• 沒有找到結果。

The Optimum Design of Reflector Antennas and Their Applications 康友誠、張道治

N/A
N/A
Protected

Academic year: 2022

Share "The Optimum Design of Reflector Antennas and Their Applications 康友誠、張道治"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

The Optimum Design of Reflector Antennas and Their Applications 康友誠、張道治

E-mail: 9511442@mail.dyu.edu.tw

ABSTRACT

In this paper the theory analysis of the paraboloid reflector antenna and feed source as well as the characteristics of the reflector antenna is used to develop a multibeam shape reflector antenna and computer code. The computer code can analyze antenna patterns, gain, efficiency, beamwidth, and scan angle. Measurement results of the shaping reflector antenna will verify the computer code. The feed source, which is used in the study of the characteristics of the corrugated horn antenna, includes studying differences of depth, aperture shape and aperture angle. For each of these a comparison of simulated and measurement results is done. The corrugate horn antenna will be applied for the VSAT (Very Small Aperture Terminal). Finally, the paraboloid reflector antenna is used for two different applications: the first one uses a 35 cm offset reflector. The feed source is a corner reflector dipole antenna.

The frequency range is from 4.5 GHz to 5 GHz, and this design can be used for site survey. The feed source of the first application differs from that of the traditional horn antenna and offers some advantages such as reduced manufacturing costs and a simple manufacturing process. The second application of the paraboloid reflector is a commercially available 160cm DBS (Direct Broadcast Satellite) to design a compact antenna test range without edge treatment and RF anechoic chamber. The DBS antenna is the reflector antenna of CATR (Compact Antenna Test Range), and also is without edge treatment. The combination of the reflector antenna and the ITDAMS (Impulse Time Domain Antenna Measurement System) is used as the CATR, the edge diffraction fields are gated out by the ITDAMS. Three kinds of antenna are chosen to verify the possibility of the new CATR. The results of these verifications are also compared with the near field range, far field range, and proposed CATR results. The verified results are almost similar. The size of the quiet zone is about 55 cm in width, 55 cm in height, and 55 cm in depth. The operating frequency range is up to 26GHz. Key Words: Open waveguide, ITDAMS, Multibeam reflector antenna

Keywords : Open waveguide, ITDAMS, Multibeam reflector antenna Table of Contents

封面內頁 簽名頁 授權書.........................iii 中文摘要............

............iv 英文摘要........................vi 誌謝.........

.................viii 目錄..........................ix 圖目錄..

.......................xi 表目錄.........................xvi 第一章 緒論 1.1 反射面天線之簡介..............1 1.2 反射面天線之設計原理...........

.2 1.3 孔徑場與遠場之轉換.............4 1.4 本論文之架構................6 第二章 多波束形變反射面天線之設計 2.1 多波束反射面天線之簡介...........12 2.2 多波束形變反射面天線之最佳 化設計......13 2.3 多波束反射面天線之模擬分析及量測結果比較..16 第三章 波紋喇叭天線之設計 3.1 波紋喇叭 天線之簡介.............33 3.2 不同結構的波紋喇叭天線之設計........33 3.3 波紋喇叭天線之 模擬與量測結果比較......36 第四章 小型衛星地面站收發雙向衛星天線設計 4.1 小型衛星地面站收發雙向衛星天線 之簡介....45 4.2 小型衛星地面站收發雙向衛星天線之設計....46 4.3 小型衛星地面站收發雙向衛星天線之模擬 分析與量測結果...................47 第五章 應用在地點探測之反射面天線設計 5.1 偶極天線及九 十度角反射器之簡介.......57 5.2 偶極天線及九十度角反射器之理論分析.....57 5.3 偶極天線及九十度角 反射器之模擬分析與量測結果 ......................59 第六章 不需要微波暗室及邊緣處理之 縮距天線量測場之設計 6.1 縮距天線量測場之簡介............66 6.2 不需要微波暗室及邊緣處理之縮距天 線量測場之理論分析...................67 6.3 不需要微波暗室及邊緣處理之縮距天線量測場之驗 證.....................68 第七章 結論......................84 參 考文獻........................87 附錄 已發表之研討會論文、期刊及專利.......

...90 圖目錄 圖1.1 中心聚焦反射面天線................8 圖1.2 偏焦反射面天線........

