• 沒有找到結果。

Study of the Air-Flow Management of the Zinc-Air Cell 洪梓桓、黃國修

N/A
N/A
Protected

Academic year: 2022

Share "Study of the Air-Flow Management of the Zinc-Air Cell 洪梓桓、黃國修"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Study of the Air-Flow Management of the Zinc-Air Cell 洪梓桓、黃國修

E-mail: 9419538@mail.dyu.edu.tw

ABSTRACT

This study intends to investigate air flow management of zinc-air cell. Zinc-air cell is a kind of electrochemical batteries that could be taken as air-depolarized cell. Its development is even earlier than fuel cell. Zinc-air cell, developed in the eighteenth century, is different from alkaline electrolyte zinc-air cell today. Zinc-air cell was used NH4Cl acidity electrolyte at that time. Moreover, in the eighteenth century, the anode was zinc and the cathode was carbon combining with platinum. The device contained only small current density so that it can not generate electric power capability. Today, zinc-air cell is developed quickly due to the gas electrode and pore structure material technology. Air is very important for zinc-air cell, and would decrease cell performance while the cathode does not have enough gas. Carbon dioxide, one of the air component, would react with alkaline electrolyte and become a carbonate compound. Carbonate compound would affect electrolyte performance. This research will apply fan to produce flow and compression gas and examine how the different air flow management method will led to different cell performance. The experiment method will be galvanostatic method, a kind of voltammetry. It will use different wind velocity and gas pressure for operation parameters during cell discharge. Besides, humidity are also very important effects for cell performance. In a word, performance operation surrender parameters and air flow management method are presented in this research.

Keywords : Zinc-air cell ; Air flow management ; Compression gas ; Galvanostatic method ; Voltammetry Table of Contents

授權書 iii 中文摘要 vii 英文摘要 viii 誌謝 x 目錄 viii 圖目錄 xi 表目錄 xiv 符號說明 xv 第一章 問題描述 1 1.1 前言 1 1.2 燃料 電池的歷史及沿革 2 1.3 燃料電池基本原理 6 1.4 鋅空氣電池發展 7 1.5 鋅空氣電池作用原理 10 1.6 鋅空氣電池構造 12 1.6.1 鋅陽極 12 1.6.2 電解液 13 1.6.3 空氣極 13 1.7 本文目標 16 第二章 文獻回顧 18 2.1 燃料電池及鋅空電池空氣流管理與流道設 計 18 2.2 質傳現象對電池性能影響之研究 25 2.3 鹼性燃料電池性能研究 28 2.4 金屬空氣電池的發展 29 第三章 研究方法與 進行步驟 31 3.1 鋅空氣電池工作原理 31 3.2 電化學量測方法 33 3.3 量測元件及電池本體 35 3.3.1 量測元件 35 3.3.2 電池本 體 36 3.4 實驗進行步驟 39 3.4.1 實驗參數規劃 40 3.4.2 實驗模組架設 42 3.4.3 電解液調配 47 3.4.4 電池組裝 47 3.4.5 實驗量 測 48 3.4.6 數據擷取及分析 49 第四章 結果與討論 50 4.1 鋅空電池性能量測 50 4.2 鋅空氣電池放電測試 52 4.3 風扇模組實 驗結果 54 4.3.1 風扇模組比較 54 4.3.2 風扇風速對電池性能之影響 56 4.4 壓力模組實驗結果 59 4.4.1 不同壓縮空氣模組比較 59 4.4.2 壓縮空氣與壓縮氧氣模組比較 62 4.5 濕度模組實驗結果 65 4.6 實驗之不準度分析 68 第五章 結論 71 第六章 未來展 望 73 參考文獻 74 附錄 79

REFERENCES

[1.] 楊志忠, 林頌恩,韋文誠,「燃料電池的發展現況」, 科學發展期刊,2003,Vol. 367, pp.30-33。

[2.] J. Goldstein, I. Brown and B. Koretz, “New developments in the Electric Fuel Ltd. zinc/air system,” Journal of power sources, 1999,Vol.80, pp.171-179.

[3.] 張雲朋,「鋅空氣燃料電池」,科學發展期刊,2003,Vol.367, pp.12-15。

[4.] J. J. Baschuk and X. Li, “Modeling of polymer electrolyte membrane fuel cells with variable degrees of water flooding,” Journal of power sources, 2000,Vol.86, pp.181-196.

[5.] Linden, “Handbook of batteries and fuel cell,” McGraw-Hill, 1984.

[6.] 碇真一,「空氣-鋅電極」, 復漢出版,1981。

[7.] 劉霖錡,「鋅空氣電池空氣極的製備與性能」, 碩士論文,逢甲大學材料與製造工程學系,碩士論文,2003。

[8.] 唐宏怡,「空氣極與鋅電極研發」, 1999年鋅空氣電池技術及其在電動車的應用研討會,1999。

[8.] A. S. Arico, P. Creti and E. Modica, “Influence of flow field design on the performance of a direct methanol fuel cell,” Journal of power sources, 2000,Vol.86, pp.202-209.

[9.] S. W. Cha, R. O, Hayre and F. B. Prinz, “The influence of size scale on the performance of fuel cells,” Solid State Ionics, 2004, Vol.175, pp.789-795.

[10.] C. Y. Chen and P. Yang, “Performance of an air-breathing direct methanol fuel cell,” Journal of power sources, 2003,Vol.123, pp.37-42.

(2)

[11.] P. T. Nguyen, T. Berming and N. Djilali, “Computational model of a PEM fuel cell with serpentine gas flow channels,” Journal of power sources, 2004,Vol.130, pp.149-157.

