• 沒有找到結果。

中中中中 華華華華 大大大大 學學學學

N/A
N/A
Protected

Academic year: 2022

Share "中中中中 華華華華 大大大大 學學學學"

Copied!
57
0
0

加載中.... (立即查看全文)

全文

(1)

中 中 中

中 華 華 華 華 大 大 大 大 學 學 學 學

碩 碩

碩 士 士 士 士 論 論 論 論 文 文 文 文

題目 題目 題目

題目: : : :Computational Study of a 3D Turbulent Channel With Wavy Wall

(數值模擬紊流流經三维波形流道之流場分析)

系 系

系 系 所 所 所 所 別 別 別 別: : :機械與航太工程研究所 : 學號姓名

學號姓名 學號姓名

學號姓名: : :M09508007 曾 郁 仁 : 指導教授

指導教授 指導教授

指導教授: : :蔡 永 培 博 士 :

中華民國 中華民國 中華民國 中華民國 九十 九十 九十 九十八 八 八 八 年 年 年 年 一 一 一 一 月 月 月 月

(2)

中文中文 中文中文摘要摘要摘要摘要 中文關鍵詞:減阻;節能;波形壁。

自然界和工程應用的紊流問題大多是受到一個或多個壁面約束的剪 切紊流問題,其中波形壁流動由於受到壁面交錯起伏彎曲面效應的作 用,成為研究壁面曲面效應對紊流影響的典型流動問題之一。複雜波形 邊壁在工程技術上有著廣泛的應用,例如:常規的運輸機和水上船隻,

其表面摩擦阻力約佔總阻力的 50%;對於水下運動的物體如潛艇,這個 比例就可達到 70%,而在長距離的管道運送中,幫浦的動力幾乎全部用 於克服表面摩擦阻力。

本研究以分析不可壓縮之三維管道具週期性波形邊界,藉以探討其 紊流流場物理特性。在數值方法的選擇上以迎風算則(UP-WIND Scheme) 直接求解奈維爾-史托克(Navier-Stokes)方程式。而時間離散上採用 LU-SSOR method 以增強數值之穩定性及加速程式之收斂。因波形管壁 具有提升曵力及減低阻力達節能之效益,本研究量測平均速度分佈,瞬 間流場圖形,紊流強度及壓力分佈等,針對三維流場做一有系統之計算 與分析,以達到對管流具波形邊界形成之紊流場有清楚的了解。

(3)

Abstract

K e y w o r d : L o w e r d r a g , E c o n o m y e n e r g y, Wa v y w a l l .

M o s t t u r b u l e n t p r o b l e m s h a p p e n i n g t o t h e n a t u r e a n d e n g i n e e r i n g a p p l i c a t i o n s w e r e e x a c t l y t h e t u r b u l e n c e p r o b l e m f r e q u e n t l y c a u s e d b y o n e o r m o r e t u r b u l e n t s h e a r f l o w s . A m o n g t h e m , w a v y w a l l f l o w w a s a f f e c t e d b y c u r v e s u r f a c e a n d t h i s e f f e c t b e c a m e o n e o f t h e t y p i c a l p r o b l e m s i n r e s e a r c h i n g t h e e f f e c t o n t o t u r b u l e n c e f l o w t r i g g e r e d b y w a y w a l l s . C o m p l e x w a v y w a l l s w e r e b r o a d l y a p p l i e d e n g i n e e r i n g t e c h n i q u e s s u c h a s t r a n s p o r t a t i o n a i r p l a n e s a n d v e s s e l s w i t h t h e i r s u r f a c e f r i c t i o n r a t i n g 5 0 % o f t o t a l r e s i s t a n c e f o r c e . F o r m o v i n g u n d e r w a t e r s u c h a s s u b m a r i n e s , t h e s a i d s u r f a c e f r i c t i o n w i l l a m o u n t t o 7 0 % o f t o t a l f r i c t i o n . I n a d d i t i o n , i n t h e l o n g - d i s t a n c e c h a n n e l s f o r t r a n s p o r t a t i o n , a l m o s t a l l d y n a m i c s w e r e u s e d t o o v e r c o m e t h e s u r f a c e f r i c t i o n .

T h i s s t u d y w a s o p e r a t e d w i t h i n c o m p r e s s i b l e 3 - D c h a n n e l s w i t h c y c l i c w a v y b o u n d a r y t o e x p l o r e t h e p h y s i c a l p r o p e r t i e s o f t u r b u l e n c e f l o w. F o r t h e s e l e c t i o n o f n u m e r i c a l o p e r a t i o n s , t h e U P - W I N D S c h e m e w a s d i r e c t l y u s e d t o s o l v e t h e N a v i e r - S t o k e s e q u a t i o n . A s f o r t e m p o r a l d i s c r e t i z a t i o n , t h e L U - S S O R m e t h o d w a s a d o p t e d t o e n h a n c e n u m e r i c a l s t a b i l i t y a n d a c c e l e r a t e t h e e q u a t i o n c o n v e r g e n c e . B e c a u s e w a v y t u b e w a l l s w e r e f e a t u r e d w i t h i n c r e a s e d d r a g a n d r e d u c e d r e s i s t a n c e f o r c e w i t h e n e r g y s a v e d . T h i s r e s e a r c h m e a s u r e s t h e d i s t r i b u t i o n o f a v e r a g e v e l o c i t y, i n s t a n t f l o w i n g f i e l d s h a p e s , t u r b u l e n c e a n d p r e s s u r e d i s t r i b u t i o n , e t c . F u r t h e r m o r e , t h e s y s t e m a t i c c o m p u t a t i o n a n d a n a l y s i s f o r t h e 3 - D f l o w f i e l d w a s a l s o i m p l e m e n t e d . I t w a s a i m e d t o c l e a r l y u n d e r s t a n d t h e t u r b u l e n c e f i e l d s f o r m e d b y w a v y b o u n d s o f t u b e f l o w.

(4)

Acknowledgements

T h e w o r k r e p o r t e d i n t h i s m a s t e r ' s d e g r e e d e s c r i b e s m y r e s e a r c h a c t i v i t i e s a t C h u n g H u a U n i v e r s i t y d u r i n g t h e p e r i o d f r o m S e p t e m b e r 2 0 0 7 t o J a n u a r y 2 0 0 9 . I n o w w i s h t o t h a n k t h o s e w h o p r o v i d e d m e w i t h h e l p a n d e n c o u r a g e m e n t d u r i n g t h e p r e s e n t s t u d y.

F i r s t a n d f o r e m o s t , I w i s h t o e x p r e s s m y s i n c e r e g r a t i t u d e t o m y a d v i s o r P r o f e s s o r D r. Y. P. Ts a i f o r t h i s v a l u a b l e a d v i c e a n d e n c o u r a g e m e n t d u r i n g t h e c o u r s e o f t h i s s t u d y. Wi t h o u t h i s p a t i e n c e a n d c a r e f u l g u i d a n c e t h i s w o r k w o u l d n o t b e a c c o m p l i s h e d . I a m i n d e b t e d t o t h e m e m b e r s o f m y o r a l d e f e n c e c o m m i t t e e , D r. B . J . Ts a i , D r. R . Z . H u a n g a n d D r. C . C . N i e n f o r t h e i r c o n s t r u c t i v e c r i t i c i s m . B e s i d e s , m y s i n c e r e t h a n k s a l s o g o t o t h e s c h o l a r s h i p s s u p p o r t e d b y t h e C F D l a b p a r t n e r, J a m e s p . O y a n , C . C . C h o u a n d Y. R . L i n . A n d M 1 0 1 l a b p a r t n e r, C . H . L e e e t a l .

