σ+) = −4e ¯θ0 α (w13 + 3w14) + w130 + 3w140 /3
d(Σ−) = d(Ξ−) = −4e ¯θ0 α (w13 − 3w14) + w130 − 3w014 /3
• Charged particles feature more loop contributions than neutral ones ,→ Neutron case: {π−, p} and {K+, Σ−}
,→ Proton case: {π+, n}, {π0(η8, η0), p}, {K+, Σ0(Λ)} and {K0, Σ+}
FEYNMAN GRAPHS for F
3B(q
2)
• tree (a,b) and one-loop (c,d,e,f) graphs (complete one-loop)
η0
(a)
(d) (e) (f)
(b) (c)
• other loop graphs (see Ottnad et al.) mutually cancel ⊗ CP-odd
NEUTRON LOOP CONTRIBUTIONS
• one-loop contributions to the neutron EDM (other neutral baryons similar):
F3,nloop(q2)
2mN = V0(2)e ¯θ0 π2Fπ4
(
(D + F ) (bD + bF )
×
"
1 − ln Mµ2π2 + σπ ln σσπ−1
π+1 + π(2Mπ2−q2)
2mN
√
−q2 arctan
√−q2 2Mπ
#
−(D − F ) (bD − bF )
"
1 − ln Mµ2K2 + σK ln σσK−1
K+1
+√π
−q2
2M2
K−q2
2mN − 8 (bD − bF ) MK2 − Mπ2
× arctan
√−q2 2MK
#)
h
σπ(K) = q
1 − 4Mπ(K)2 /q2i
• only known masses and couplings !
PROTON LOOP CONTRIBUTIONS
15• one-loop contributions to the proton EDM (other charged baryons similar):
F3,ploop(q2)
2mN = −V0(2)e ¯θ0 6π2Fπ4
(
6(D + F ) (bD + bF )
×
"
1 − ln M
2 π
µ2 + σπ ln σσπ−1
π+1 + 3πM2m π
N + π(2Mπ2−q2)
2mN√
−q2 arctan
√
−q2 2Mπ
#
+4 (DbD + 3F bF )
1 − ln M
2 K
µ2 + σK ln σσK−1
K+1 + πMm K
N
+√4π
−q2 arctan
√−q2 2MK
(DbD+3F bF)
2mN 2MK2 − q2 +8 MK2 − Mπ2
F b2D + 3b2F − 23DbD (bD − 3bF )
+mπ
N
6(D − F ) (bD − bF ) MK + (D − 3F ) (bD − 3bF ) Mη8 +2F
2 π
F02 (2D − 3w0) 2bD + 3b0 + 6w100
| {z }
≡ β
Mη0
)
MAKING PREDICTIONS
• Close inspection of the tree and one-loop expressions reveals
⇒ only two combinations of LECs appear at NLO in all baryon EDMs:
wa(µ) ≡ αw13 + w130 r(µ)
wb(µ) ≡ 3[αw14 + w140 r(µ)] + V0(2)β
4πF02Fπ2maveMη0
• use this formalism to analyze lattice data → next section
• there are relations free of LECs such as dΣ0 + dΛ ∼ MK2 − Mπ2
F b2D + 2DbDbF + 3F b2F + O(δ4) dn − dΞ0 ∼ (DbD + F bF)
2 ln M
2 K
Mπ2 + πMπm−MK
ave
+M8π
K MK2 − Mπ2
Db2D + 2F bDbF + Db2F + O(δ4)
The neutron EDM from 2+1 flavor lattice QCD
Guo, Horsley, UGM, Nakamura, Rakow, Schierholz, Zanotti, Phys. Rev. Lett. 115 (2015) 062001 [arXiv:1502.02295]
LATTICE FORMULATION: GENERALITIES
• work around the SU(3) symmetry point, keeping the singlet mass ¯m fixed:
¯
m = (mu + md + ms)/3 Bietenholz et al., Phys. Rev. D84 (2010) 054059
⇒ keeps the kaon mass low for varying strange quark masses constrained polynomials fits
⇒ works fine for Nf = 2 + 1 [mu = md = m`]
0.00 0.25 0.50 0.75 1.00 1.25
0.8 0.9 1.0 1.1 1.2
MNO/XN [Octet]
experiment N(lll) Λ(lls) Σ(lls) Ξ(lss) sym. pt.
