國立臺灣大學工程學院化學工程學所 碩士論文
Department of Chemical Engineering College of Engineering
National Taiwan University Master Thesis
有機朗肯循環在工業程序廢熱回收之應用
Process Integration of Organic Rankine Cycle for Waste Heat Recovery in Industrial Process
張丰議 Feng-Yi Chang
指導教授:陳誠亮 博士 Advisor: Cheng-Liang Chen, Ph.D.
中華民國 102 年 7 月 July, 2013
- .
1 2 3 4 5 6 7 8 9 : < = > ? @ A B C D E F G H I J K E
T M ? x E R U V M W I J X Y ? Z F h K
E a M ? E \ M 6 y h " l m n o p q r E
w # 5 $ 6 O % ? : E F s t K u v ? w x B 3 4 y 3 4 z
{ | : B Ward Jeff: ~ M ? I J ) * U + ? E F s t
K , - ? w x B 3 4 y
3 4 o 5 G : k \ G o : E $ L .
/ U ? E N q r n ~ n E $ s } t K u v ? w x y
F I J . / E 1 2 3 4 3 4 5 6 7 G 8 F I J K U + ?
9 B : ; E < = E } 3 4 > 4 5 ? @ 5 L N 5 { O 5 P Q 5 S [ 5 \
] 5 5 ^ _ 5 ` b 5 c d 5 e f 5 g i 5 j { | G 8 } E F ~
B G P M : ; E \ M h @ O _ PSE ? s
= E # 3 4 I J : 5 Q 5 L 5 5 5 r 5
5 5 ` E h " < = Y Y ? S E j ?
b 3 4 G : 5 5 ^ 5 w G 5 Q 5 5 ?
E \ 9 ¡ Y ? I J ¢ £ y > ? l m y
u ¤ E 3 4 M ? = > ? ¥ ¦ B C D E \ M % § ¨ © ? ª « $
¬ B I J K E p q r j k ® ~ E , - ? 3 4 ? 2 ; y
i
± ²
p I J F $ b c X O Y + , (Organic Rankine Cycle, ORC)*
) " B f g E R k G , ! " ?
y O Yee and Grossmann(1990a,1990b)# U ! " F $ %
& E p r U ) ( F $ % & E s $ % & ) a " R B "
R k \ " R B Y + , * h + ~ ? , ~ 3 U y a s $
% & E * $ , ! " ) o f g E o J ( ) *
+ , (MINLP) G f g E s @ A $ m A H 4 N O 9 E 5
6 F a # U $ % & E n ? u 7 8 9 ( E : s * k
O > x h G 8 0 1 y
F p q r ^ · ~ s , ! " f g E $ k < # ? > : 5
d @ (1) F N O Y + , E ) o B u C h D N O >
, ! " (2) $ > : (1)# j ? % E E N O Y + , B " ^
G p ~ m O ? E R k u 8 5 J 0 1 2 E j K 9
? , ! " y p r L ? ^ E 9 a # U ? , ! "
$ % & E k \ # ? ( ) * + , f g E * k o 5 P ) o
u Q 8 ? Y + , ) " B R S y
iii
Abstract
This thesis aims at developing a mathematical model for the synthesis of a heat ex- changer network which can integrate with the organic rankine cycle (ORC) for recovery of low-grade waste heat. An integrated stagewise superstructure, which is analogous to the superstructure introduced by Yee and Grossmann for the synthesis of heat exchanger networks, is proposed for including the ORC as part of the heat recovery system. The integrated stagewise superstructure can represent all possible interconnections and inter- actions between process streams and the ORC. Based on this superstructure, the synthesis of heat exchanger networks with the ORC streams is formulated as a mixed-integer non- linear program (MINLP).
A two-steps solution method is suggested to solve the MINLP problem: (1) A heat exchanger network excluding the ORC is solved for minimizing the utility consumption;
(2) Based on the results of step one, a modified network including the ORC below the pinch point is synthesized for maximizing the generated work from the ORC turbine.
Some numerical examples from the literature are supplied to demonstrate the applicability the the proposed approach.
Key words: Optimization, Superstructure, heat exchange networks, organic rankine cycle, Mixed-integer nonlinear programming (MINLP)
v
» ¼ ¼ !
