• 沒有找到結果。

有機朗肯循環在工業程序廢熱回收之應用

N/A
N/A
Protected

Academic year: 2022

Share "有機朗肯循環在工業程序廢熱回收之應用"

Copied!
110
0
0

加載中.... (立即查看全文)

全文

(1)

國立臺灣大學工程學院化學工程學所 碩士論文

Department of Chemical Engineering College of Engineering

National Taiwan University Master Thesis

有機朗肯循環在工業程序廢熱回收之應用

Process Integration of Organic Rankine Cycle for Waste Heat Recovery in Industrial Process

張丰議 Feng-Yi Chang

指導教授:陳誠亮 博士 Advisor: Cheng-Liang Chen, Ph.D.

中華民國 102 年 7 月 July, 2013

(2)
(3)

- .

1 2 3 4 5 6 7 8 9 : < = > ? @ A B C D E F G H I J K E 

T  M     ? x E R U V M W I J X Y ? Z   F  h K

E   a M     ?  E \ M 6    y h " l m n o p q r E

w #  5 $  6 O % ? :  E F s t K u v ? w x B 3 4 y  3 4 z

{ | : B Ward Jeff: ~ M ? I J ) * U +     ?  E F s t

K , - ? w x B 3 4 y

3 4 o 5  G    : k \     G  o : E $ L .

/ U     ?  E N q r n ~ n E $ s } t K u v ? w x y

F I J . / E 1 2 3 4 3 4 5 6 7 G 8 F I J K U +     ? 

9 B : ; E < = E } 3 4 > 4 5 ? @ 5 L N 5 { O 5 P Q 5 S [ 5 \

] 5 5 ^ _ 5 ` b 5 c d 5 e f 5 g i 5 j { | G 8 } E F ~ 

B G € P ‚  M   : ; E \ M h  @ O _ PSE ?  ƒ   „ s

… = E  # 3 4 I J † ‡ :ˆ ‰ 5 Š ‹ Q 5 L ‰ 5 Œ  5 Œ Ž 5  r 5

 ‘ 5  5 `  E h " ’ “  ” < = Y • Y ‹ ? S — E ˜ ™ j ? ›

b  3 4 G  ž :  5   5 ^  5 w G 5  Q 5   5   ? Ÿ ‡

E \   9 ¡ Y   ? I J ¢ £ y    ƒ  > ’ ? l m y

u ¤ E 3 4 M ? ƒ   = > ? ¥ ¦ B C D E \ M % § ¨ © ? ª « $

¬ € B I J K E p q r ­ j k ® ~ E , - ? 3 4  ƒ ? 2 ; y

i

(4)
(5)

± ²

p I J   F $ b c X O Y  + ,   (Organic Rankine Cycle, ORC)*

) € "    B  …   f g E R k  G        , ! " ?

  y O Yee and Grossmann(1990a,1990b)# U …   ! " F  $ %

& E p r U ’ ) ( F  $ % & E s ’ $ % &  ) a "  R B " 

R k \ "  R B Y  + ,   * h + ~ ?   , ~ 3 U y  a s $

% & E   * $   , ! " … ) o f g E  o J ’ ( )  *

+ ,   (MINLP) G f g E s  @ A $ m A H 4 N O  9   E 5

˜ 6 F  a # U … $ % & E   ’ n ? u 7 8 9 ( E : s * k

O >  x h  G 8 … 0 1 y

F p q r ^ · ~ s   , ! " f g E $ k <  # ? > :   5

d @ (1) F  N O Y  + ,   … E ) o B u C h D N O > …  

, ! "  (2) $ > : (1)# j ? % E E N O Y  + ,   B  "  ^ 

 G p ~ m O ?   E R k u  8    5 J 0 1 2  E j K ’ 9

?   , ! " y p r  ” L ? ^ E 9  a # U ?   , ! "

$ % & E k \ #   ? ( )  * + ,   f g E * k o 5 P ) o

u Q 8 ? Y  + ,   ) € "    B  R S y

iii

(6)
(7)

Abstract

This thesis aims at developing a mathematical model for the synthesis of a heat ex- changer network which can integrate with the organic rankine cycle (ORC) for recovery of low-grade waste heat. An integrated stagewise superstructure, which is analogous to the superstructure introduced by Yee and Grossmann for the synthesis of heat exchanger networks, is proposed for including the ORC as part of the heat recovery system. The integrated stagewise superstructure can represent all possible interconnections and inter- actions between process streams and the ORC. Based on this superstructure, the synthesis of heat exchanger networks with the ORC streams is formulated as a mixed-integer non- linear program (MINLP).