F i n a l l y, a n d m o s t i m p o r t a n t l y, I w o u l d l i k e t o d e d i c a t e t h i s w o r k t o C i n d y f o r h e r s u p p o r t . I w i s h t o t h a n k m y p a r e n t s f o r a l l t h e i r e n c o u r a g e m e n t . T h e y g a v e m u c h m o r e t h a n t h e y e x p e c t e d , b u t t h e y c o n t r i b u t e d m o r e t h a n t h e y c a n i m a g i n e .

(5)

Contents

中文摘要· · · 1

A b s t r a c t · · · 2

A c k n o w l e d g e m e n t s · · · 3

C o n t e n t s · · · 4

F i g u r e c o n t e n t s · · · 5

1 . I n t r o d u c t i o n · · · 8

2. Numerical method · · · 11

2 . 1 F l o w c o n f i g u r a t i o n · · · 11 2 . 2 G o v e r n i n g e q u a t i o n · · · 1 2 2 . 3 U p w i n d s c h e m e · · · 1 5 2 . 4 Te m p o r a l D i s c r e t i z a t i o n · · · 1 6 2 . 5 C o m p u t a t i o n a l G r i d · · · 1 8 2 . 6 I n i t i a l c o n d i t i o n a n d b o u n d a r y c o n d i t i o n · · · 2 0 2 . 6 . 1 I n i t i a l c o n d i t i o n · · · 2 0 2 . 6 . 2 B o u n d a r y c o n d i t i o n · · · 2 0 2 . 6 . 3 B o u n d a r y c o n d i t i o n o n t o p o f b a s e a n d b e l o w · · · 2 0 3 . R e s u l t s · · · 2 1 3 . 1 T h e A n a l y s i s o n a f l o w s c a u s e d b y w a v y w a l l s · · · 2 1 3 . 2 T h e C o m p a r i s o n o f P h y s i c a l S p a c e · · · 2 2 3 . 4 C o n c l u s i o n s · · · 2 5 R e f e r e n c e s · · · 2 6 F i g u r e · · · 2 7

(6)

Figure contents

Fig.2-1 Computational domain of flow over a wavy wall · · · 12

Fig.2-2 Computational Grid resolutions · · · 20

Fig.3-1 Computational Grid· · · 27

Fig.3-2 Streamlines for channel flow over wavy wall at Re=3460· · · 27

Fig.3-3 Instantaneous velocity vectors at Re=3460 · · · 28

Fig.3-4 Mean streamwise velocity contours at Re=3460 · · · 28

Fig.3-5 Mean vertical velocity contours at Re=3460 · · · 29

Fig.3-6 Comparison the turbulence intensities also agree reasonably well with Cherukat et al.[2] · · · 30

Fig.3-7 Shows the speed contours from Nakagawa et al.[3] for varying x+ from 0.0 to 1.0 · · · 31

Fig.3-8 Shows the speed contours for Reynolds number is 3460, x/λ= 0.05 · · · 31

Fig.3-9 Mean velocity profiles at crest and trough streamline locations · · · 32

Fig.3-10 Computational domain of flow over a single wavy wall · · · 34

Fig.3-11 Computational domain of flow over a bilateral wavy wall · · · 34

Fig.3-12 The computational grid of flat boundary oscillation A=0mm, the wave length λ+ =50.8mm · · · 34

Fig.3-13 The computational grid of bilateral boundary oscillation A=2.54mm, the wave length λ+ =50.8mm · · · 35

Fig.3-14 The computational grid of single boundary oscillation A=2.54mm, the wave length λ+ =50.8mm · · · 35

Fig.3-15 Distributions of instantaneous streamwise velocity contours for flat boundary in the X-Y planes, amplitude A=0mm · · · 36

Fig.3-16 Distributions of instantaneous streamwise velocity contours for single wavy wall in the X-Y planes, amplitude A=2.54mm · · · 37

Fig.3-17 Distributions of instantaneous streamwise velocity contours for bilateral wavy wall in the X-Y planes, amplitude A=2.54mm · · · 38

Fig.3-18 Distributions of instantaneous streamwise velocity contours for flat boundary in the Y-Z planes, amplitude A=0mm· · · 39

Fig.3-19 Distributions of instantaneous streamwise velocity contours for single wavy wall in the Y-Z planes, amplitude A=2.54mm· · · 39

Fig.3-20 Distributions of instantaneous streamwise velocity contours for bilateral wavy wall in the Y-Z planes, amplitude A=2.54mm· · · 39

(7)

boundary in the X-Y planes, amplitude A=0mm · · · 40 Fig.3-22 Distributions of instantaneous cross-stream velocity contours for single

wavy wall in the X-Y planes, amplitude A=2.54mm · · · 41 Fig.3-23 Distributions of instantaneous cross-stream velocity contours for bilateral

wavy wall in the X-Y planes, amplitude A=2.54mm · · · 42 Fig.3-24 Distributions of instantaneous cross-stream velocity contours for flat

boundary in the Y-Z plane, amplitude A=0mm· · · 43 Fig.3-25 Distributions of instantaneous cross-stream velocity contours for single

wavy wall in the Y-Z plane, amplitude A=2.54mm· · · 43 Fig.3-26 Distributions of instantaneous cross-stream velocity contours for bilateral

wavy wall in the Y-Z plane, amplitude A=2.54mm· · · 43 Fig.3-27 Distributions of instantaneous spanwise velocity contours for flat boundary

in the Y-Z planes, amplitude A=0mm · · · 44 Fig.3-28 Distributions of instantaneous spanwise velocity contours for single wavy

wall in the Y-Z planes, amplitude A=2.54mm· · · 45 Fig.3-29 Distributions of instantaneous spanwise velocity contours for bilateral wavy

wall in the Y-Z planes, amplitude A=2.54mm· · · 46 Fig.3-30 Distributions of instantaneous spanwise velocity contours for flat boundary

in the Y-Z plane, amplitude A=0mm · · · 47 Fig.3-31 Distributions of instantaneous spanwise velocity contours for single wavy

wall in the Y-Z plane, amplitude A=2.54mm· · · 47 Fig.3-32 Distributions of instantaneous spanwise velocity contours for bilateral wavy

wall in the Y-Z plane, amplitude A=2.54mm· · · 47 Fig.3-33 Three-dimensional instantaneous velocity chart for flat boundary in the

mean streamwise and normal velocity · · · 48 Fig.3-34 Three-dimensional instantaneous velocity chart for single wavy wall in the

mean streamwise and normal velocity · · · 48 Fig.3-35 Three-dimensional instantaneous velocity chart for bilateral wavy wall in

the mean streamwise and normal velocity · · · 49 Fig.3-36 Three-dimensional instantaneous velocity chart for flat boundary in the

cross-stream direction · · · 49 Fig.3-37 Three-dimensional instantaneous velocity chart for single wavy wall in the

cross-stream direction · · · 50 Fig.3-38 Three-dimensional instantaneous velocity chart for bilateral wavy wall in

the cross-stream direction · · · 50

(8)