π K η ρ K* φ N Λ Σ Ξ ∆ Σ* Ξ* Ω 0
500 1000 1500 2000
M [MeV]
LATTICE FORMULATION at FIXED TOPOLOGY
19• The θ-term on the lattice [at fixed topological charge Q]:
S = S0 + Sθ, Sθ = i θ Q, Q = − 1
64π2 µνρσ a4 X
x
GbµνGbρσ ∈ Z
• rotate the θ-term into the fermionic part of the action Baluni (1979)
Sθ = − i
3θ ˆma4 X
x
¯
uγ5u + ¯dγ5d + ¯sγ5s ˆ
m−1 = 1 3
m−1u + m−1d + m−1s
= 1 3
2m−1` + m−1s
• take the vacuum angle imaginary: θ = i ¯θ [th’y analytic at θ = 0]
⇒ Sθ = ¯θ m` ms
2ms + m` a4 X
x
¯
uγ5u + ¯dγ5d + ¯sγ5s
⇒ real action, vanishes at m and m
LATTICE SET-UP
• Wilson fermions with a clover term & Symanzik improved gluon action (SLiNC) Sq = S0q + Sθq = a4 X
x
¯ q
D − 1
4cSW σµν Gµν + mq + λ 2a γ5
q
• lattice set-ups (β = 5.50)
# κ` κs V Mπ [MeV] MK [MeV] λ
1 0.1209 0.1209 243 × 48 465 465 0.003 2 0.1209 0.1209 243 × 48 465 465 0.005 3 0.1210 0.1206 243 × 48 360 505 0.003 4 0.1210 0.1206 243 × 48 360 505 0.005 5 0.1210 0.1206 323 × 64 360 505 0.003 6 0.1211 0.1205 323 × 64 310 520 0.003
• a = 0.074(2)m from the average baryon octet mass
• only ensembles 1 to 4 in the PRL publication
LATTICE SET-UP: TOPOLOGICAL CHARGE
21• keep the singlet mass ¯m fixed at its physical value and vary δmq = mq − ¯m
λ = ¯θ 2a m` ms
2ms + m`, amq = 1
2κq − 1
2κ0,c, κ0,c = 0.1211
• Ensembles carry topological charge, hQi ∼ ¯m
topological charge distribution #4 average topological charge
0.05 0.1 0.15 0.2
-8 -6 -4 -2 0 2 4
p(Q)
Q 0.05
0.1 0.15 0.2
-8 -6 -4 -2 0 2 4
p(Q)
Q 0.05
0.1 0.15 0.2
-8 -6 -4 -2 0 2 4
p(Q)
Q
-3 -2.5 -2 -1.5 -1 -0.5 0
0 0.5 1 1.5 2 2.5 3
hQi
θ¯ -3
-2.5 -2 -1.5 -1 -0.5 0
0 0.5 1 1.5 2 2.5 3
hQi
θ¯ -3
-2.5 -2 -1.5 -1 -0.5 0
0 0.5 1 1.5 2 2.5 3
hQi
θ¯
i
EVALUATION
• at non-vanishing θ, Dirac spinors pick up a phase ∼ α(θ)
→ can be obtained from a ratio of two-point functions
Tr[GθN N(t; 0)Γ4γ5]
Tr[GθN N(t; 0)Γ4] = i sin 2α(θ)
1 + cos 2α(θ) -0.2
-0.15 -0.1 -0.05 0
0 0.5 1 1.5 2 2.5 3
¯α(¯θ)
θ¯ -0.2
-0.15 -0.1 -0.05 0
0 0.5 1 1.5 2 2.5 3
¯α(¯θ)
θ¯
mπ= 465MeV mπ= 360MeV
• flavor-singlet ps density interacts with the nucleon through quark-line disconnected diagrams only
*
γ5 γµ
+