A two-steps solution method is suggested to solve the MINLP problem: (1) A heat exchanger network excluding the ORC is solved for minimizing the utility consumption;

(2) Based on the results of step one, a modified network including the ORC below the pinch point is synthesized for maximizing the generated work from the ORC turbine.

Some numerical examples from the literature are supplied to demonstrate the applicability the the proposed approach.

Key words: Optimization, Superstructure, heat exchange networks, organic rankine cycle, Mixed-integer nonlinear programming (MINLP)

v

(8)
(9)

» ¼ ¼ !

+ , . . . i

À Á . . . iii

Abstract . . . . v

d e f g. . . xi

d h f g. . . xiii

1 i j 1 1.1 o p . . . 1

1.2 : < =  T V   . . . 2

1.3 $  % & ' (   . . . 3

1.4 V W X Y . . . 4

1.5        . . . 6

1.6     . . . 7

2        9 2.1      ! " #  $ % . . . 9

2.2  &         . . . 10

2.3  &    R S " # . . . 14

2.4  &  \ ] ^ _ W ^ ` a b c  d c (Indices, Sets, Parameter, and Variables) . . . 15

2.5    c     (Objective Function and Contraints) . . . 17 vii

(10)

2.5.1 v w ( (Constraints) . . . 17

2.5.2 0 1 2  (Objective Function) . . . 20

2.5.3   , ! " 9 ( ) . . . 20

2.6 5 6 7 8 9  : < =  T V   . . . 21

2.6.1 X ~ ? R S %  . . . 21

2.6.2   , ! " v w ( ? Q ' . . . 22

2.6.3   , ! " 9 ( ) . . . 23

3 H I J K (      ) * + 25 3.1      ! " #  $ % . . . 25

3.2  &         . . . 27

3.3  &    R S " # . . . 28

3.4  &  \ ] ^ _ W ^ ` a b c  d c (Indices, Sets, Parameter, and Variables) . . . 29

3.5    c     (Objective Function and Contraints) . . . 33

3.5.1 v w ( (Constraints) . . . 33

3.5.2 0 1 2  (Objective Function) . . . 41

3.5.3   , ! " 9 ( ) . . . 41

3.6 % X . . . 42

4 + I J K (      ) * + 49 4.1      ! " #  $ % . . . 49

4.2  &    R S " # . . . 50

4.3  &  \ ] ^ _ W ^ ` a b c  d c (Indices, Sets, Parameter, and Variables) . . . 51

4.4    c     (Objective Function and Contraints) . . . 53

4.4.1 v w ( (Constraints) . . . 53

4.4.2 0 1 2  (Objective Function) . . . 64

4.4.3   , ! " 9 ( ) . . . 64

(11)

Â Ã Ã Ä ix

4.5 % X . . . 65

4.5.1 > = 9 ( B R = 9 ( … % E B C . . . 65

4.5.2 Y  + ,   \ * ]  … u 7 8 . . . 68

5  j      79 5.1 j m . . . 79

5.2 q r . s . . . 80

d g A . . . . 83

   . . . 93

(12)
(13)

" # » !

1.1 Y  + ,    b X . . . 4

1.2 (a)Hipolito-Valencia|  E (b)p I J . . . 6

2.1 "  R ^ b R ¤ E R  $ ” ’ k K ?   , % x X . . 10

2.2 "  R ^ Y  R 0 (bypss) … % x X . . . 10

2.3 "  R ^ … % x X . . . 12

2.4 "  R ^   F 1 ’ F  … % x X . . . 12

2.5 "  R ^   F < F  … % x X . . . 13

2.6 2×2"  R ^   , ! " $ % & … % x X . . . 13

2.7 "  R ^   , ! " $ % & … % x X . . . 14

2.8 "  R ^   , ! " $ % & … *  ] % x X . . . 22

3.1 R = ) '   , ! " $ % & … % x X . . . 26

3.2 > = ) '   , ! " $ % & … % x X . . . 27

3.3   v w ( … % x X (a)  ` u    E (b)u    . . . 40

3.4   , ! " … % x X (without ORC) . . . 45

3.5 R =   , ! " … % x X (Tm,oute = 186.5C , Tm,outc = 80C) . . 46

3.6 R =   , ! " … % x X (Tm,oute = 186.5C , Tm,outc = 50C) . . 47

4.1 > = ) '   , ! " $ % & … % x X . . . 50

4.2 1 + , ]  disjunction … % x X . . . 56

4.3 k - , ]  disjunction … % x X . . . 57

4.4   v w ( … % x X (a)  ` u    E (b)u    . . . 63

xi

(14)

