• 沒有找到結果。

Unified smoothing functions for absolute value equation associated with second-order cone

N/A
N/A
Protected

Academic year: 2022

Share "Unified smoothing functions for absolute value equation associated with second-order cone"

Copied!
22
0
0

加載中.... (立即查看全文)

全文

(1)

Contents lists available atScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Unified smoothing functions for absolute value equation associated with second-order cone

Chieu Thanh Nguyen

a

, B. Saheya

b

,

1

, Yu-Lin Chang

a

, Jein-Shan Chen

a

,∗,

2

aDepartmentofMathematics,NationalTaiwanNormalUniversity,Taipei11677,Taiwan

bCollegeofMathematicalScience,InnerMongoliaNormalUniversity,Hohhot010022,InnerMongolia,PRChina

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received19February2018 Receivedinrevisedform12July2018 Accepted30August2018

Availableonline3September2018

Keywords:

Second-ordercone Absolutevalueequations SmoothingNewtonalgorithm

Inthispaper,weexploreaunifiedwaytoconstructsmoothingfunctionsforsolvingtheab- solutevalueequationassociatedwithsecond-ordercone(SOCAVE).Numericalcomparisons arepresented,whichillustratewhat kindsofsmoothingfunctions workwell alongwith thesmoothingNewtonalgorithm.Inparticular,thenumericalexperimentsshowthatthe wellknownlossfunctionwidelyusedinengineeringcommunityistheworstoneamong theconstructedsmoothingfunctions,whichindicatesthattheotherproposedsmoothing functionscanbeemployedforsolvingengineeringproblems.

©2018IMACS.PublishedbyElsevierB.V.Allrightsreserved.

1. Introduction

Recently,thepaper[36] investigatesafamilyofsmoothingfunctionsalongwithasmoothing-typealgorithmtotacklethe absolutevalueequationassociatedwithsecond-ordercone(SOCAVE)andshowstheefficiencyofsuchapproach.Motivated bythisarticle,wecontinuetoasktwonaturalquestions.(i)Whetherthereareothersuitablesmoothingfunctionsthatcan be employedforsolvingtheSOCAVE?(ii)IsthereaunifiedwaytoconstructsmoothingfunctionsforsolvingtheSOCAVE?

Inthispaper,weprovideaffirmativeanswersforthesetwoqueries.Inordertosmoothlyconveythestoryofhowwefigure outtheanswers,webeginwithrecallingwheretheSOCAVEcomesfrom.

Thestandardabsolutevalueequation(AVE)isintheformof

Ax

+

B

|

x

| =

b

,

(1)

where A

∈ R

n×n, B

∈ R

n×n, B

=

0,andb

∈ R

n.Here

|

x

|

meansthecomponentwiseabsolutevalue ofvectorx

∈ R

n.When B

= −

I,whereI istheidentitymatrix,theAVE(1) reducestothespecialform:

Ax

− |

x

| =

b

.

It isknownthat theAVE(1) wasfirst introducedby Rohnin [40],butwas termedby Mangasarian[34].Duringthe past decade,therehasbeenmanyresearcherspayingattentiontothisequation,forexample,Caccetta,QuandZhou[1],Huand

*

Correspondingauthor.

E-mailaddresses:thanhchieu90@gmail.com(C.T. Nguyen),saheya@imnu.edu.cn(B. Saheya),ylchang@math.ntnu.edu.tw(Y.-L. Chang), jschen@math.ntnu.edu.tw(J.-S. Chen).

1 Theauthor’sworkissupportedbyNaturalScienceFoundationofInnerMongolia(AwardNumber:2017MS0125).

2 Theauthor’sworkissupportedbyMinistryofScienceandTechnology,Taiwan.

https://doi.org/10.1016/j.apnum.2018.08.019

0168-9274/©2018IMACS.PublishedbyElsevierB.V.Allrightsreserved.

(2)

Huang[12],JiangandZhang[19],KetabchiandMoosaei[20],Mangasarian[26–33],MangasarianandMeyer[34],Prokopyev [37],andRohn[42].