Fig.3-39 Three-dimensional instantaneous velocity chart for flat boundary in the

spanwise direction · · · 51 Fig.3-40 Three-dimensional instantaneous velocity chart for single wavy wall in the

spanwise direction · · · 51 Fig.3-41 Three-dimensional instantaneous velocity chart for bilateral wavy wall in

the spanwise direction· · · 52 Fig.3-42 Distributions of instantaneous streamwise velocity for flat boundary, single

wavy wall and bilateral wavy wall in the X-Y planes · · · 53 Fig.3-43 Distributions of instantaneous cross-stream velocity for flat boundary, single

wavy wall and bilateral wavy wall in the X-Y planes · · · 54 Fig.3-44 Distributions of instantaneous spanwise velocity for flat boundary, single

wavy wall and bilateral wavy wall in the X-Y planes · · · 55 Fig.3-45 Pressure curve from the studies for Reynolds number is 3460 · · · 56

(9)

1 . I n t ro d u c t i o n

T h e w a y t o r e d u c e r e s i s t a n c e c a u s e d b y w a v y w a l l s w a s q u i t e d i f f e r e n t f r o m o t h e r c o n d i t i o n s . R e s e a r c h e r s h o w e d l i t t l e k n o w l e d g e a b o u t i t s i n t r i n s i c p r o p e r t i e s . T h e b l i n d n e s s o n q u a n t i t a t i v e a n a l y s i s a n d o p t i m a l s u r f a c e d e s i g n s t o r e d u c e r e s i s t a n c e w a s u n a v o i d a b l e . R e c e n t l y, t h e r e s e a r c h i n g e f f o r t w a s m a i n l y c o n c e n t r a t e d o n t h e d i s c l o s u r e a n d c o n t r o l o f f l o w i n g s t r u c t u r e s . I t w a s p e o p l e ’s e x p e c t a t i o n t h a t t h e e x p l o r a t i o n o n w a v y w a l l s c o u l d b e i m p r o v e d t h e o r e t i c a l l y w i t h t h e a p p l i c a t i o n s t o e n g i n e e r i n g t e c h n i q u e s t o r e d u c e r e s i s t a n c e c a u s e d b y w a v y w a l l s . I n t h i s s t u d y, C u i e t a l [ 2 ] a n d C h e r u k a t e t a l [ 3 ] p r o p o s e d t h e e x p e r i m e n t a l d a t a f o r t h e c o m p a r i s o n o f f l o w i n g s t r u c t u r a l c h a n g e s , w a l l p r e s s u r e g r a d i e n t s a n d f a i r l y c o m p l e x r e s i s t a n c e c h a n g e s c a u s e d b y w a l l s u r f a c e . O b v i o u s l y, t h e c a p a b i l i t y f o r w a v y w a l l s t o r e d u c e r e s i s t a n c e w a s b e c a u s e t h e e x i s t e n c e o f w a v y w a l l s c o u l d i m p r o v e p a r t i a l t u r b u l e n c e s t r u c t u r e n e a r b y w a l l s . To r e a c h t h e b r e a k t h r o u g h i m p r o v e m e n t t o r e d u c e r e s i s t a n c e c a u s e d b y w a l l s , t h e f i r s t s t e p h a d t o b e t a k e n i n r e s e a r c h i n g t h e f l o w i n g c h a r a c t e r i s t i c s n e a r b y w a v y w a l l s .

E x p e r i m e n t a l r e s e a r c h o f f l o w o v e r t h e w a v y w a l l w a s p e r f o r m e d a s e a r l y a s 1 9 3 2 . T h e t h e o r y o f t h e s u r f a c e w a l l v a r i a t i o n h a s b e e n d e v e l o p e d . Z i l k e r a n d H a n r a t t y [ 4 ] , Z i l k e r e t a l . [ 5 ] c o n t i n u e d t o c o n d u c t s t u d i e s i n c l u d i n g t h e e x p e r i m e n t s o f g a u g i n g w a l l s u r f a c e p r e s s u r e , m e a s u r i n g m e a n v e l o c i t y o f s t r e a m a n d t h e w a l l s u r f a c e s h e a r i n g s t r e s s a n d a n a l y z i n g t h e m o b i l e c h a r a c t e r i s t i c s . I n 1 9 8 5 P a t e l [ 6 ] h a s i m p r o v e d s i m u l a t i o n f o r s e v e r a l k i n d s o f n e a r w a l l w i t h l o w R e y n o l d s n u m b e r k−ε m o d e l . P a t e l a n d C h e n [ 7 ] h a v e u s e d d o u b l e - d e c k e d m o d e l t o s o l v e t u r b u l e n t c o m p l e x s t a l l e d f l o w. S i n c e t h i s m o d e l s a v e s t h e g r i d s , t h e r e f o r e i t c a n e f f e c t i v e l y s a v e t h e c o m p u t a t i o n s p a c e a n d t i m e a n d e n h a n c e s t h e c o m p u t a t i o n f e a s i b i l i t y.

P a t e l e t a l . [ 8 ] c a l c u l a t i o n o f t h e w a v y w a l l t u r b u l e n t f l o w w a s c o n d u c t e d o n t w o k i n d s o f w a v e h e i g h t r a t i o s i n 1 9 9 1 . T h e s i m u l a t e d s t r e a m l i n e s p i c t u r e i n t h e n e a r w a l l v o r t e x a r e a a n d t h e c r o s s s e c t i o n v e l o c i t y d i s t r i b u t i o n w e r e i n a g o o d a g r e e m e n t w i t h t h e e x p e r i m e n t a l r e s u l t s . C o m p a r i s o n o f f r i c t i o n c o e f f i c i e n t c u r v e s w i t h p r e s s u r e c o e f f i c i e n t s w a s a l s o m a d e b e t w e e n t h e w a v y w a l l s u r f a c e a n d f l a t s u r f a c e . T h e e f f e c t s o f t h e p r o f i l e o n f l o w s i n t h e n e a r w a l l a r e a w e r e a n a l y z e d . F e r r i r a a n d L o p e s [ 9 ] c a r r i e d o n t h e m u l t i - g r o u p w i n d t u n n e l e x p e r i m e n t s o n t h e u n i m o d u l a r f l o w s o f s i n u s o i d a l w a v y w a l l

(10)

f l o w f i e l d . T h e l o w R e y n o l d s n u m b e r k - ε m o d e l w i t h t h e c o n t r o l v o l u m e t r i c m e t h o d w a s u s e d t o c o m p u t e w a v y w a l l n e a r z o n e s t a l l e d f l o w f o r v a r i o u s w a v e h e i g h t r a t i o s (A/λ . M o n t a l b a n o a n d ) M c C r e a d y [ 1 0 ] u s e d t h e w a v e s t a b i l i t y t h e o r y a n d a d d e d s m a l l p e r t u r b a t i o n q u a n t i t y t o O r r - S o m m e r f e l d e q u a t i o n t o d e v e l o p t h e r e l a t i o n b e t w e e n t h e l a m i n a r w a l l s u r f a c e p r e s s u r e a n d t h e s h e a r s t r e s s e s .