4.5 > =   , ! " … % x X (Tm,oute = 186.5C , Tm,outc = 80C) . . 67

4.6 > =   , ! " … % x X (Tm,oute = 186.5C , Tm,outc = 50C) . . 68

4.7     5 F . \ * m n 4 ? % E . . . 73

4.8 ) * R ^ R u F . \ * m n 4 ? % E . . . 73

4.9 k - , } …  F . \ * m n 4 ? % E . . . 74

4.10 1 + , } …  F . \ * m n 4 ? % E . . . 74

4.11 > =   , ! " … % x X (Tm,oute = 186.5C , Tm,outc = 80C) . . 75

4.12 > =   , ! " … % x X (Tm,oute = 186.5C , Tm,outc = 85C) . . 75

4.13 > =   , ! " … % x X (Tm,oute = 200C , Tm,outc = 85C) . . . 76

4.14 > =   , ! " … % x X (Tm,oute = 170C , Tm,outc = 75C) . . . 76

4.15 > =   , ! " … % x X (Tm,oute = 170C , Tm,outc = 80C) . . . 77

(15)

" $ » !

1.1   b r s . . . 2

2.1 4 5 6  . . . 15

2.2 R S  . . . 15

2.3 R S  . . . 16

3.1 4 5 6  . . . 29

3.2 R S  . . . 30

3.3 R S %  . . . 31

3.4 R S %  . . . 32

3.5 "  R t u v h . . . 44

3.6 1 7 O ? ^ % E B C . . . 46

4.1 R S  . . . 52

4.2 R S %  . . . 52

4.3 R = B > = … % E . . . 67

4.4 Tm,outc = 75CS E > = 9 ( … % E . . . 69

4.5 Tm,outc = 80CS E > = 9 ( … % E . . . 70

4.6 Tm,outc = 85CS E > = 9 ( … % E . . . 71

1 Tm,oute = 186.5C; Tm,outc = 50C . . . 83

2 Tm,oute = 150C; Tm,outc = 75C . . . 84

3 Tm,oute = 170C; Tm,outc = 75C . . . 84

4 Tm,oute = 180C; Tm,outc = 75C . . . 85

xiii

(16)

5 Tm,oute = 186.5C; Tm,outc = 75C . . . 85

6 Tm,oute = 200C; Tm,outc = 75C . . . 86

7 Tm,oute = 150C; Tm,outc = 80C . . . 86

8 Tm,oute = 170C; Tm,outc = 80C . . . 87

9 Tm,oute = 180C; Tm,outc = 80C . . . 87

10 Tm,oute = 186.5C; Tm,outc = 80C . . . 88

11 Tm,oute = 200C; Tm,outc = 80C . . . 88

12 Tm,oute = 150C; Tm,outc = 85C . . . 89

13 Tm,oute = 170C; Tm,outc = 85C . . . 89

14 Tm,oute = 180C; Tm,outc = 85C . . . 90

15 Tm,oute = 186.5C; Tm,outc = 85C . . . 90

16 Tm,oute = 200C; Tm,outc = 85C . . . 91

(17)

1

k l

1.1

q r

@ q F u T ~  ^ Q ˜ ) € v "  E h D w x y G z J Ë # ? { |

y † = > ‡ G ~  Ì q ?  > k \ ) € ? + ˆ E h D ? 4 5 n ˜ ‰ =

  y ~ 5 P ‹ #   ? h D R * Œ … @  ? E # k Ž h ? g  

  ‘ K  ƒ ? u « y

F ) € K T ? Ž h P   ˜   "   ) (Process Heat Integra-

tion)E ’ ˜  ~ Y     C Y G B  5 ˜ 6 F y K  “ ^ E _ s @

 8 ~  “ ” o    E A S  ” o h D ? F • y    ]  ? @ A

* k b J 7  r ' E $ Í 1.1 # % y  a  – h D  (Choate and IlonaE

2008)? —  +  E  – ) € # y } ?   ^ Y $ † 60%˜  $ ˜ ] 

 y # k ˜ ]   X ] o J   B  ? 1 # ~ ~ E 5 F š  B  ˜ ]

  ? P  ^ E Y  + ,   (Organic Rankine Cycle, ORC)˜  B  i ?