WeelaboratemoreaboutthedevelopmentsoftheAVE.MangasarianandMeyer[34] showthattheAVE(1) isequivalent to the bilinear program, the generalized LCP (linear complementarity problem), and to the standard LCP provided 1 is not an eigenvalue of A.Withthese equivalent reformulations,they also show that the AVE(1) is NP-hard in its general formandprovide existence results.Prokopyev [37] furtherimproves theabove equivalence whichindicates that theAVE (1) can be equivalently recast asLCP withoutany assumptionon A and B,andalso provides a relationship withmixed integer programming. Ingeneral, if solvable, the AVE(1) can have eitherunique solution ormultiple (e.g.,exponentially many) solutions.Indeed,various sufficiency conditionson solvabilityandnon-solvabilityofthe AVE(1) withunique and multiplesolutions arediscussedin [34,37,41].Some variantsofthe AVE,like theabsolutevalueequation associatedwith second-orderconeandtheabsolutevalueprograms,areinvestigatedin[14] and[45],respectively.

Recently, another type of absolutevalue equation, a natural extension ofthe standard AVE (1), is considered [14,35, 36].Morespecificallythefollowingabsolutevalueequation associatedwithsecond-ordercones,abbreviatedasSOCAVE,is studied:

Ax

+

B

|

x

| =

b

,

(2)

where A

,

B

∈ R

n×n andb

∈ R

n arethesame asthosein(1);

|

x

|

denotesthe absolutevalueof x coming fromthesquare root of the Jordan product “

of x and x. What is the difference betweenthe standard AVE (1) and the SOCAVE (2)?

Their mathematical formats look the same. In fact, the main difference is that

|

x

|

in the standard AVE (1) means the componentwise

|

xi

|

ofeach xi

∈ R

,i.e.,

|

x

| = (|

x1

|, |

x2

|, · · · , |

xn

|)

T

∈ R

n;however,

|

x

|

intheSOCAVE(2) denotesthevector satisfying

x2

:= √

x

x associatedwithsecond-orderconeunderJordanproduct.Tounderstanditsmeaning,we needto introducethedefinitionofsecond-ordercone(SOC).Thesecond-orderconein

R

n

(

n

1

)

,alsocalledtheLorentz cone,is definedas

K

n

:= 

(

x1

,

x2

) ∈ R × R

n1

| 

x2

 ≤

x1

 ,

where

 · 

denotestheEuclideannorm.Ifn

=

1,then

K

nisthesetofnonnegativereals

R

+.Ingeneral,a generalsecond- ordercone

K

couldbetheCartesianproductofSOCs,i.e.,

K := K

n1

× · · · × K

nr

.

Forsimplicity,wefocusonthesingleSOC

K

nbecausealltheanalysiscanbecarriedovertothesettingofCartesianproduct.

TheSOCisaspecialcaseofsymmetricconesandcanbeanalyzedunderJordanproduct,see[9].Inparticular,foranytwo vectorsx

= (

x1

,

x2

) ∈ R × R

n1and y

= (

y1

,

y2

) ∈ R × R

n1,theJordanproduct ofx and y associatedwith

K

nisdefinedas

x

y

:=



xTy y1x2

+

x1y2

 .

TheJordanproduct,unlikescalarormatrixmultiplication,isnotassociative,whichisamainsourceofcomplicationinthe analysisofoptimizationproblemsinvolvedSOC,see[5,6,10] andreferencesthereinformoredetails. Theidentityelement underthis Jordanproduct is e

= (

1

,

0

, ...,

0

)

T

∈ R

n. Withthesedefinitions, x2 means theJordan product ofx with itself, i.e.,x2

:=

x

x;and

x withx

K

n denotestheuniquevectorsuchthat

x

◦ √

x

=

x.Inotherwords,thevector

|

x

|

inthe SOCAVE(2) iscomputedby

|

x

| := √

x

x

.