• Form factor F3(q2) extracted from a ratio of 3-point and 2-point functions
generalizing the method of Capitani et al., Nucl. Phys. Proc. Suppl. 73 (1999) 294
i 23
FORM FACTOR RATIOS
• Extracting F3θ,n¯ (q2)/F1θ,p¯ (q2) at finite θ:
easier extrapolation to q2 = 0
-0.3 -0.2 -0.1 0
0 0.1 0.2 0.3
¯ θ,n 3¯ F/F
¯ θ,p 1
(aq)2 -0.3
-0.2 -0.1 0
0 0.1 0.2 0.3
¯ θ,n 3¯ F/F
¯ θ,p 1
(aq)2 -0.3
-0.2 -0.1 0
0 0.1 0.2 0.3
¯ θ,n 3¯ F/F
¯ θ,p 1
(aq)2
mπ= 465MeV , 243× 48
-0.5 -0.4 -0.3 -0.2 -0.1 0
0 0.05 0.1 0.15 0.2
¯ θ,n 3¯ F
/F
¯ θ,p 1
-0.5 -0.4 -0.3 -0.2 -0.1 0
0 0.05 0.1 0.15 0.2
¯ θ,n 3¯ F
/F
¯ θ,p 1
-0.5 -0.4 -0.3 -0.2 -0.1 0
0 0.05 0.1 0.15 0.2
¯ θ,n 3¯ F
/F
¯ θ,p 1
mπ= 360MeV , 323× 64
-0.8 -0.6 -0.4 -0.2 0
0 0.05 0.1 0.15 0.2
¯ θ,n 3¯ F
/F
¯ θ,p 1
-0.8 -0.6 -0.4 -0.2 0
0 0.05 0.1 0.15 0.2
¯ θ,n 3¯ F
/F
¯ θ,p 1
-0.8 -0.6 -0.4 -0.2 0
0 0.05 0.1 0.15 0.2
¯ θ,n 3¯ F
/F
¯ θ,p 1
mπ= 310MeV , 323× 64
Mπ = 465 MeV
Mπ = 360 MeV Mπ = 310 MeV
new
RESULTS
• Form factor as a fct of ¯θ
• continue θ and F3θ(0) to real values
• expand around θ = 0 : F3θ(0) = F3(1)(0)θ + . . .
→ dn = eF3(1)(0)θ/2mN
• chiral extrapolation with 2MK2 + Mπ2 =const.
-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
0 0.5 1 1.5 2 2.5 3
¯ θ,n¯ F
R 3(0)
θ¯ -0.7
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
0 0.5 1 1.5 2 2.5 3
¯ θ,n¯ F
R 3(0)
θ¯ -0.7
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
0 0.5 1 1.5 2 2.5 3
¯ θ,n¯ F
R 3(0)
θ¯
mπ= 465MeV mπ= 360MeV
→ wa(µ = 1 GeV) = 0.04(1) GeV−1
→ dn = −0.0039(2)(9) [e fm θ]
→ |θ| . 7.4 × 10−11
• proton under analysis
-0.05 -0.04 -0.03 -0.02 -0.01 0
0 0.1 0.2 0.3
dn[efmθ]
m2π[GeV2] -0.05
-0.04 -0.03 -0.02 -0.01 0
0 0.1 0.2 0.3
dn[efmθ]
m2π[GeV2] -0.05
-0.04 -0.03 -0.02 -0.01 0
0 0.1 0.2 0.3
dn[efmθ]
m2π[GeV2] -0.05
-0.04 -0.03 -0.02 -0.01 0
0 0.1 0.2 0.3
dn[efmθ]
m2π[GeV2] new
OTHER RESULTS
• Neutron EDM using Nf = 2 + 1 + 1 twisted mass fermions
|dn| = 0.045(6)(1)|θ| e fm, one ensemble @ Mπ = 373 MeV
Alexandrou et al., Phys. Rev. D 93 (2016) 074503
• Neutron EDM and tensor charges from LQCD
dn < 4 × 10−28 e cm in split SUSY w/ gaugino mass unification
Bhattacharya et al., Phys. Rev. Lett. 115 (2015) 212002