A i r i a u a n d G i o v a n n i n i [ 11 ] u t i l i z e d s t a t i s t i c a l s i m u l a t i o n t o o b t a i n t h e s t r e a m f u n c t i o n a n d v o r t e x c h a r t s a t d i f f e r e n t t i m e f o r t h e s i n u s o i d a l w a v y w a l l . A l s o t h e a v e r a g e s t r e a m f u n c t i o n a n d t h e a v e r a g e w a l l s u r f a c e p r e s s u r e c o e f f i c i e n t c u r v e s w e r e c a l c u l a t e d u s i n g t h e t i m e a v e r a g e m e t h o d . Wi t h t h e s e t o o l s v o r t i c i t y a n d v a r i a t i o n o f t h e p r e s s u r e g r a d i e n t a l o n g t h e w a l l s u r f a c e w e r e a n a l y z e d . M a l a m a t a r i s 1 a n d B o n t o z o g l o u [ 1 2 ] t h e d i m e n s i o n l e s s N a v i e r – S t o k e s e q u a t i o n s a r e s o l v e d i n t h e w h o l e r a n g e o f t h e l a m i n a r f l o w r e g i m e . N u m e r i c a l p r e d i c t i o n s a r e c o m p a r e d w i t h a v a i l a b l e e x p e r i m e n t a l d a t a f o r v e r y l o w R e y n o l d s n u m b e r s . T h e e m p h a s i s i n t h e d i s c u s s i o n o f r e s u l t s i s g i v e n i n t h e p r e s e n t a t i o n o f f r e e s u r f a c e p r o f i l e s , s t r e a m l i n e s , v e l o c i t y, a n d p r e s s u r e d i s t r i b u t i o n s a l o n g t h e f r e e s u r f a c e a n d t h e w a l l . T h e i n t e r a c t i o n o f t h e d i m e n s i o n l e s s n u m b e r s o f t h e f l o w i s s t u d i e d , c r i t e r i a f o r f l o w r e v e r s a l a r e e s t a b l i s h e d , a n d a r e s o n a n c e p h e n o m e n o n a t h i g h R e y n o l d s n u m b e r s i s i n v e s t i g a t e d . B o e r s m a [ 1 3 ] . T h e e v o l u t i o n i n s p a c e a n d t i m e o f p a r t i c l e s a r e r e l e a s e d i n t h i s f l o w w i l l b e e x a m i n e d . I t w i l l b e s h o w n t h a t s m a l l w a v e s o n t h e c h a n n e l b o t t o m c a n g e n e r a t e l a r g e l o n g i t u d i n a l v o r t i c e s s i m i l a r t o L a n g m u i r v o r t i c e s t h a t a r e o b s e r v e d i n f l o w s w i t h w a v e s a t t h e f r e e - s u r f a c e . T h e s i m u l a t i o n r e s u l t s s h o w t h a t t h e c o n c e n t r a t i o n o f t h e p a r t i c l e s i s m a x i m a l o n t h e d o w n s t r e a m s i d e o f t h e w a v e c r e s t . N a k a g a w a e t a l . [ 1 4 ] , M e a s u r e m e n t s o f t u r b u l e n c e w i t h l a s e r D o p p l e r v e l o c i m e t r y ( L D V ) a r e c o m p a r e d f o r t u r b u l e n t f l o w o v e r a f l a t s u r f a c e a n d a s u r f a c e w i t h s i n u s o i d a l w a v e s o f s m a l l w a v e l e n g t h . T h e w a v y b o u n d a r y w a s h i g h l y r o u g h i n t h a t t h e f l o w s e p a r a t e d . T h e R e y n o l d s n u m b e r b a s e d o n t h e h a l f - h e i g h t o f t h e c h a n n e l a n d t h e b u l k v e l o c i t y w a s 4 6 , 0 0 0 . T h e w a v e l e n g t h w a s 5 m m a n d t h e h e i g h t t o w a v e l e n g t h r a t i o w a s 0 . 1 . T h e r o o t - m e a n - s q u a r e s o f t h e v e l o c i t y f l u c t u a t i o n s a r e a p p r o x i m a t e l y e q u a l i f n o r m a l i z e d w i t h

(11)

s h e a r s t r e s s . C a l c u l a t i o n s w i t h a d i r e c t n u m e r i c a l s i m u l a t i o n ( D N S ) a r e u s e d t o s h o w t h a t t h e f l u i d i n t e r a c t s w i t h t h e w a l l i n q u i t e d i f f e r e n t w a y s f o r f l a t a n d w a v y s u r f a c e s . T h e y s h o w s i m i l a r i t y i n t h a t l a r g e q u a d r a n t 2 e v e n t s i n t h e o u t e r f l o w, f o r b o t h c a s e s , a r e a s s o c i a t e d w i t h p l u m e s t h a t e m e r g e f r o m t h e w a l l r e g i o n a n d e x t e n d o v e r l a r g e d i s t a n c e s . M e a s u r e m e n t s o f s k e w n e s s o f t h e s t r e a m w i s e a n d w a l l - n o r m a l v e l o c i t y f l u c t u a t i o n s a n d q u a d r a n t a n a l y s e s o f t h e R e y n o l d s s h e a r s t r e s s e s a r e q u a l i t a t i v e l y s i m i l a r f o r f l a t a n d w a v y s u r f a c e s . H o w e v e r, t h e s k e w n e s s m a g n i t u d e s a n d t h e r a t i o o f t h e q u a d r a n t 2 t o q u a d r a n t 4 c o n t r i b u t i o n s a r e l a r g e r f o r t h e w a v y s u r f a c e . T h u s , t h e r e i s e v i d e n c e t h a t t u r b u l e n t s t r u c t u r e s a r e u n i v e r s a l i n t h e o u t e r f l o w a n d f o r q u a n t i t a t i v e d i f f e r e n c e s i n t h e s t a t i s t i c s t h a t r e f l e c t d i f f e r e n c e s i n t h e w a y i n w h i c h t h e f l u i d i n t e r a c t s w i t h t h e w a l l . Z i l k e r e t a l . [ 1 5 ] m e a s u r e m e n t s o f t h e s h e a r - s t r e s s v a r i a t i o n a l o n g a n d t h e v e l o c i t y p r o f i l e s a b o v e a s o l i d w a v y w a l l b o u n d i n g a t u r b u l e n t f l o w a r e p r e s e n t e d f o r w a v e s w i t h h e i g h t - t o - l e n g t h r a t i o s o f 2 a / λ = 0 · 0 3 1 2 a n d 0 · 0 5 . T h e s e a r e c o m p a r e d w i t h p r e v i o u s m e a s u r e m e n t s o f t h e w a l l s h e a r s t r e s s r e p o r t e d b y T h o r s n e s s ( 1 9 7 5 ) a n d b y M o r r i s r o e ( 1 9 7 0 ) f o r 2 a / λ = 0 · 0 1 2 . T h e i n v e s t i g a t i o n c o v e r e d a r a n g e o f c o n d i t i o n s f r o m t h o s e f o r w h i c h a l i n e a r b e h a v i o u r i s o b s e r v e d t o t h o s e f o r w h i c h a s e p a r a t e d f l o w i s j u s t b e i n g i n i t i a t e d .