Asremarkedintheliterature,thesignificanceoftheAVE(1) arisesfromthefactthattheAVEiscapableofformulating manyoptimizationproblemssuchaslinearprograms,quadraticprograms,bimatrixgames,andsoon.Likewise,theSOCAVE (2) plays a similar role in various optimization problemsinvolving second-order cones. There hasbeen manynumerical methodsproposed forsolving thestandardAVE(1) andtheSOCAVE(2).Please referto [36] fora quickreview.Basically, wefollowthesmoothingNewtonalgorithmemployedin[36] todealwiththeSOCAVE(2).Thiskindofalgorithmhasbeen apowerfultoolforsolvingmanyotheroptimizationproblems,includingsymmetricconecomplementarityproblems[21,23, 24],the systemofinequalitiesundertheorder inducedby symmetriccone [17,25,46], andso on.Itis alsoemployed for thestandard AVE(1) in [18,43]. Thenewupshotofthispaperliesondiscoveringmoresuitable smoothingfunctionsand exploringaunifiedwaytoconstructsmoothingfunctions.Ofcourse,thenumericalperformanceamongdifferentsmoothing functionsarecompared.Thesearetotallynewtotheliteratureandarethemaincontributionofthispaper.

Toclosethissection, werecall somebasicconcepts andbackgroundmaterials regardingthesecond-ordercone,which willbe used inthe subsequentanalysis. Moredetails can be foundin [5,6,9,10,14]. First, werecall theexpression ofthe spectraldecomposition ofx withrespecttoSOC.Forx

= (

x1

,

x2

) ∈ R × R

n1,thespectraldecompositionofx withrespectto SOCisgivenby

x

= λ

1

(

x

)

u(x1)

+ λ

2

(

x

)

u(x2)

,

(3)

(3)

where

λ

i

(

x

) =

x1

+ (−

1

)

i



x2



fori

=

1

,

2 and u(xi)

=

⎧ ⎪

⎪ ⎩

1 2

1

, (

1

)

i xxT2

2

T

if



x2

 =

0

,

1 2

1

, (

1

)

i

ω

T

T if



x2

 =

0

,

(4)

with

ω ∈ R

n1 beinganyvector satisfying

 ω  =

1.Thetwo scalars

λ

1

(

x

)

and

λ

2

(

x

)

are calledspectral valuesof x;while thetwovectorsu(x1)andu(x2)arecalledthespectralvectorsofx.Moreover,itisobviousthatthespectraldecompositionof x

∈ R

nisuniqueifx2

=

0.Itisknownthatthespectralvaluesandspectralvectorspossesthefollowingproperties:

(i) u(x1)

u(x2)

=

0 andu(xi)

u(xi)

=

u(xi)fori

=

1

,

2;

(ii)



u(x1)



2

= 

u(x2)



2

=

12 and



x



2

=

12

21

(

x

) + λ

22

(

x

))

.

Nextistheconceptabouttheprojectionontosecond-ordercone.Letx+denotetheprojectionofx onto

K

n,andx be theprojectionof

x ontothedualcone

(K

n

)

of

K

n,wherethedualcone

(K

n

)

isdefinedby

(K

n

)

:= {

y

∈ R

n

|

x

,

y

0

,

x

K

n

}

.Infact,thedualconeof

K

n isitself,i.e.,

( K

n

)

= K

n.Duetothespecialstructureof

K

n,theexplicitformulaof projectionofx

= (

x1

,

x2

) ∈ R × R

n1onto

K

n isobtainedin[5,6,8–10] asbelow:

x+

=

⎧ ⎨

x if x

K

n

,

0 if x

∈ − K

n

,

u otherwise

,

where u

=

x1+x2



2 x1+x2

2



x2

x2

⎦ .

Similarly,theexpressionofxcanbewrittenoutas

x

=

⎧ ⎨

0 if x

K

n

,

x if x

∈ − K

n

,

w otherwise

,

where w

=

⎣  −

x1−2x2

x1−x2 2



x2

x2

⎦ .