• other groups are close to announce numbers
domain wall fermions Nf = 2 + 1, low pion masses, various volumes
Shintani et al., Phys. Rev. D 93 (2016) 094503
nucleon EDM from gradient flow, tested in quenched QCD
Shindler et al., Phys. Rev. D 92 (2015) 094518
EDMs of light nuclei and models of CP violation
Bsaisou, Hanhart, Liebig, UGM, Nogga, Wirzba, Eur. Phys. J. A 49: 31 (2013)
Bsaisou, de Vries, Hanhart, Liebig, UGM, Minosi, Nogga, Wirzba, JHEP 03 (2015) 104 Bsaisou, UGM, Nogga, Wirzba, Annals Phys. 359 (2015) 317
Wirzba, Bsaisou, Nogga, Int. J. Mod. Phys. E 26 (2017) 1740031
see also: de Vries, Hockings, Mereghetti, van Kolck, Timmermans (2005 - 2015) Yamanaka, Hiyama (2015-2017)
MOTIVATION
27• Why nuclei? ⇒ non-trivial test of the θ-scenario and other models of CPV
⇒ allow access to other CP-violating couplings
⇒ allow to disentangle various model of CPV
• two-flavor effective Lagrangian in standard heavy baryon formulation
Bernard, UGM, Kaiser, Int.J.Mod.Phys. E4 (1995) 193
LπN
CP = − dnN†(1 − τ3)SµvνN Fµν − dpN†(1 + τ3)SµvνN Fµν + (mN∆) π3π2 + g0N†~π · ~τ N + g1N†π3N
+ C1N†N Dµ(N†SµN ) + C2N†~τ N · Dµ(N†~τ SµN )
• various contributions at next-to-leading order:
∗ single nucleon EDMs – dn, dp
∗ CP-violating 3-pion and pion-nucleon couplings – ∆, g0, g1
∗ CP-violating nucleon-nucleon contact interactions – C , C
CP-VIOLATING NUCLEAR OPERATORS
• EDM matrix element (A =2H, 3He, 3H) [Breit frame]:
iqF3A(q2)
2mA = D
A; MJ = J
J˜0(q)
A; MJ = JE
, dA = lim
q2→0
F3A(q2) 2mA
• CP-violating transition current (only linear terms):
J˜µ = Jµ
CP+ V
CPG Jµ + Jµ G V
CP+ · · · [G = 2N, 3N Greens function]
= + + +
J˜µ
(a) (b) (c) (d)
• single nucleon current (a):
Jiµ = 2e
1 + τ(i)3
vµ , Jµ
CP,i = 12 h
dn
1 − τ(i)3
+ dp
1 + τ(i)3 i
i~q · ~σ(i) vµ
CP-VIOLATING NUCLEAR OPERATORS continued
irreducible 2N potential (b) + (c):
V N N
CP,ij (~ki) = i gA 2Fπ
~ki
~ki2 + Mπ2 g0 ~σ(ij)− ~τ(i) · ~τ(j) + i gA
4Fπ
~ki
~ki2 + Mπ2 h
g1 + ∆ fg1(|~ki|)i
~
σ(ij)+ τ(ij)− + ~σ(ij)− τ(ij)+ + i
2
β2Mπ2~ki
~ki2 + β2Mπ2 h
C1~σ(ij)− + C2 ~σ(ij)− ~τ(i) · ~τ(j) i
fg1(k) = −15 32
gA2 MπmN πFπ2
"
1 + 1 + 2~k2/(4Mπ2)
3|~k |/(2Mπ) arctan |~k | 2Mπ
!