+ , . . . i
À Á . . . iii
Abstract . . . . v
d e f g. . . xi
d h f g. . . xiii
1 i j 1 1.1 o p . . . 1
1.2 : < = T V . . . 2
1.3 $ % & ' ( . . . 3
1.4 V W X Y . . . 4
1.5 . . . 6
1.6 . . . 7
2 9 2.1 ! " # $ % . . . 9
2.2 & . . . 10
2.3 & R S " # . . . 14
2.4 & \ ] ^ _ W ^ ` a b c d c (Indices, Sets, Parameter, and Variables) . . . 15
2.5 c (Objective Function and Contraints) . . . 17 vii
2.5.1 v w ( (Constraints) . . . 17
2.5.2 0 1 2 (Objective Function) . . . 20
2.5.3 , ! " 9 ( ) . . . 20
2.6 5 6 7 8 9 : < = T V . . . 21
2.6.1 X ~ ? R S % . . . 21
2.6.2 , ! " v w ( ? Q ' . . . 22
2.6.3 , ! " 9 ( ) . . . 23
3 H I J K ( ) * + 25 3.1 ! " # $ % . . . 25
3.2 & . . . 27
3.3 & R S " # . . . 28
3.4 & \ ] ^ _ W ^ ` a b c d c (Indices, Sets, Parameter, and Variables) . . . 29
3.5 c (Objective Function and Contraints) . . . 33
3.5.1 v w ( (Constraints) . . . 33
3.5.2 0 1 2 (Objective Function) . . . 41
3.5.3 , ! " 9 ( ) . . . 41
3.6 % X . . . 42
4 + I J K ( ) * + 49 4.1 ! " # $ % . . . 49
4.2 & R S " # . . . 50
4.3 & \ ] ^ _ W ^ ` a b c d c (Indices, Sets, Parameter, and Variables) . . . 51
4.4 c (Objective Function and Contraints) . . . 53
4.4.1 v w ( (Constraints) . . . 53
4.4.2 0 1 2 (Objective Function) . . . 64
4.4.3 , ! " 9 ( ) . . . 64
Â Ã Ã Ä ix
4.5 % X . . . 65
4.5.1 > = 9 ( B R = 9 ( % E B C . . . 65
4.5.2 Y + , \ * ] u 7 8 . . . 68
5 j 79 5.1 j m . . . 79
5.2 q r . s . . . 80
d g A . . . . 83
. . . 93
" # » !
1.1 Y + , b X . . . 4
1.2 (a)Hipolito-Valencia| E (b)p I J . . . 6
2.1 " R ^ b R ¤ E R $ k K ? , % x X . . 10
2.2 " R ^ Y R 0 (bypss) % x X . . . 10
2.3 " R ^ % x X . . . 12
2.4 " R ^ F 1 F % x X . . . 12
2.5 " R ^ F < F % x X . . . 13
2.6 2×2" R ^ , ! " $ % & % x X . . . 13
2.7 " R ^ , ! " $ % & % x X . . . 14
2.8 " R ^ , ! " $ % & * ] % x X . . . 22
3.1 R = ) ' , ! " $ % & % x X . . . 26
3.2 > = ) ' , ! " $ % & % x X . . . 27
3.3 v w ( % x X (a) ` u E (b)u . . . 40
3.4 , ! " % x X (without ORC) . . . 45
3.5 R = , ! " % x X (Tm,oute = 186.5◦C , Tm,outc = 80◦C) . . 46
3.6 R = , ! " % x X (Tm,oute = 186.5◦C , Tm,outc = 50◦C) . . 47
4.1 > = ) ' , ! " $ % & % x X . . . 50
4.2 1 + , ] disjunction % x X . . . 56
4.3 k - , ] disjunction % x X . . . 57
4.4 v w ( % x X (a) ` u E (b)u . . . 63
xi
4.5 > = , ! " % x X (Tm,oute = 186.5◦C , Tm,outc = 80◦C) . . 67
4.6 > = , ! " % x X (Tm,oute = 186.5◦C , Tm,outc = 50◦C) . . 68
4.7 5 F . \ * m n 4 ? % E . . . 73
4.8 ) * R ^ R u F . \ * m n 4 ? % E . . . 73
4.9 k - , } F . \ * m n 4 ? % E . . . 74
4.10 1 + , } F . \ * m n 4 ? % E . . . 74
4.11 > = , ! " % x X (Tm,oute = 186.5◦C , Tm,outc = 80◦C) . . 75
4.12 > = , ! " % x X (Tm,oute = 186.5◦C , Tm,outc = 85◦C) . . 75
4.13 > = , ! " % x X (Tm,oute = 200◦C , Tm,outc = 85◦C) . . . 76
4.14 > = , ! " % x X (Tm,oute = 170◦C , Tm,outc = 75◦C) . . . 76
4.15 > = , ! " % x X (Tm,oute = 170◦C , Tm,outc = 80◦C) . . . 77
" $ » !