Itiseasytoverifythatx

=

x+

+

x−and

x+

= (λ

1

(

x

))

+u(x1)

+ (λ

2

(

x

))

+u(x2) x

= (−λ

1

(

x

))

+u(x1)

+ (−λ

2

(

x

))

+u(x2)

,

where

( α )

+

=

max

{

0

, α }

for

α ∈ R

.As fortheexpression of

|

x

|

associatedwithSOC.There is analternative wayvia the so-calledSOC-functiontoobtaintheexpressionof

|

x

|

,whichcanbefoundin[2,3].Inanycase,itcomesoutthat

|

x

| = 

1

(

x

))

+

+ (−λ

1

(

x

))

+



u(x1)

+ 

2

(

x

))

+

+ (−λ

2

(

x

))

+



u(x2)

= λ

1

(

x

)

u(x1)

+ λ

2

(

x

)

u(x2)

.

2. UnifiedsmoothingfunctionsforSOCAVE

AsmentionedinSection1,weemploythesmoothingNewtonmethodforsolvingtheSOCAVE(2),whichneedsasmooth- ingfunctiontoworkwith.Indeed,a familyofsmoothingfunctionswasalreadyconsideredin[36].Inthissection,welook into what kindsofsmoothingfunctionscan be employed towork withthe smoothingNewton algorithmfor solvingthe SOCAVE(2).

Definition2.1.Afunction

φ : R

++

× R → R

iscalledasmoothingfunctionof

|

t

|

ifitsatisfiesthefollowing:

(i)

φ

iscontinuouslydifferentiableat

( μ ,

t

) ∈ R

++

× R

; (ii) lim

μ0

φ ( μ ,

t

) = |

t

|

foranyt

∈ R

.

Givenasmoothingfunction

φ

,wefurtherdefineavector-valuedfunction

 : R

++

× R

n

→ R

nas

( μ ,

x

) = φ ( μ , λ

1

(

x

))

u(x1)

+ φ ( μ , λ

2

(

x

))

u(x2) (5)

where

μ ∈ R

++isaparameter,

λ

1

(

x

)

,

λ

2

(

x

)

arethespectralvaluesofx,andu(x1),u(x2)arethespectral vectorsofx.Conse- quently,



isalsosmoothon

R

++

× R

n.Moreover,itiseasytoverifythat

lim

μ0+

( μ ,

x

) = |λ

1

(

x

) |

u(x1)

+ |λ

2

(

x

) |

u(x2)

= |

x

|

(4)

whichmeans eachfunction

( μ ,

x

)

servesasa smoothingfunctionof

|

x

|

associatedwithSOC.Withthisobservation, for theSOCAVE(2),wefurtherdefinethefunction H

( μ ,

x

) : R

++

× R

n

→ R × R

n by

H

( μ ,

x

) =

 μ

Ax

+

B

( μ ,

x

)

b



,μ ∈ R

++and x

∈ R

n

.

(6)

Proposition2.1.Supposethatx

= (

x1

,

x2

) ∈ R × R

n1hasthespectraldecompositionasin(3)–(4).LetH

: R

++

× R

n

→ R

nbe definedasin(6).Then,

(a) H

( μ ,

x

) =

0 ifandonlyifxsolvestheSOCAVE(2);

(b) H iscontinuouslydifferentiableat

( μ ,

x

) ∈ R

++

× R

nwiththeJacobianmatrixgivenby H

( μ ,

x

) =



1 0

B∂(μμ,x) A

+

B∂(μx,x)



(7)

where

∂( μ ,

x

)

μ =

∂φ ( μ , λ

1

(

x

))

μ

u

(1)

x

+ ∂φ ( μ , λ

2

(

x

))

μ

u

(2) x

,

∂( μ ,

x

)

x

=

⎧ ⎪

⎪ ⎨

⎪ ⎪

∂φ(μ,x1)

x1 I if x2

=

0

,

b c

xT2

x2 cxx2

2 aI

+ (

b

a

)

xx2xT2

22

if x2

=

0

,

with

a

= φ ( μ , λ

2

(

x

)) − φ( μ , λ

1

(

x

)) λ

2

(

x

) − λ

1

(

x

) ,

b

=

1

2

∂φ ( μ , λ

2

(

x

))

x1

+ ∂φ ( μ , λ

1

(

x

))

x1

,

(8)

c

=

1 2

∂φ ( μ , λ

2

(

x

))

x1

∂φ ( μ , λ

1

(

x

))

x1

.