− 1 3
!#
• ∆ fg1 induced from 3-pion vertex
• β → ∞ in calcs, used as diagnostic tool
CP-VIOLATING NUCLEAR OPERATORS continued
• irreducible 3N potential (d):
V 3N
CP (~k1, ~k2, ~k3) = −i∆mNgA3
4Fπ3 δabδc3 + δacδb3 + δbcδa3 τ(1)a τ(2)b τ(3)c
× (~σ(1) · ~k1)(~σ(2) · ~k2)(~σ(3) · ~k3) h~k12 + Mπ2i h~k22 + Mπ2i h~k32 + Mπ2i
• evaluate 2N and 3N bound states using Faddeev equations hψA| ˜Jµ|ψAi = hψA|Jµ
CP + V
CPG Jµ + Jµ G V
CP + · · · |ψAi
• employ wave functions from chiral EFT at N2LO (precise enough)
• uncertainty from varying the cut-off in the chiral EFT, better for 2H
RESULTS for LIGHT NUCLEI
• evaluating the nuclear matrix elements gives:
d2H = (0.936±0.008)(dn+dp)+(0.183±0.002)g1−(0.646±0.023) ∆ fg1 e fm d3He = (0.90 ± 0.01) dn − (0.03 ± 0.01)dp − (0.017 ± 0.006) ∆
− (0.61 ± 0.14) ∆ fg1 − (0.11 ± 0.01)g0 − (0.14 ± 0.02)g1
− [(0.04 ± 0.02)C1 − (0.09 ± 0.02)C2] × fm−3 e fm
d3H = −(0.03 ± 0.01) dn + (0.92 ± 0.01)dp − (0.017 ± 0.006) ∆
− (0.61 ± 0.14) ∆ fg1 − (0.11 ± 0.01)g0 − (0.14 ± 0.02)g1 + [(0.04 ± 0.02)C1 − (0.09 ± 0.02)C2] × fm−3 e fm
⇒ various models of CP violation give different predictions for the various coupling constants
[Note: terms ∼ C3,4 only relevant for L-R symm. models not given]
BSM OPERATORS at LOW ENERGIES
• translate (B)SM sources of P- and T-odd interactions into tailored EFTs
qEDM qCEDM gCEDM
...
N, π, γ, ...
q, G, γ, H
H H
q, γ, G
100GeV
10GeV
≪ 1GeV
4q
q
q
N
g
Fig. courtesy of A. Wirzba, J. de Vries
EFT
GLOSSARY OF CPV HADRONIC VERTICES
33• Leading dimension-6 terms plus dimension-4 θ-term [beyond CKM]:
LCP = − ¯θ gs2
64π2µνρσGaµνGaρσ
| {z }
θ-term
− i 2
X
q=u,d
dqqγ¯ 5σµνF µνq
| {z }
qEDM
− i 2
X
q=u,d
d˜qqγ¯ 5 1
2λaσµνGaµνq
| {z }
qCEDM +dW
6 fabcµναβGaαβGbµρGc ρν
| {z }
gCEDM
+ X
i,j,k,l=u,d
Cijkl4q q¯iΓqjq¯kΓ0ql
| {z }
4qEDM
• Note that the 4q-terms from L-R symmetric models are treated separately
2 2 4q 2
SCALING OF CPV HADRONIC VERTICES
• from the θ term to BSM sources
coupling g0 g1 d0, d1 (mN∆) C1,2(C3,4)
CP, isospin
CP, IC
CP, IV
CP, IC+IV
CP, IV
CP, IC (IV) θ-term O(1) O(Mπ/mN) O(Mπ2/m2N) O(Mπ2/m2N) O(Mπ2/m2N)
qEDM O(αEM/(4π)) O(αEM/(4π)) O(1) O(αEM/(4π)) O(αEM/(4π))
qCEDM O(1) O(1) O(Mπ2/m2N) O(Mπ2/m2N) O(Mπ2/m2N) gCEDM O(Mπ2/m2N)? O(Mπ2/m2N)? O(1) O(Mπ2/m2N) O(1)
4qLR O(Mπ2/m2N) O(1) O(Mπ3/m3N) O(Mπ/mN) O(Mπ2/m2N) 4q O(Mπ2/m2N)? O(Mπ2/m2N)? O(1) O(Mπ2/m2N) O(1)
?) Goldstone theorem → relative O(Mπ2/m2N) suppression of πN interactions
SPECIFIC CALCULATIONS
• Nuclear contribution from the QCD θ-term:
dθ2H − 0.94 dθp + dθn
= θ · (0.89 ± 0.30) · 10¯ −16 e cm dθ3He − 0.90 dθn + 0.03 dθp = − ¯θ · (1.01 ± 0.42) · 10−16 e cm dθ3H − 0.92 dθp + 0.03 dθn = θ · (2.37 ± 0.42) · 10¯ −16 e cm.
• Nuclear contribution from the FQLR-term:
dLR2H − 0.94 dLRp + dLRn
= −∆ · (2.1 ± 0.5) e fm dLR3He − 0.90 dLRn + 0.03 dLRp = −∆ · (1.7 ± 0.5 e fm dLR3H − 0.92 dLRp + 0.03 dLRn = −∆ · (1.7 ± 0.5 e fm
TESTING STRATEGIES
• Deuteron EDM might distinguish between ¯θ and other scenarios allows extraction of the g1 coupling through dD − 0.94(dp + dn)
• 3He (or 3H) EDM necessary for a proper test of ¯θ and LR scenarios
• a2HDM scenario: both helion & triton EDMs would be needed
• Deuteron & helion work as complementary isospin filters of EDMs
• gCEDM, 4q chiral singlet: disentanglement difficult, may be lattice calcs?