1

(18)

* 1.1   b r s

b r ]   /

˜ ]   ≤ 230C

^ ]   230oC - 650C

v ]   ≥ 650C

+ ˆ ~ ~ y

1.2

C E F  : ; < 

F ) € ! E h D ) ’ 6 ˜  Ë # ? g y ž D ~ $ & ' ? 8 ) X

E 1 ! R S  ) (Heat Integration of Distillation System)B   , ! " ) o (Heat Exchanger Network Synthesis)E n * 6 ˜ u Ë # ? h D ) f g y

P T ’ 1  ?   , ! " ) o f g * k £ ¤ $ 4 @  ¥ ’ R j ?

"   R \ k R E D ^ E  R 4 G k ¦ E 5 k R 4 G ~  E < H = ~

 Q k ¦ " O R ^ E  ” ’ R j 7 ] $ y ?   , ! " E \ k 5 

"  R ^ /  * h *   E N k 5  R r  * h ! † " Q ` K 0 1

]  E @ I S -  ” " O R ^ ? ~  Q k ¦ ` K 0 1 ]  y

F r Ð K · ~ s r f g # N O ? P   # Y <  r E ’ ˜ # w ?

m A H (Pinch Technology)E < ’  ˜  G    (Mathematical Program- ming Approach)E D ^ m A H ? P  ˜ m O X d  > > d D   , E

D   P ( ˜ $ R +  a # F X s K E R 7 s $ R +  a  o X U

E k   ¥   , ! " ^ # 4 " O  $ ? 0 1 (Target)E R % > v "

? m O ª u y F s E „ a * A S % > v "  = ? " O  $ \ & v o p

(19)

3

= E  * U +   « v " { p ?  E s P ( } ­ G @ ® $ ' E ’ ¦

Y G t ]  ? A A y $ ] f g Q S T { % S E # Y ? ” " ¯ ° Ë 9 >

” B  ¥ E §  U + e ± « ’ Y R S ? P    ! " % & y ^ ] f

g % j ( ” D E S E n 8 N … % ? ) E " Ò §  5 j d y ³ H  G 

  ! ˜ 7 , w ¥ ’ O > # Y * h 3 n … $ % & E R F s ” " ^ 

 s ’ $ % & … ´ > q  5 h > q  5  i G 1 ’ µ 1 N ¥ " k \ t

u …   v w ( | | E 7 s $   f g  o ’  G   ? f g E

~ ¤ - m O u 7 8 5 d I ^ J 5 j D d y s P  @  $ '  C @ $ :

f g D E 5 §  5 j D u 7 d y # ) K ¤ … b c E p q r A Œ k  G

   ? P ( > W   , ! " ?   E R ^  ’ > ? $ Y  + , 

 B "  ) E   9 ?   , ! " y

1.3

) M * + , - < 

 p ' Z ? Y  + ,   ˜ , )  # ® 4 * o E + a 3 (Pump)5 1 + , (Evaporator)5    (Turbine) \ k - , (Condenser)E $ Ó 1.1 # %

y ˜ ' ? 6 µ 8 ^  , 3 ' ( E U o v ' ? ” k 8 ^  s S ) * R ^

7 , 1 + , ·  "  U + ?  > ¤ U o v ] v ' ? 6 µ ¢ ^ E  5 v

^    * 5 ¸ ~ h > E u ¤ ) * R ^  , k - , ¹ „ h > U o ˜ '

? 6 µ 8 ^ E - Z B 3 º 4   y

Y  + ,   B » S 1 ¢ + ,   (Steam Rankine Cycle)B Y t G ?