Proof. (a)First,weobservethat

H

( μ ,

x

) =

0

⇐⇒ μ =

0 and Ax

+

B

( μ ,

x

)

b

=

0

⇐⇒

Ax

+

B

|

x

| −

b

=

0 and

μ =

0

.

Thisindicatesthatx isasolutiontotheSOCAVE(2) ifandonlyif

( μ ,

x

)

isasolutiontoH

( μ ,

x

) =

0.

(b)Since

( μ ,

x

)

iscontinuously differentiable on

R

++

× R

n,itisclearthat H

( μ ,

x

)

iscontinuously differentiableon

R

++

× R

n.Thus,itremainstocomputetheJacobianmatrixofH

( μ ,

x

)

.Notethat

( μ ,

x

) = φ( μ , λ

1

(

x

))

u(x1)

+ φ( μ , λ

2

(

x

))

u(x2)

=

⎧ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎩

1 2

 φ ( μ , λ

1

(

x

)) + φ( μ , λ

2

(

x

))

−φ( μ , λ

1

(

x

))

xx2T

2

+ φ( μ , λ

2

(

x

))

xxT2

2



if x2

=

0

,

1

2

 φ ( μ , λ

1

(

x

)) + φ( μ , λ

2

(

x

))

−φ( μ , λ

1

(

x

)) ω

T

+ φ( μ , λ

2

(

x

)) ω

T



if x2

=

0

=

1 2

⎧ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎩

⎢ ⎢

⎢ ⎢

φ ( μ , λ

1

(

x

)) + φ( μ , λ

2

(

x

) (−φ( μ , λ

1

(

x

)) + φ( μ , λ

2

(

x

)))

xx¯2

2

.. .

(−φ( μ , λ

1

(

x

)) + φ( μ , λ

2

(

x

)))

x¯xn

2

⎥ ⎥

⎥ ⎥

if x2

=

0

,

⎢ ⎢

⎢ ⎣

φ ( μ , λ

1

(

x

)) + φ( μ , λ

2

(

x

))

0

.. .

0

⎥ ⎥

⎥ ⎦

if x2

=

0

,

(5)

wherex2

:= (¯

x2

, · · · , ¯

xn

) ∈ R

n1,

ω = ( ω

2

, · · · , ω

n

) ∈ R

n1.Fromchainrule,itistrivialthat

( μ ,

x

)

μ =

∂φ ( μ , λ

1

(

x

))

μ

u

(1)

x

+ ∂φ ( μ , λ

2

(

x

))

μ

u

(2) x Inordertocompute ∂(μ,x)

x ,forsimplicity,wedenote

( μ ,

x

) :=

1 2

⎢ ⎢

⎢ ⎣ τ

1

( μ ,

x

) τ

2

( μ ,

x

)

.. . τ

n

( μ ,

x

)

⎥ ⎥

⎥ ⎦ .

Toproceed,wediscusstwocases.

(i)Forx2

=

0,wecompute

τ

1

( μ ,

x

)

x1

= ∂φ ( μ , λ

1

(

x

))

x1

+ ∂φ ( μ , λ

2

(

x

))

x1

= ∂φ ( μ , λ

1

(

x

))

∂λ

1

(

x

)

∂λ

1

(

x

)

x1

+ ∂φ ( μ , λ

2

(

x

))

∂λ

2

(

x

)

∂λ

2

(

x

)

x1

= ∂φ ( μ , λ

1

(

x

))

∂λ

1

(

x

) + ∂φ ( μ , λ

2

(

x

))

∂λ

2

(

x

) :=

2b

and

τ

1

( μ ,

x

)

x

¯

i

= ∂φ ( μ , λ

1

(

x

))

x

¯

i

+ ∂φ ( μ , λ

2

(

x

))

x

¯

i

= ∂φ ( μ , λ

1

(

x

))