• ultimate progress may come from combining LQCD and experiments
• of course, these various models also predict EDMs for leptons etc.
⇒ precision calcs in hadronic physics are an absolute must!
Hadrons at finite theta
Acharya, Guo, Mai, UGM, Guo, Phys. Rev. D 92 (2015) 054023 Guo, UGM, Phys. Lett. B 749 (2015) 728
WHY FINITE THETA?
• A tiny θ poses problems to anthropic reasoning
Banks et al. (2008), ..., Kaloper, Terning (2017)
• A small but not tiny θ significantly alters element generation
Ubaldi (2010)
• Lattice QCD requires an understanding of QCD at fixed topology
Brower, Chandasekhan, Negele, Wiese (2003), and many follow-ups
• Interesting QCD phase structure at θ ∼ π
di Vecchia, Veneziano, Witten (1980), Creutz (1995), Smilga (1999)
⇒ Study the pion, the sigma and the rho-meson in (unitarized) CHPT at NLO Step 1: Pion properties and scattering amplitude at finite θ
Step 2: Unitarize Tππ(θ) to get θ-dep. mass & width of σ(500), ρ(770)
PION PROPERTIES at FINITE THETA
• In the presence of θ, vacuum alignment: U (x) = U0 U (x)˜
| {z }
GBs
• Ground state form minimizing the potential energy (2 flavors):
V2 = −Σ
2 Tr n
U0† eiθ/2 + U0 e−iθ/2
Mo
• Parametrization of U (x):
U0 = diag{eiϕ, e−iϕ}, U = e˜ i
√2Φ/F, Φ = √1
2
π0 √
2π+
√2π− −π0
!
⇒ tan ϕ = − tan θ2, = md − mu
mu + md , ¯m = 12(mu + md)
• LO pion mass: Brower et al. (2003)
˚2 θ q
2 2 θ
PION PROPERTIES at FINITE THETA
• NLO pion mass:
Mπ2+(θ) = ˚M2(θ)+
M˚4(θ) F 2
1
32π2 ln
M˚2(θ)
µ2 + 2lr3 + 2l7 (1 − 2) tan(θ/2) 1 + 2 tan2(θ/2)
2!
Mπ20(θ) = Mπ2+(θ) − 2l7
M˚4(θ) F2
2
cos4(θ/2) 1 + 2 tan2(θ/2)2
• LO and NLO pion mass in the isospin limit mu = md: LO: Mπ2(θ) = 2B ¯m cos θ2
NLO: Mπ2(θ) = M2(θ) + M4(θ) F2
1
32π2 ln M2(θ)
µ2 + 2lr3 + 2l7 tan2 θ 2
| {z }
extra term
!
? extra term ∼ l7 vanishes at θ = 0 Gasser, Leutwyler (1985)
2
PION-PION SCATTERING at FINITE THETA
(b)
(a) (c) (d) (e)
• Scattering to one loop: T (s, t, u) = A(s, t, u)
| {z }
tree,O(p2)
+ B(s, t, u)
| {z }
loop,O(p4)
+ C(s, t, u)
| {z }
tree,O(p4)
A(s, t, u) = s − ˚Mθ2
F2 , B(s, t, u) = . . ., C(s, t, u) = . . .
• LECs are not θ-dependent, see e.g. F
• but use here θ-dependent l1,2 (defined at the pion mass) lri = γi
32π2
¯liθ + ln
M˚θ2 µ2
!