1.1 b r s . . . 2
2.1 4 5 6 . . . 15
2.2 R S . . . 15
2.3 R S . . . 16
3.1 4 5 6 . . . 29
3.2 R S . . . 30
3.3 R S % . . . 31
3.4 R S % . . . 32
3.5 " R t u v h . . . 44
3.6 1 7 O ? ^ % E B C . . . 46
4.1 R S . . . 52
4.2 R S % . . . 52
4.3 R = B > = % E . . . 67
4.4 Tm,outc = 75◦CS E > = 9 ( % E . . . 69
4.5 Tm,outc = 80◦CS E > = 9 ( % E . . . 70
4.6 Tm,outc = 85◦CS E > = 9 ( % E . . . 71
1 Tm,oute = 186.5◦C; Tm,outc = 50◦C . . . 83
2 Tm,oute = 150◦C; Tm,outc = 75◦C . . . 84
3 Tm,oute = 170◦C; Tm,outc = 75◦C . . . 84
4 Tm,oute = 180◦C; Tm,outc = 75◦C . . . 85
xiii
5 Tm,oute = 186.5◦C; Tm,outc = 75◦C . . . 85
6 Tm,oute = 200◦C; Tm,outc = 75◦C . . . 86
7 Tm,oute = 150◦C; Tm,outc = 80◦C . . . 86
8 Tm,oute = 170◦C; Tm,outc = 80◦C . . . 87
9 Tm,oute = 180◦C; Tm,outc = 80◦C . . . 87
10 Tm,oute = 186.5◦C; Tm,outc = 80◦C . . . 88
11 Tm,oute = 200◦C; Tm,outc = 80◦C . . . 88
12 Tm,oute = 150◦C; Tm,outc = 85◦C . . . 89
13 Tm,oute = 170◦C; Tm,outc = 85◦C . . . 89
14 Tm,oute = 180◦C; Tm,outc = 85◦C . . . 90
15 Tm,oute = 186.5◦C; Tm,outc = 85◦C . . . 90
16 Tm,oute = 200◦C; Tm,outc = 85◦C . . . 91
1
k l
1.1
q r@ q F u T ~ ^ Q ) v " E h D w x y G z J Ë # ? { |
y = > G ~ Ì q ? > k \ ) ? + E h D ? 4 5 n =
y ~ 5 P # ? h D R * @ ? E # k h ? g
K ? u « y
F ) K T ? h P " ) (Process Heat Integra-
tion)E ~ Y C Y G B 5 6 F y K ^ E _ s @
8 ~ o E A S o h D ? F y ] ? @ A
* k b J 7 r ' E $ Í 1.1 # % y a h D (Choate and IlonaE
2008)? + E ) # y } ? ^ Y $ 60% $ ]
y # k ] X ] o J B ? 1 # ~ ~ E 5 F B ]
? P ^ E Y + , (Organic Rankine Cycle, ORC) B i ?
1
* 1.1 b r s
b r ] /
] ≤ 230◦C
^ ] 230oC - 650◦C
v ] ≥ 650◦C
+ ~ ~ y
1.2
C E F : ; <F ) ! E h D ) 6 Ë # ? g y D ~ $ & ' ? 8 ) X
E 1 ! R S ) (Heat Integration of Distillation System)B , ! " ) o (Heat Exchanger Network Synthesis)E n * 6 u Ë # ? h D ) f g y
P T 1 ? , ! " ) o f g * k £ ¤ $ 4 @ ¥ R j ?
" R \ k R E D ^ E R 4 G k ¦ E 5 k R 4 G ~ E < H = ~
Q k ¦ " O R ^ E R j 7 ] $ y ? , ! " E \ k 5
" R ^ / * h * E N k 5 R r * h ! " Q ` K 0 1
] E @ I S - " O R ^ ? ~ Q k ¦ ` K 0 1 ] y
F r Ð K · ~ s r f g # N O ? P # Y < r E # w ?