∂λ

1

(

x

)

∂λ

1

(

x

)

x

¯

i

+ ∂φ ( μ , λ

2

(

x

))

∂λ

2

(

x

)

∂λ

2

(

x

)

x

¯

i

= − ∂φ ( μ , λ

1

(

x

))

∂λ

1

(

x

)

¯

xi



x2

 + ∂φ ( μ , λ

2

(

x

))

∂λ

2

(

x

)

¯

xi



x2



=

∂φ ( μ , λ

2

(

x

))

∂λ

2

(

x

)∂φ ( μ , λ

1

(

x

))

∂λ

1

(

x

)

x

¯

i



x2



=

∂φ ( μ , λ

2

(

x

))

x1

∂φ ( μ , λ

1

(

x

))

x1

x

¯

i



x2

 :=

2c x

¯

i



x2

 ,

i

=

2

,· · · ,

n

.

Moreover,

τ

i

( μ ,

x

)

x1

=

∂φ ( μ , λ

2

(

x

))

x1

∂φ ( μ , λ

1

(

x

))

x1

x

¯

i



x2

 =

2c

¯

xi



x2

 ,

i

=

2

, · · · ,

n

.

Similarly,wehave

τ

2

( μ ,

x

)

x

¯

2

=

∂φ ( μ , λ

2

(

x

))

x

¯

2

∂φ ( μ , λ

1

(

x

))

¯

x2

x

¯

2



x2

 + (φ( μ , λ

2

(

x

)) − φ( μ , λ

1

(

x

)))



x¯2

x2



x

¯

2

=

2b

¯

x2

· ¯

x2



x2



2

+ (φ( μ , λ

2

(

x

)) − φ( μ , λ

1

(

x

)))

1



x2

 −

x

¯

2

· ¯

x2



x2



3

=

2a

+

2

(

b

a

) ¯

x2

· ¯

x2



x2



2

,

wherea meansa

:= φ ( μ , λ

2

(

x

)) − φ( μ , λ

1

(

x

))

λ

2

(

x

) − λ

1

(

x

)

.Ingeneral,mimickingthesamederivationyields

τ

i

( μ ,

x

)

x

¯

j

=



2a

+

2

(

b

a

)

x¯xi·¯xi

22 if i

=

j

,

2

(

b

a

)

x¯xi·¯xj

22 if i

=

j

.

Tosumup,weobtain

( μ ,

x

)

x

=

b c

xT2

x2 cxx2

2 aI

+ (

b

a

)

x2x2T

x22

whichisthedesiredresult.

(6)

(ii)Forx2

=

0,itiscleartosee

τ

1

( μ ,

x

)

x1

=

2

∂φ ( μ ,

x1

)

x1 and

τ

1

( μ ,

x

)

x

¯

i

=

0 for i

=

2

,· · · ,

n

.

Since

τ

i

( μ ,

x

) =

0 fori

=

2

, · · · ,

n,itgives τi(xμ1,x)

=

0.Moreover,

τ

2

( μ ,

x

)

¯

x2

=

lim

¯ x20

τ

2

( μ ,

x1

,

x

¯

2

,

0

, · · · ,

0

)τ

2

( μ ,

x1

,

0

, · · · ,

0

)

¯

x2

=

lim

¯ x20

φ ( μ ,

x1

+ |¯

x2

|) − φ( μ ,

x1

− |¯

x2

|)

¯

x2

¯

x2

x2

|

=

lim

¯ x20

φ ( μ ,

x1

+ |¯

x2

|) − φ( μ ,

x1

− |¯

x2

|)

x2

|

=

lim

¯ x20

∂φ ( μ ,

x1

+ |¯

x2

|)

∂(

x2

|)∂φ ( μ ,

x1

− |¯

x2

|)

∂(

x2

|) (

as L’Hopital’s rule

)

=

lim

¯ x20

∂φ ( μ ,

x1

+ |¯

x2

|)

∂(

x1

+ |¯

x2

|) + ∂φ ( μ ,

x1

− |¯

x2

|)

∂(

x1

− |¯

x2

|)

=

2

∂φ ( μ ,

x1

)

x1

.