A b o v e m e n t i o n e d r e s e a r c h e s o n w a v y w a l l s w e r e m a i n l y f o c u s e d o n s i n e w a v y w a l l s . H o w e v e r, t h e r e w e r e f e w s t u d i e s o n z i g z a g w a v y w a l l s ( t r i a n g u l a r w a v y w a l l s ) a n d r e c t a n g u l a r w a v y w a l l s b e c a u s e t h e p h y s i c a l n u m e r i c a l m e a s u r i n g o n w a v e t i p s f o r b o t h z i g z a g a n d r e c t a n g u l a r w a v y w a l l s w a s m o r e d i f f i c u l t . M . C . G o o d a n d P. N . J o u b e r ( 1 9 6 8 ) [ 1 7 ] u s e d t o i m p l e m e n t e x p e r i m e n t s o n s q u a r e w a v e s ( L / H = 1 . 0 ) a n d t h i n w a v e s ( L / H = 0 . 1 ) w i t h t h e c r o s s - s e c t i o n a l v e l o c i t y ) a n d p r e s s u r e c o e f f i c i e n t o f w a l l s u r f a c e c o n c l u d e d . P a s t r e s e a r c h e s u s e d t o d i s c l o s e t h e f l o w i n g c h a r a c t e r i s t i c s c a u s e d b y w a v y w a l l s t o a c e r t a i n d e g r e e ( e x p e r i m e n t a n d c o m p u t a t i o n ) , s u c h a s t h e t y p e s o f f l o w i n g f i e l d s , a r e a s o f s w i r l z o n e s , d i s t r i b u t i o n o f s p a n w i s e v e l o c i t y, p r e s s u r e o f w a l l s u r f a c e a n d s h e a r s t r e s s , e t c .

(12)

2 . N u m e r i c a l m e t h o d 2 . 1 F l o w c o n f i g u r a t i o n

T h e p a r a m e t e r s o f t h e s i m u l a t i o n a r e t h e s a m e a s u s e d b y C h e r u k a t e t a l . [ 3 ] . I n t h e i r n u m e r i c a l , t h e a m p l i t u d e a n d t h e w a v e l e n g t h o f t h e w a v y w a l l w e r e 2 . 5 4 m m a n d 5 0 . 8 m m , r e s p e c t i v e l y.

T h e d i s t a n c e b e t w e e n t h e m e a n l o c a t i o n o f t h e w a v y s u r f a c e a n d t h e f l a t w a l l w a s 5 0 . 8 m m . A s c h e m a t i c d i a g r a m o f t h e t h r e e - d i m e n s i o n a l c o m p u t a t i o n a l d o m a i n i s s h o w n i n F i g u r e 2 - 1 . I t c o n s i s t s o f a c h a n n e l w h i c h i s u n b o u n d e d i n b o t h t h e s t r e a m w i s e ( x ) a n d s p a n w i s e ( z ) d i r e c t i o n s . T h e l o w e r w a l l h a s Nω(=4) w a v e s w i t h s i n u s o i d a l s h a p e a n d a m e a n p o s i t i o n a t t h e y = 0 p l a n e ( y i s t h e v e r t i c a l d i r e c t i o n ) . T h e f l a t w a l l i s l o c a t e d a t y = h . T h e l o c a t i o n o f t h e w a v y w a l l , y , ω

i s g i v e n b y

2 )

( cos λ

π

ω

a x

y =

w h e r e a i s t h e a m p l i t u d e o f t h e w a v e

a n d ¸ i s t h e w a v e l e n g t h . T h e m e a n f l o w i n t h e s t r e a m w i s e d i r e c t i o n i s p r e s s u r e d r i v e n . I n t h e p r e s e n t s t u d y, w a v e l e n g t h ¸ a n d a m p l i t u d e a w e r e s e t e q u a l t o h a n d 0 . 0 5 h t o m a t c h t h e p a r a m e t e r s o f H u d s o n ’s ( 1 9 9 3 ) m e a s u r e m e n t s .

T h e f l o w i s a s s u m e d t o b e h o m o g e n e o u s i n t h e s p a n w i s e d i r e c t i o n , j u s t i f y i n g t h e u s e o f p e r i o d i c b o u n d a r y c o n d i t i o n s . T h e f l o w i s a l s o a s s u m e d t o b e p e r i o d i c i n t h e s t r e a m w i s e d i r e c t i o n . T h u s , t h e c o m p u t a t i o n a l b o x s i z e i n t h e s t r e a m w i s e (Λx=Nωλ) a n d s p a n w i s e d i r e c t i o n s( xΛ s h o u l d b e l a rg e e n o u g h t o i n c l u d e t h e l a rg e s t l e n g t h ) s c a l e o f t h e t u r b u l e n t s t r u c t u r e s . T h e e x t e n t s o f t h e c o m p u t a t i o n a l d o m a i n w e r e , r e s p e c t i v e l y, c h o s e n t o b e 4 h i n t h e s t r e a m w i s e d i r e c t i o n a n d 2 h i n t h e s p a n w i s e d i r e c t i o n .

(13)

F i g . 2 - 1 C o m p u t a t i o n a l d o m a i n o f f l o w o v e r a w a v y w a l l .

.

2 . 2 G o v e r n i n g e q u a t i o n

3 D N a v i e r - S t o k e s d i f f e r e n t i a l e q u a t i o n :

z Gv y

Fv x

Ev z

G y

F x

E t

Q

∂ + ∂

∂ + ∂

= ∂

∂ + ∂

∂ + ∂

∂ + ∂

∂ ( 2 - 1 )

w h e r e Q i s a c o n s e r v a t i o n v a r i a b l e i n e q u a t i o n :









= w v u p

Q J1

( 2 - 2 a )

W h e r e p i s t h e s t a t i c p r e s s u r e ; u, v, a n d w a r e t h e v e l o c i t y c o m p o n e n t s i n C a r t e s i a n c o o r d i n a t e s , r e s p e c t i v e l y, J i s t h e J a c o b i a n o f t h e c o o r d i n a t e t r a n s f o r m a t i o n .

E, F, a n d G a r e t h e i n v i s c i d f l u x e s ︰









+ +

= +

p wU

p vU

p uU

U

E J

z y x

ξ ξ ξ β

1 ( 2 - 2 b )

(14)









+ +

= +

p wV

p vV

p uV

V

F J

z y x

η η η β

1 ( 2 - 2 c )









+ +

= +

p wW

p vW

p uW

W

G J

z y x

ς ς ς β

1 ( 2 - 2 d )

W h e r e β i s t h e a r t i f i c i a l c o m p r e s s i b i l i t y c o n s t a n t .