, b E ’ Y  + ,   ˜ _ O Y  R ^ * J ) * R ^ y 5 ^ Y  R ^

B Y ˜ ¼ A 5 ˜ B P | 1 , E # k B “ 1 ¢ + ,   n 7 µ X O $ ˜

(20)

) 1.1 Y  + ,    b X

Turbine

Condenser

Pump Evaporator

2 : High P liquid 3 : High P vapor

4 : Low P vapor 1 : Low P liquid

Wt

Absorb Qe from the process

Release Qe - Wt + Wp from ORC

Wp

]   B  y F ) * R ^ _ < K E ’  5 c 8 _ < 6 µ 1 5 7 u J §

8  ? | 9 R ^ (Isentropic Fluid)Q ˜ 6 µ 1 5 7 u J ' Q ? > R ^ (Dry Fluid)* J ) * R ^ (Hung et al.E 2010)y „ s … = E 8 ° O |   , 5 

, 5 ~  “ !  | 1 , y

1.4

Z f \ ]

: = k > ~   , ! "   k \ Y  + ,   ? I J H : ½ t ]

<   ?  = E 5 F s h i j g  o B p q r Y > ? t u ? r Ð E R ‰

’ k ¤ $ 4 @

Linnhoff B Hindmarsh(1983) 1 2 U m O m A H > *   , ! "

  y

Yeeµ Grossmann(1990b) U ’ F  ( $ % & > ) o   , ! " E

(21)

1.4 ^ _ ` a 5

R  $ s $ % &   ’ ( )  * + , 9 ( E s 9 ( * k A S O

> h D N O o p 5   ‚ ½ o p µ u Q ?   ! " y s r Ð  U

’ ) o ± ¾ E 1 2 |   ] ( µ k N j # Y v w ( J + , E $ s

’ > $ * n @ A j K ? u 7 d E … ¤ H ˜ " Y b R 3 U E C Y  s

d J u 7 d E K Y  d * + , 9 ( k j K u 7 d y

Bjork B Westerlund(2002) · ~  ]  & B *  ]  &   , ! " 6

 ¿ ^ ? (Global)u 7 8   , ! " f g y

FurmanB Sahinidis(2002) · ~ † N  = > # + s u $   , ! " 

 W a * T k ? B  E # B  … r O $ † 500o E R $ À @ A P 

k \ # U ? = ~ * o X s y

Ponce-Ortega|  (2008) l O Yeeµ Grossmann(1990b)? F  ( $ % & E

O > ) o B Y  ] "  R ^ S ?   , ! " % & y

DesaiB Bandyopadhyay(2009) a m A H U ’ M  P  X O F $

Y  + ,   ) $ "  ^ E D M  P  Y 7 > : E 1 ’ > ˜ l O

m A b c   u C " O h D N O > E 1 N >  ˜  a ¿ D ) 6 + 

 Y  + ,   u 7 ) ? \ * m Z E 1 7 >  ˜   ) '  

, ! " E u B 0 1 J u 8 8 h D N O > k \ u  8    5 y

Hipolito-Valencia|  (2013)o p Yeeµ Grossmann(1990b)? F  ( $ % &

E U ’ 9 ? $ % & £ ¤ Y  + ,   ) $ "  ^ ? f g E D ^ |

 Y  + ,   M $ F  $ % & B " O ˜ ] h D  $ ? ^ / y s 9 (

J ’ ( )  * + ,   ? f g E D 0 1 2  J u 8 8 =  o p y

參考文獻

Outline

相關文件

We were particularly impressed by the large garden which is looked after by the students and used to grow fruit, herbs and vegetables for the midday meal which the school serves free

 The TRG consists of two components: a basic component which is an annual recurrent cash grant provided to schools for the appointment of supply teachers to cover approved

By correcting for the speed of individual test takers, it is possible to reveal systematic differences between the items in a test, which were modeled by item discrimination and

For the proposed algorithm, we establish a global convergence estimate in terms of the objective value, and moreover present a dual application to the standard SCLP, which leads to

Courtesy: Ned Wright’s Cosmology Page Burles, Nolette &amp; Turner, 1999?. Total Mass Density

For the proposed algorithm, we establish its convergence properties, and also present a dual application to the SCLP, leading to an exponential multiplier method which is shown

means the Proposed School Development Plan (including its amendments and supplements, if any) as approved by the Government, a copy of which is at Schedule III

 The TRG consists of two components: a basic component which is an annual recurrent cash grant provided to schools for the appointment of supply teachers to cover approved