Thus,weobtain

τ

i

( μ ,

x

)

x

¯

j

=



2∂φ(μx,x1)

1 if i

=

j

,

0 if i

=

j

,

whichisequivalenttosaying

∂( μ ,

x

)

x

= ∂φ ( μ ,

x1

)

x1 I

.

Fromalltheabove,weconcludethat

∂( μ ,

x

)

x

=

⎧ ⎪

⎪ ⎨

⎪ ⎪

∂φ(μ,x1)

x1 I if x2

=

0

,

b c

xT2

x2 cxx2

2 aI

+ (

b

a

)

x2x

T

x222

if x2

=

0

.

Thus,theproofiscomplete.

2

Now,we areready toanswerthe question aboutwhatkindofsmoothingfunctionscan beadopted inthesmoothing typealgorithm.Twotechnicallemmasareneededtowardstheanswer.

Lemma2.1.SupposethatM

,

N

∈ R

n×n.Let

σ

min

(

M

)

denotetheminimumsingularvalueofM,and

σ

max

(

N

)

denotethemaximum singularvalueofN.Then,thefollowinghold.

(a)

σ

min

(

M

) > σ

max

(

N

)

ifandonlyif

σ

min

(

MTM

) > σ

max

(

NTN

)

. (b) If

σ

min

(

MTM

) > σ

max

(

NTN

)

,thenMTM

NTN ispositivedefinite.

Proof. Theproofisstraightforwardorcanbefoundinusualtextbookofmatrixanalysis,soweomitithere.

2

Lemma2.2.LetA

,

S

∈ R

n×nandA besymmetric.SupposethattheeigenvaluesofA andS STarearrangedinnon-increasingorder.

Then,foreachk

=

1

,

2

, · · · ,

n,thereexistsanonnegativerealnumber

θ

ksuchthat

λ

min

(

S ST

) ≤ θ

k

≤ λ

max

(

S ST

)

and

λ

k

(

S A ST

) = θ

k

λ

k

(

A

).

Proof. Pleasesee[11,Corollary4.5.11] foraproof.

2

We point out that the crucial key, which guarantees a smoothing function can be employed in the smoothing type algorithm,isthenonsingularity oftheJacobian matrix H

( μ ,

x

))

givenin(7).Asbelow,we provideunderwhatcondition theJacobianmatrix H

( μ ,

x

))

isnonsingular.

(7)

Theorem2.1.ConsideraSOCAVE(2) with

σ

min

(

A

) > σ

max

(

B

)

.LetH bedefinedasin(6).Supposethat

φ : R

++

× R → R

isa smoothingfunctionof

|

t

|

.If

1

dtd

φ ( μ ,

t

)

1 issatisfied,thentheJacobianmatrixH

( μ ,

x

)

isnonsingularforany

μ >

0.

Proof. From the expression of H

( μ ,

x

)

givenas in(7), we know that H

( μ ,

x

)

is nonsingularif andonly if the matrix A

+

B∂(μx,x) isnonsingular.Thus,itsufficestoshowthatthematrix A

+

B∂(μx,x) isnonsingularundertheconditions.

Supposenot,thatis,thereexistsavector0

=

v

∈ R

n suchthat



A

+

B

( μ ,

x

)

x



v

=

0

whichimpliesthat

vTATA v

=

vT

 ∂( μ ,

x

)

x



T

BTB

( μ ,

x

)

x v

.

(9)

Forconvenience,wedenoteC

:=

∂(μx,x).Then,itfollowsthat vTATA v

=

vTCTBTBC v.ApplyingLemma2.2,thereexistsa constant

ˆθ

suchthat

λ

min

(

CTC

) ≤ ˆθ ≤ λ

max

(

CTC

)

and

λ

max

(

CTBTBC

) = ˆθλ

max

(

BTB

).