m A H (Pinch Technology)E < G (Mathematical Program- ming Approach)E D ^ m A H ? P m O X d > > d D , E
D P ( $ R + a # F X s K E R 7 s $ R + a o X U
E k ¥ , ! " ^ # 4 " O $ ? 0 1 (Target)E R % > v "
? m O ª u y F s E a * A S % > v " = ? " O $ \ & v o p
3
= E * U + « v " { p ? E s P ( } G @ ® $ ' E ¦
Y G t ] ? A A y $ ] f g Q S T { % S E # Y ? " ¯ ° Ë 9 >
B ¥ E § U + e ± « Y R S ? P ! " % & y ^ ] f
g % j ( D E S E n 8 N % ? ) E " Ò § 5 j d y ³ H G
! 7 , w ¥ O > # Y * h 3 n $ % & E R F s " ^
s $ % & ´ > q 5 h > q 5 i G 1 µ 1 N ¥ " k \ t
u v w ( | | E 7 s $ f g o G ? f g E
~ ¤ - m O u 7 8 5 d I ^ J 5 j D d y s P @ $ ' C @ $ :
f g D E 5 § 5 j D u 7 d y # ) K ¤ b c E p q r A k G
? P ( > W , ! " ? E R ^ > ? $ Y + ,
B " ) E 9 ? , ! " y
1.3
) M * + , - <p ' Z ? Y + , , ) # ® 4 * o E ¶ + a 3 (Pump)5 1 + , (Evaporator)5 (Turbine) \ k - , (Condenser)E $ Ó 1.1 # %
y ' ? 6 µ 8 ^ , 3 ' ( E U o v ' ? k 8 ^ s S ) * R ^
7 , 1 + , · " U + ? > ¤ U o v ] v ' ? 6 µ ¢ ^ E 5 v
^ * 5 ¸ ~ h > E u ¤ ) * R ^ , k - , ¹ h > U o '
? 6 µ 8 ^ E - Z B 3 º 4 y
Y + , B » S 1 ¢ + , (Steam Rankine Cycle)B Y t G ?
, b E Y + , _ O Y R ^ * J ) * R ^ y 5 ^ Y R ^
B Y ¼ A 5 B P | 1 , E # k B 1 ¢ + , n 7 µ X O $
) 1.1 Y + , b X
Turbine
Condenser
Pump Evaporator
2 : High P liquid 3 : High P vapor
4 : Low P vapor 1 : Low P liquid
Wt
Absorb Qe from the process
Release Qe - Wt + Wp from ORC
Wp
] B y F ) * R ^ _ < K E 5 c 8 _ < 6 µ 1 5 7 u J §
8 ? | 9 R ^ (Isentropic Fluid)Q 6 µ 1 5 7 u J ' Q ? > R ^ (Dry Fluid)* J ) * R ^ (Hung et al.E 2010)y s = E 8 ° O | , 5
, 5 ~ ! | 1 , y
1.4
Z f \ ]: = k > ~ , ! " k \ Y + , ? I J H : ½ t ]
< ? = E 5 F s h i j g o B p q r Y > ? t u ? r Ð E R
k ¤ $ 4 @
Linnhoff B Hindmarsh(1983) 1 2 U m O m A H > * , ! "
y
Yeeµ Grossmann(1990b) U F ( $ % & > ) o , ! " E
1.4 ^ _ ` a 5
R $ s $ % & ( ) * + , 9 ( E s 9 ( * k A S O
> h D N O o p 5 ½ o p µ u Q ? ! " y s r Ð U
) o ± ¾ E 1 2 | ] ( µ k N j # Y v w ( J + , E $ s
> $ * n @ A j K ? u 7 d E ¤ H " Y b R 3 U E C Y s
d J u 7 d E K Y d * + , 9 ( k j K u 7 d y
Bjork B Westerlund(2002) · ~ ] & B * ] & , ! " 6
¿ ^ ? (Global)u 7 8 , ! " f g y
FurmanB Sahinidis(2002) · ~ N = > # + s u $ , ! "
W a * T k ? B E # B r O $ 500o E R $ À @ A P
k \ # U ? = ~ * o X s y
Ponce-Ortega| (2008) l O Yeeµ Grossmann(1990b)? F ( $ % & E
O > ) o B Y ] " R ^ S ? , ! " % & y
DesaiB Bandyopadhyay(2009) a m A H U M P X O F $
Y + , ) $ " ^ E D M P Y 7 > : E 1 > l O
m A b c u C " O h D N O > E 1 N > a ¿ D ) 6 +
Y + , u 7 ) ? \ * m Z E 1 7 > ) '
, ! " E u B 0 1 J u 8 8 h D N O > k \ u 8 5 y
Hipolito-Valencia| (2013)o p Yeeµ Grossmann(1990b)? F ( $ % &
E U 9 ? $ % & £ ¤ Y + , ) $ " ^ ? f g E D ^ |
Y + , M $ F $ % & B " O ] h D $ ? ^ / y s 9 (
J ( ) * + , ? f g E D 0 1 2 J u 8 8 = o p y