U, V, a n d W a r e t h e c o n t r a v a r i a n t v e l o c i t y c o m p o n e n t s i n c u r v i l i n e a r c o o r d i n a t e d i r e c t i o n s , r e s p e c t i v e l y :

w v u W

w v u V

w v u U

z y x

z y x

z y x

ς ς ς

η η η

ξ ξ ξ

+ +

=

+ +

=

+ +

=

( 2 - 3 )

Eν, Fν, and G are s t i c k i n e s s f l u x e s d e f i n e d a s : v

( ) ( )

( ) ( )

( ) ( )







+ +

+ +

+ + +

+

+ + +

= +

z z y y z x x z

z z y y y x x y

z z x v y x x x v

w w

v w

u

v w v

v u

u w u

v u

h E

ξ ν ξ ν

ξ ν

ξ ν

ξ ν ξ ν

ξ ν

ξ ν

ξ ν

2 2

2

0

( 2 - 4 a )

( ) ( )

( ) ( )

( ) ( )







+ +

+ +

+ + +

+

+ + +

= +

z z y y z x x z

z z y y y x x y

z z x y y x x x v

w w

v w

u

v w v

v u

u w u

v u

h F

η ν η ν

η ν

η ν

η ν η ν

η ν

η ν

η ν

2 2

2

0

( 2 - 4 b )

( ) ( )

( ) ( )

( ) ( )







+ +

+ +

+ + +

+

+ + +

= +

z z y y z x x z

z z y y y x x y

z z x y y x x x v

w w

v w

u

v w v

v u

u w u

v u

h G

ζ ν ζ ν

ζ ν

ζ ν

ζ ν ζ ν

ζ ν

ζ ν

ζ ν

2 2

2

0

( 2 - 4 c )

T h e J a c o b i a n m a t r i c e s A , B , C (

Q A E

= ∂ ,

Q B F

= ∂ ,

Q C G

= ∂ ) , a r e g i v e n b y

(15)









+ +

= +

w k w

k w k k

v k v k v

k k

u k u k u k k

k k

k

A J

z y

x z

z y

x y

z y

x x

z y

x

i

θ θ

θ

β β

β 0

1 , (i = 1 ,2 ,3 ) ( 2 - 5 )

a n d

( ) ( ) ( ) ( )

ζ ξ η ξ ξ ξ

ξ ξ

ξ θ

=

=

=

=

=

=

=

+ +

=

3 2

1 , ,

3 , 2 , 1 , ,

, k k i

k

w k v k u k

i z y z

i x y

i x

z y x

( 2 - 6 )

A s i m i l a r i t y t r a n s f o r m f o r t h e J a c o b i a n m a t r i x i s i n t r o d u c e d :

1

Λ

= i i i

i R R

A ( 2 - 7 )

w i t h





= +

c Ai c

θ θ θ θ

0 0 0

0 0

0

0 0 0

0 0 0

( 2 - 8 )

w h e r e c i s t h e s c a l e d a r t i f i c i a l s p e e d o f s o u n d g i v e n b y

β θ +

= 2

c

T h e m a t r i x o f t h e r i g h t e i g e n v e c t o r s i s g i v e n b y





+

+

+

=

+

+

+

+

z z

y y

x x

i

k u k w z z

k u k v y y

k u k u x x

c c

R

λ λ

λ λ

λ λ

λ λ

1 2

1 2

1 2

0 0

( 2 - 9 )

a n d i t s i n v e r s e i s g i v e n b y

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )









− +

+

− +

+

=

+ +

+

z u

x

z y

x i

k k

k

k k

k

d y d x d

x d z d

z d y a

z a y a x

d x d y d

z d x d

y d z a

z a y a x

R c

λ λ

λ

λ λ

λ 1

1

2 2

2 2

2 2

2 2

2

1 2 2 2 3 2 1 2 3 2 2 2 1 2 3 2 2 2 1

2 1 1 1 1

1 3 1 3

1 2 1 1

1 3 1 2 1

2 1

( 2 - 1 0 ) w h e r e

(16)

w k

d v k d u k

d

w k u k a v k w k a u k v k a

c c

z z y y

x x

z z y y

x x

z t

x

x z z

y y

x

i i

i

i i

i

θ β θ

β θ

β

θ λ θ

λ

η ξ ξ ξ ζ ξ

ξ ξ

ξ

ξ ξ ζ ξ η ξ

ξ ξ

ξ

+

= +

= +

=

=

=

=

= +

=

=

=

=

= ∂

= ∂

= ∂

=

=

=

= ∂

= ∂

= ∂

+

+ +

+

+ +

+

3 2

1

3 2

1

2 1

3

2 2

2 2

2 2

1 3

2

1 1

1 1

1 1

, ,

, ,

, , ,

, ,

, ,

, ,

( 2 - 11 )

w h e r e t h e c o m p o n e n t s o f t h e s h e a r - s t r e s s t e n s o r a r e g i v e n b y

) 2

3 ( 2

z w y v x u

xx

−∂

−∂

= µ ∂

τ ( 2 - 1 2 a )

) 2

3 ( 2

z w x u y v

yy

−∂

−∂

= µ ∂

τ ( 2 - 1 2 b )

) 2

3 ( 2

y v x u z w

zz

−∂

−∂

= µ ∂

τ ( 2 - 1 2 c )

yx

xy x

v y

u τ

µ

τ =

∂ + ∂

= (∂ ) ( 2 - 1 2 d )

zx

xz z

u x

w τ

µ

τ =

∂ +∂

= (∂ ) ( 2 - 1 2 e )

zy

yz y

w z

v τ

µ

τ =

∂ +∂

= (∂ ) ( 2 - 1 2 f )

w h e r e v i s c o s i t y c o e f f i c i e n t

1 c

1.5

T c T µ =  +

 + 

w h e r e T i s a n o n - d i m e n s i o n a l t e m p e r a t u r e ; c i s S u t h e r l a n ’s

c o n s t a n t110.4

T

;

p r

t

P c k

=

µ

, g e n e r a l l y pr i s s e t a t 0 . 7 2 .

2 . 3 U p w i n d s c h e m e

To i l l u s t r a t e t h e m e t h o d , c o n s i d e r t h e f o l l o w i n g o n e - d i m e n s i o n a l l i n e a r w a v e e q u a t i o n

(17)

= 0

∂ + ∂

x a u t

u

( 2 - 1 3 )

I t d e s c r i b e s a w a v e p r o p a g a t i n g i n t h e x - d i r e c t i o n w i t h a v e l o c i t y a.