, γ1 = 13, γ2 = 23
GENERATING the SIGMA and the RHO
• Two lightest SU(2) non-GB mesons: σ(500) and ρ(770)
• Can be generated by resummation (unitarization) of CHPT ππ amplitudes
Truong (1988) and many others
• Use IAM (Inverse Amplitude Method), enforce Adler zeros (suppress indices) T (s) = (T2(s))2
T2(s) − T4(s) + A(s)
A(s) = T4(s2) − (s2 − sA)(s − s2)(T20(s) − T40(s)) s − sA
? T (sA) = 0 → T2(s2) = 0, T2(s2 + s4) + T4(s2 + s4) = 0
? li from Hanhart et al. (2008)
? σ and ρ poles: √
sσ = (443.1 − i 217.4) MeV
√sρ = (751.9 − i 75.4) MeV
SIGMA and RHO PROPERTIES at FINITE THETA
• Use the θ-dependent Tππ in the IAM
⇒ θ-dependent σ and ρ properties:
Mass [GeV] Width [GeV]
Mρ Γσ
Mσ Γρ
• only visible changes for sizeable values of θ
SUMMARY & OUTLOOK
• Baryon EDMs evaluated in U(3) × U(3) CHPT at NLO ,→ Chiral extrapolation formulae worked out
,→ Only two LECs at complete one-loop order ,→ Finite volume corrections available
• LQCD calculation of the neutron EDM for 2+1 flavors ,→ simulation at various pion masses & lattice volumes
,→ working with an imaginary θ [th’y assumed to be analytic at θ = 0]
,→ using CHPT, a precise value of dn at the physical point emerges:
dn = −0.0039(2)(9) [e fm θ]
SUMMARY & OUTLOOK
• Theory of nuclear EDMs
,→ general formulas as functions of all NLO CP-violating operators ,→ explicit calculations for 2H, 3He, 3H
,→ testing strategies for various specific models in and beyond the SM ,→ UCN experiments on-going
,→ protons and charged light nuclei: storage ring measurements
,→ JEDI collaboration performs proof-of-principle exp. for the proton at COSY for details, see http://collaborations.fz-juelich.de/ikp/jedi/
• Hadrons at finite theta
,→ Pion mass and pion-pion scattering amplitude at NLO for fixed θ ,→ θ-dependent σ(500) and ρ(770) mass and width
OUTLOOK: AXION PHYSICS
46• Peccei-Quinn mechanism: a(x) → a(x) − θfa Peccei, Quinn (1977)
SCP/ = 1
2 (∂µa(x))2 + i 3
a(x)
fa mˆ X
x
¯
uγ5u + ¯dγ5d + ¯sγ5s
• Axion mass (mean field): m2afa2 ' 2
9χt , χt = hQ2i
V ' (190 MeV)4
• Evaluate as before with: λ = a fa
m` ms
2ms + m` ≡ a finv
• Surprising first result:
0 0.02 0.04 0.06 0.08 0.1
-0.01 -0.1 -1 -10 -100 ma
0.01 0.1 1 10 100 0 0.02 0.04 0.06 0.08 0.1
Lattice √χt/fa
0.01 0.1 1 10 100 0 0.02 0.04 0.06 0.08 0.1
Lattice √χt/fa
→ stay tuned
PRELIMINARY
SPARES
Finite volume effects for baryon EDMs
Akan, Guo, UGM, Phys.Lett. B 736 (2014) 163
CALCULATIONAL SCHEME
• Lattice QCD operates in a finite volume
⇒ must consider finite volume corrections
⇒ LO nEDM corrections known O’Connell, Savage (2006)
• work in the limit of infinite time and large volumes L3
• momenta quantized pn = 2π~n/L
→ mode sums: i
Z d4p
(2π)4 → i L3
X
~ n
Z dp0 2π
• finite volume corrections: δL[Q] = Q(L) − Q(∞)
,→ these are entirely generated by loops
• here: perform NLO calculations for all baryon EDMs Guo, UGM (2012)
RESULTS for the NEUTRON EDM
• At LO, recover the results of O’Connell and Savage
• Find sizeable NLO corrections → must be included
δL[dn]/dloopn δLNLO[dn]/δLLO[dn]
MΠ=138 MeV MΠ=200 MeV MΠ=300 MeV MΠ=400 MeV
3 4 5 6 7
10-4 0.001 0.01 0.1 1
L @fmD
∆L@dnDdnloop
3 4 5 6 7
0.0 0.5 1.0 1.5 2.0 2.5 3.0
L @fmD
∆L@dnD∆L@dnLO D
• available also for the proton and the hyperons