[12.] H. Hirata, T. Nakagaki and M. Hori, “Effect of gas channel height on gas flow and gas diffusion in a molten carbonate cell stack,” Journal of power sources, 1999,Vol.83, pp.41-49.

[13.] H. C. Liu, W. M. Yan and C. Y. Soong, “Effect of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell,” Journal of power sources, 2005,Vol.142, pp.125-133.

[14.] P. W. Li, “The Performance of PEM Fuel Cell Fed with Oxygen through the Free-convenction model,” Journal of Power Sources, 2003,Vol.114, pp.63-69,.

[15.] D. Sieminski, “Primary Zinc-Air for Portable Application,” Fourteen Annual Battery Conference on Applications and Advance, 1999, pp.209-213.

[16.] D. Ieminski, “Recent Advance in Rechargeable Zinc-Air Battery Technology,” Twelfth Annual Battery Conference on Applications and Advance, 1997, pp.171-180.

[17.] L. R. Jordan, A. K. Shukla and T. Behrsing, N. R. Avery, B.C. Muddle, M. Forsyth, “Diffusion layer parameters influencing optimal fuel cell performance,” Journal of power sources, 1999, Vol.86, pp.250-254.

[18.] L. Wang and H. Liu, “Performance studies of PEM fuel cells with interdigitated flow fields,” Journal of power sources, 2004, Vol.134, pp.185-196.

[19.] E. Antolini, R. R. Passos and E. A. Ticianelli, “Effects of carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells,” Journal of power sources, 2002,Vol.109, pp.477-482.

[20.] K. T. Jeng, S. F. Lee and G. F. Tsai, C. H. Wang, “Oxygen mass transfer in PEM fuel cell gas diffusion layers,” Journal of power sources, 2004,Vol.138, pp.41-50.

[21.] J. G. Pharoah, “On permeability of gas diffusion media used in PEM fuel cells,” Journal of power sources, 2005, Vol.144, pp.77-82.

[22.] 毛曉峰, “電解質支撐固體氧化物燃燒電池發電性能模擬,”天然氣工業, 2004, Vol.24(6), pp.107-110.

[23.] S. Litster and G. McLean, “PEM fuel cell electrodes,” Journal of power sources, 2004,Vol.130, pp.61-76.

[24.] J. H. Jo and S. C. Yi, “A computational simulation of an alkaline fuel cell,” Journal of power sources, 1999, Vol.84, pp.87-106.

[25.] E. Brillas, F. Alcaide and P. L. Cabot, “ A small-scale flow alkaline fuel cell for on-site production of hydrogen peroxide,” Electrochimica Acta, 2002,Vol.48, pp.331-340.

[26.] G. F. Mclean, T. Niet and S. P. Richard, N. Djilali, “An assessment of alkaline fuel cell technology,” International Journal of Hydrogen Energy, 2002,Vol.27, pp.507-526.

[27.] M. T. Ergul, L. Turker and I. Eroglu, “An investigation on the performance optimization of an alkaline fuel cell,” Int. J. Hydrogen Energy, 1997,Vol.22, pp.1039-1045.

[28.] H. Huang, W. Zhang and M. Li, Y. Gan, “Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries,” Journal of Colloid and Interface Science, 2005,Vol.284, pp.593-599.

[29.] M. Maja, C. Orecchia and M. Strano, P. Tosco, M.Vanni, “Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries,” Electrochimica Acta, 2000, Vol.46, pp.423-432.

[30.] N. A. Popovich and R. Govind, “Studies of a granular aluminum anode in an alkaline fuel cell,” Journal of power sources, 2002, Vol.112, pp.36-40.

[31.] R. Othman, W. J. Basirun and A. H. Yahaya, A. K. Arof, “Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells,”

Journal of power sources, 2001,Vol.103, pp.34-41.

[32.] X. Wang, P. J. Sebastian and M. A. Smit, H. Yang, S. A. Gamboa, “Studies on the oxygen reduction catalyst for zinc-air battery electrode”

Journal of power sources, 2003,Vol.124, pp.278-284.

[33.] L. A. Tinker, “Advances in Air Manager Technology for Zinc-Air Batteries,” IEE, 2001, pp.319-322.

[34.] 吳溪煌,「電化學-理論與運用」,高立圖書出版,2000。

[35.] 萬其超,「電化學」,臺灣商務印書館出版,1992。

[36.] W. Glenn, and H. W. Coleman, “EXPERIMENTATION AND UNCERTAINTY ANALYSIS FOR ENGINEERS,” WILEY, 1995, pp.40-74.

參考文獻

相關文件

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =>

For pedagogical purposes, let us start consideration from a simple one-dimensional (1D) system, where electrons are confined to a chain parallel to the x axis. As it is well known

The observed small neutrino masses strongly suggest the presence of super heavy Majorana neutrinos N. Out-of-thermal equilibrium processes may be easily realized around the

incapable to extract any quantities from QCD, nor to tackle the most interesting physics, namely, the spontaneously chiral symmetry breaking and the color confinement.. 

(1) Determine a hypersurface on which matching condition is given.. (2) Determine a

• Formation of massive primordial stars as origin of objects in the early universe. • Supernova explosions might be visible to the most

The difference resulted from the co- existence of two kinds of words in Buddhist scriptures a foreign words in which di- syllabic words are dominant, and most of them are the

(Another example of close harmony is the four-bar unaccompanied vocal introduction to “Paperback Writer”, a somewhat later Beatles song.) Overall, Lennon’s and McCartney’s