T h e p r e c e d i n g e q u a t i o n i s a l s o a m a t h e m a t i c a l m o d e l f o r o n e - d i m e n s i o n a l l i n e a r a d v e c t i o n . C o n s i d e r a t y p i c a l g r i d p o i n t i i n t h e d o m a i n . I n a o n e - d i m e n s i o n a l d o m a i n , t h e r e a r e o n l y t w o d i r e c t i o n a s s o c i a t e d w i t h p o i n t i - l e f t a n d r i g h t . I f a i s p o s i t i v e t h e l e f t s i d e i s c a l l e d u p w i n d s i d e a n d r i g h t s i d e i s t h e d o w n w i n d s i d e . S i m i l a r l y, i f a i s n e g a t i v e t h e l e f t s i d e i s c a l l e d d o w n w i n d s i d e a n d r i g h t s i d e i s t h e u p w i n d s i d e . I f t h e f i n i t e d i f f e r e n c e s c h e m e f o r t h e s p a t i a l d e r i v a t i v e ,

u x

∂ ∂ c o n t a i n s m o r e p o i n t s i n t h e u p w i n d s i d e , t h e s c h e m e i s s i m p l y a n u p w i n d s c h e m e .

T h e s c h e m e c a n b e c o m b i n e d a n d w r i t t e n i n a c o m p a c t f o r m a s

)]

( ) (

[ 1 1

1 n

i n i n

i n i n

i n

i

u a u u a u u

u

+ = −

λ

+ + + − ( 2 - 1 4 )

w h e r e

x t

= ∂

λ

( 2 - 1 5 )

) 2(

1

a a

a

+ = + ( 2 - 1 6 )

) 2(

1

a a

a

= − ( 2 - 1 7 )

U s i n g t h e r e l a t i o n s h i p b e t w e e n a+, a a n d a, t h e s c h e m e a g a i n c a n b e w r i t t e n a s

) 2

2 ( )

2 ( 1 1 1 1

1 n

i n i n

i n

i n i n

i n

i

u a u u a u u u

u

+ = −

λ

+ +

λ

+ − +

( 2 - 1 8 )

2 . 4 Te m p o r a l D i s c r e t i z a t i o n

I n t h e t i m e i n t e g r a l , t h i s s t u d y u s e s i m p l i c i t e x p r e s s i o n t i m e i n t e g r a t i o n o f L U - S S O R b y Yo o n & J a m e s o n ( 1 9 8 7 ) t o t h e t w o o r d e r s p r e c i s i o n . A l s o o n l y t h e d i a g o n a l m a t r i x o f t h e c o n c e a l e d m o d e o f t h e i n v e r s e m a t r i x w a s c a l c u l a t e d t o s a v e t h e c o m p u t i n g t i m e . T h e v e c t o r i z a t i o n p r o c e s s i s q u i t e s u c c i n c t a n d e a s y t o u n d e r s t a n d .

(18)

T h e r e f o r e t h e e x p r e s s i o n m a y a p p l y o n l y i n t h e i n c o m p r e s s i b l e f l o w f i e l d .

F i r s t l y, m a k i n g l i n e a r i z a t i o n p r o c e s s i n g t o t h e n + 1 t i m e s t e p f l u x ,



 

 ∆ Ο +

∆ +

=



 

 ∆ Ο +

∆ +

=



 

 ∆ Ο +

∆ +

=



 

 ∆ Ο +

∆ +

=



 

 ∆ Ο +

∆ +

=



 

 ∆ Ο +

∆ +

=

+ + + + + +

1 2 1 2 1 2 1 2 1 2 1 2

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ

Q Q

C G G

Q Q

B F F

Q Q

A E E

Q Q

C G G

Q Q

B F F

Q Q

A E E

n v n v n v

n v n v n v

n v n v n v

n n n

n n n

n n n

( 2 - 1 9 )

w h e r e Aˆ , Bˆ , and Cˆ are J o c o b i a n m a t r i x e s o f n o n - v i s c o s i t y v a l u e f l u x e s , , and ; a n d Aˆv, v, and v are J o c o b i a n m a t r i x e s o f v i s c o s i t y v a l u e f l u x e sv, v, and v. Q) i s t h e m i c r o v a r i a b l e o f c o n s e r v a t i o n v a r i a b l e i n t h e t i m e s t e p . U s i n g t h e s i g n o f c h a r a c t e r i s t i c v a l u e s , n o n - v i s c o s i t y f l u x J a c o b i a n m a t r i x c a n b e f u r t h e r d e c o m p o s e d i n t o :

1

1

+

+

+ = Λ + Λ

=

i i i i i i i i

i

A A R R R R

A ) ) )

( 2 - 2 0 ) w h e r e d i a g o n a l m a t r i x Λ+i i s c o m p o s e d b y n o n - n e g a t i v e c h a r a c t e r i s t i c v a l u e s o f t h e Λi a n d m a t r i x Λi i s c o m p o s e d b y t h e n o n - p o s i t i v e c h a r a c t e r i s t i c v a l u e s o f Λi.

U s i n g t h e i m p l i c i t E u l e r s c h e m e f o r s p a c e - t i m e d i c r e t i z a t i o n:

(19)

( )

[ ] [ ( ) ]

( )

[ ] [ ( ) ]

( )

[ ] [ ( ) ]

=

+

− − + −

− +

+

− − + −

− +

+

− − + −

− +

∆ + −

1 2 , 1 ,

~ 1 ~

2 , 1 ,

~

~

1 2, , 1

~ 1 ~

2, , 1

~

~

1 , 2, 1

~ 1 ~

, 2, 1

~

~ ,

ˆ, 1 , ˆ, , ,

n k j Si Gv n G

k j Si Gv G

n k j Si Fv n F

k j Si Fv F

n k j Si Ev n E

k j Si Ev t E

n k j Qi n

k j Qi k j Vi

( 2 - 2 1 )

w h e r e n i s t h e t i m e t a r g e t .

S u b s t i t u t i n g t h e l i n e a r i z e d f l u x f r o m e q u a t i o n ( 2 - 1 9 ) a n d d e c o m p o s e d J a c o b i a n m a t r i x i n t o e q . ( 2 - 2 1 ) a n d n e g l e c t i n g t h e s e c o n d a n d h i g h e r o r d e r i t e m s , a d i a g o n a l l i n e i m p l i c i t e x p r e s s i o n c a n b e o b t a i n e d .

RHS S

G G S

G G

S F F S

F F

S E E S

E E

Q S

C C Q

S C C

Q S

C C Q

S C C

Q S

B B Q

S B B

Q S

B B Q

S B B

Q S

A A Q

S A A

Q S

A A Q

S A A Q

t I V

k j v i k

j v i

k j v i k

j v i

k j v i

k j v i

n k j k i

j v i k

j k i

j v i

k j k i

j v i k

j k i

j v i

k j k i j v i k

j k i j v i

k j k i j v i k

j k i j v i

k j k i j v i

k j k i

j v i

k j k i

j v i

k j k i j v i

k j i k j i

=

∆ +

∆ +

+

− +

∆ +

∆ +

+

− +

∆ +

∆ +

+

− +

∆ ∆

+ +

+

+

+ +

+

+ +

+ +

+

+ +

+ +

+

+ +

} ]

~ ) [(~ ]

~ ) {[(~

} ]

~ ) [(~ ]

~ ) {[(~

} ]

~ ) [(~ ]

~ ) {[(~

} ]

) [(

] ) [(

] ) [(

] ) [(

] ) [(

] ) [(

] ) [(

] ) [(

] ) [(

] ) [(

] ) [(

] ) {[(

2 , 1 2 ,

, 1 ,

2, , 1 2,

, 1

, 2, , 1

2, 1

, , 2 , 1 1 ,

, , 2 , 1 ,

1 , , 2 , 1 , ,

, 2 , 1 ,

, , ,

2 , 1 ,

1 , ,

2 , 1

, 1 , ,

2 , 1 ,

, , 2 , 1

, , ,

2, 1 ,

, , 1

2, 1

, , , 1

2, 1 ,

, , 2, 1 ,

, ,

,

) )

) )

) )

) )

) )

) )

) )

) )

) )

) ) ) )

) )

) )

) )

) )

) )

) )

) ) )

( 2 - 2 2 )

w h e r e I i s t h e u n i t m a t r i x . U s i n g v i s c o s i t y f l u x o f t h e J a c o b i a n m a t r i x i n t h e i m p l i c i t s c h e m e c a n i n c r e a s e t h e c o n v e r g i n g s p e e d .