Notethatifwecanprovethat

0

≤ λ

min

(

CTC

) ≤ λ

max

(

CTC

)

1

,

we willhave

λ

max

(

CTBTBC

) ≤ λ

max

(

BTB

)

.Then,bytheassumptionthattheminimumsingular valueof A strictlyexceeds the maximumsingular value of B (i.e.,

σ

min

(

A

) > σ

max

(

B

)

) and applyingLemma2.1,we obtain vTATA v

>

vTCTBTBC v.

Thiscontradictstheidentity(9),whichshowstheJacobianmatrix H

( μ ,

x

)

isnonsingularfor

μ >

0.

Thus, inlightoftheabovediscussion,itsuffices toclaim0

≤ λ

min

(

CTC

) ≤ λ

max

(

CTC

)

1.Tothisend,we discusstwo cases.

Case1: Forx2

=

0,wecomputethatC

=

∂φ (μx1,x1)I.Since

1

∂φ (μx1,x1)

1,itisclearthat0

≤ λ(

CTC

)

1 for

μ >

0.Then, theclaimisdone.

Case2: Forx2

=

0,usingthefact thatthe matrixMTM isalways positivesemidefiniteforanymatrix M

∈ R

m×n,we see thattheinequality

λ

min

(

CTC

)

0 alwaysholds.Inordertoprove

λ

max

(

CTC

)

1,weneedtofurtherarguethatthematrix I

CTC ispositivesemidefinite.First,wewriteout

I

CTC

=

1

b2

c2

2bcxx2T2

2bcxx2

2

(

1

a2

)

I

+ (

a2

b2

c2

)

xx2x2T

22

⎦ .

If

1

<

∂φ (μx1i(x))

<

1,thenweobtain b2

+

c2

=

1

2

 ∂φ ( μ , λ

1

(

x

))

x1

2

+

∂φ ( μ , λ

2

(

x

))

x1

2



<

1

.

Thisindicatesthat1

b2

c2

>

0.Byconsidering

[

1

b2

c2

]

asan1

×

1 matrix,thissays

[

1

b2

c2

]

ispositivedefinite.

Hence,itsSchurcomplementcanbecomputedasbelow:

(

1

a2

)

I

+ (

a2

b2

c2

)

x2x

T 2



x2



2

4b2c2 1

b2

c2

x2xT2



x2



2

= (

1

a2

)



I

x2x2T



x2



2

 +

1

b2

c2

4b2c2 1

b2

c2

x2x2T



x2



2

.

(10)

Ontheotherhand,bytheMeanValueTheorem,wehave

φ ( μ , λ

2

(

x

)) − φ( μ , λ

1

(

x

)) = ∂φ ( μ , ξ )

∂ξ

2

(

x

) − λ

1

(

x

)),

where

ξ ∈ (λ

1

(

x

), λ

2

(

x

))

.Toproceed,weneedtofurtherdiscusstwosubcases.

參考文獻

相關文件

Although we have obtained the global and superlinear convergence properties of Algorithm 3.1 under mild conditions, this does not mean that Algorithm 3.1 is practi- cally efficient,

In summary, the main contribution of this paper is to propose a new family of smoothing functions and correct a flaw in an algorithm studied in [13], which is used to guarantee

We point out that extending the concepts of r-convex and quasi-convex functions to the setting associated with second-order cone, which be- longs to symmetric cones, is not easy

In section 4, based on the cases of circular cone eigenvalue optimization problems, we study the corresponding properties of the solutions for p-order cone eigenvalue

Abstract In this paper, we consider the smoothing Newton method for solving a type of absolute value equations associated with second order cone (SOCAVE for short), which.. 1

Chen, “Alternative proofs for some results of vector- valued functions associated with second-order cone,” Journal of Nonlinear and Convex Analysis, vol.. Chen, “The convex and

Abstract We investigate some properties related to the generalized Newton method for the Fischer-Burmeister (FB) function over second-order cones, which allows us to reformulate

It has been an open question whether the family of merit functions ψ p (p &gt; 1), the generalized Fischer-Burmeister (FB) merit function, associated to the second-order cone is