2 . 5 C o m p u t a t i o n a l G r i d

T h e f l o w f i e l d c o n t a i n s s e v e r a l r e g i o n s , w i t h l a r g e g r a d i e n t s , w h i c h r e q u i r e c a r e f u l r e s o l u t i o n . G r i d c l u s t e r i n g i s r e q u i r e d i n t h e

(20)

v e r t i c a l d i r e c t i o n n e a r t h e w a l l s t o r e s o l v e t h e b o u n d a r y l a y e r. T h e s e p a r a t e d s h e a r l a y e r, w h i c h i s l o c a t e d o v e r t h e s e p a r a t i o n b u b b l e , a l s o n e e d s s p e c i a l a t t e n t i o n . B e c a u s e o f t h e s e r e q u i r e m e n t s , a f i n e r e s o l u t i o n s h o u l d b e m a i n t a i n e d u p t o t h e m i d d l e o f t h e c h a n n e l i n o r d e r t o r e s o l v e t h e s e p a r a t e d s h e a r l a y e r p r o p e r l y.

T h e ( x , y, z ) d i r e c t i o n w a s d i s c r e t i z e d i n t o 2 1 0 1 2 5 e l e m e n t s . T h e n u m b e r o f g r i d p o i n t s i n t h e x d i r e c t i o n w a s 1 2 5 , i n t h e y a n d z d i r e c t i o n w a s 4 1 . To r e d u c e t h e c o m p u t a t i o n a l c o s t , t h e g o v e r n i n g e q u a t i o n s w e r e f i r s t i n t e g r a t e d i n t i m e o n a v e r y c o a r s e g r i d u n t i l t h e f l o w r e a c h e d a s t a t i s t i c a l l y s t e a d y s t a t e . T h e n t h e f l o w f i e l d w a s i n t e r p o l a t e d o n t o a f i n e r g r i d t o g e t a r e s t a r t f l o w f i e l d f o r t h e s i m u l a t i o n w i t h h i g h e r r e s o l u t i o n .

T h e f o l l o w i n g r e s u l t s w e r e o b t a i n e d :

( a ) A s t r e a m w i s e r e s o l u t i o n o f a t l e a s t 1 2 5 e l e m e n t s i s r e q u i r e d ; h i g h e r r e s o l u t i o n i n t h i s d i r e c t i o n d o e s n o t c a u s e s i g n i f i c a n t c h a n g e s . ( b ) S i g n i f i c a n t c h a n g e s w e r e f o u n d i f l e s s t h a n 4 1 e l e m e n t s w e r e u s e d i n t h e v e r t i c a l d i r e c t i o n . H i g h e r r e s o l u t i o n s t h a n t h i s i m p r o v e d t h e f i r s t - o r d e r s t a t i s t i c s o n l y s l i g h t l y.

( c ) A s t h e r e s o l u t i o n s i n t h e s t r e a m w i s e a n d v e r t i c a l d i r e c t i o n s i m p r o v e , t h e s h e a r s t r e s s a l o n g t h e u p p e r w a l l i n c r e a s e s .

C o m p a r i s o n s o f s t r e a m l i n e s , ψ , o f t h e m e a n f l o w f i e l d s a r e p r e s e n t e d i n F i g u r e 2 - 2 . T h e b o u n d a r y o f t h e s e p a r a t e d r e g i o n c o r r e s p o n d s t o t h e ψ = 0 c o n t o u r. T h e s i z e o f t h e s e p a r a t i o n b u b b l e i s s e e n t o c h a n g e o n l y s l i g h t l y a s t h e r e s o l u t i o n i n c r e a s e s .

(21)

F i g . 2 - 2 C o mp a r i s o n o f t h e s t r e a ml i n e s (ψ) w i t h d i ff e r e n t r e s o l u t i o n s . ( a ) 100×20×20 e l e me n t s ; ( b ) 125×41×41 e l e me n t s ; ( c ) 251×41×41 e l e me n t s .

2 . 6 I n i t i a l c o n d i t i o n a n d b o u n d a r y c o n d i t i o n

2 . 6 . 1 I n i t i a l c o n d i t i o n

T h e f l o w c o n d i t i o n s ( Re=hUb/2v=3460 ) c o n s i d e r e d , a d v e r s e p r e s s u r e g r a d i e n t s w e r e l a r g e e n o u g h t o c a u s e f l o w s e p a r a t i o n . T h e p r e s s u r e i s i n t h e s t a t i c a t m o s p h e r i c c o n d i t i o n .

2 . 6 . 2 B o u n d a r y c o n d i t i o n

B o u n d a r y c o n d i t i o n s a l o n g t h e s o l i d b o u n d a r i e s a r e n o s l i p a n d n o p e n e t r a t i o n . B o u n d a r y v a l u e o f t h e f l o w f i e l d i s a s s u m e d t o b e t h e i n i t i a l f l o w f i e l d e x i t c o n d i t i o n a n d k e p t c o n s t a n t .

2 . 6 . 3 B o u n d a r y c o n d i t i o n o n t o p o f b a s e a n d b e l o w (A)

(B)

(C)

參考文獻

相關文件

In flow field boarding up for the smooth wall surface, gets down the board is the Sinusoidal wavy wall, but under board wavy wall oscillation amplitude A=2.54(mm), the wave length λ

The phrase-based vector space model for automatic retrieval of free-text medical documents, Data & Knowledge Engineering, 61, 76-92,.. Pedersen, and Chen F., “A

Keyword: Assessment theory, Item selection strategy, Genetic algorithms, Revision of Bloom’s taxonomy.. Student:Shao-Hsuan Huang

This research is focused on the integration of test theory, item response theory (IRT), network technology, and database management into an online adaptive test system developed

為了讓行動客戶端可以順利地取得所需的資料項,index bucket 必須能夠引 導行動客戶端一步一步的拿到所需的資料項,因此在廣播結構中的

Internal service Quality, Customer and Job Satisfaction: Linkages and Implications for Management.. Putting the Service-Profit Chain

Step 5: Receive the mining item list from control processor, then according to the mining item list and PFP-Tree’s method to exchange data to each CPs. Step 6: According the

MPHP, a revised version of DHP, employs minimal perfect hashing functions (non-collision hashing functions) to generate frequent item sets directly without the need of