..........8 圖1.3 拋物面反射面天線幾何結構.............9 圖1.4 拋物面反射面天線之孔徑 場與遠場之轉換圖......9 圖1.5 孔徑場的幾何分析圖形...............10 圖1.6 孔徑場與遠場場 形轉換之示意圖...........10 圖1.7 橢圓形之孔徑場與遠場之轉換............11 圖2.1 傳統 低軌道同步衛星直播系統............18 圖2.2 多波束低軌道同步衛星直播系統...........18

(2)

圖2.3 多個饋入源的拋物面反射面天線(形變前).......19 圖2.4 形變前之大小分佈..............

...19 圖2.5 形變前的相位變化.................20 圖2.6 形變前的反射面天線之位置變動量..

........20 圖2.7 形變前之反射面天線場型..............21 圖2.8 形變後的多個饋入源拋物面 反射面天線........21 圖2.9 形變後之大小分佈.................22 圖2.10 拋物面反射面天 線之線性相位變化.........22 圖2.11 拋物面反射面天線修改之相位變化.........23 圖2.12 形變後 的相位變化................23 圖2.13 形變後的反射面天線之變動量...........24 圖2.14 形變後的反射面天線場型.............24 圖2.15 二次修正之拋物面反射面天線線性相位變化.....25 圖2.16 二次修正之拋物面反射面天線修改之相位變化....25 圖2.17 多波束形變反射面天線之設計流程圖......

..26 圖2.18 大小尺寸為52乘46公分之多波束反射面天線....27 圖2.19分析之多波束反射面天線場型.......

....27 圖2.20 實際量測之多波束反射面天線場型.........28 圖2.21 大小尺寸為85乘62公分之多波束反射 面天線....28 圖2.22分析之多波束反射面天線場型...........29 圖2.23 實際量測之多波束反射面天線場 型.........29 圖2.24 分析軟體的操作流程圖..............30 圖3.1波紋喇叭天線的幾何圖形

..............37 圖3.2 縱深長度為七圈與十圈的波紋喇叭天線........37 圖3.3 模擬七圈與十 圈波紋喇叭天線之反射損失.......38 圖3.4 七圈與十圈的波紋喇叭天線模擬之E-plane場型....38 圖3.5 孔徑 形狀為圓形與橢圓形的波紋喇叭天線.......39 圖3.6 模擬圓形與橢圓形波紋喇叭天線之反射損失......39 圖3.7 模擬圓形與橢圓形波紋喇叭天線之E-plane場型....40 圖3.8 模擬圓形與橢圓形波紋喇叭天線之H-plane場型..

..40 圖3.9 張角角度為45度、60度及90度的波紋喇叭天線... 41 圖3.10 模擬開口張角為45度、60度及90度的反射損 失...41 圖3.11 模擬45度、60度及90度張角的E-plane場型....42 圖3.12 張角60度之波紋喇叭天線在近場之量測情 形.....42 圖3.13 張角60度之波紋喇叭天線的模擬與量測之E-plane場型 ...................

.....43 圖3.14 張角90度之波紋喇叭天線在近場之量測情形.....43 圖3.15 張角90度之波紋喇叭天線的模擬與 量測之E-plane場型.......................44 圖4.1 正交模式收發器...........

.......49 圖4.2波紋喇叭天線加上OMT之實體圖...........49 圖4.3 波紋喇叭天線之反射損失模擬 圖...........50 圖4.4 波紋喇叭天線加上OMT的反射損失量測圖.......50 圖4.5 波紋喇叭天線在近 場量測天線場型圖.........51 圖4.6 波紋喇叭天線發射端的模擬與量測的E-plane場型...51 圖4.7 波紋喇叭 天線發射端的模擬與量測的H-plane場型...52 圖4.8 波紋喇叭天線接收端的模擬與量測的E-plane場型...52 圖4.9 波 紋喇叭天線接收端的模擬與量測的H-plane場型...53 圖4.10 VSAT天線在近場量測場型圖............53 圖4.11 VSAT在發射端量測的E-plane及H-plane場型....54 圖4.12 VSAT在接收端量測的E-plane及H-plane場型...

.54 圖4.13 VSAT在室外遠場量測場型.............55 圖4.14 VSAT在發射端量測的Azimuth場型...

......55 圖4.15 VSAT在發射端量測的Azimuth場型.........56 圖5.1 量測偶極天線之反射損失....

..........61圖5.2 偶極天線大小尺寸之幾何圖形............61 圖5.3 九十度角反射器之影像原 理.............62 圖5.4 偶極天線加上九十度角反射器尺寸..........62 圖5.5 反射損失的模 擬與量測的結果比較..........63 圖5.6 偶極天線加上角反射器E-plane場型之模擬與量測比較.63 圖5.7 偶極 天線加上角反射器H-plane場型之模擬與量測比較.64 圖5.8 使用縮距天線量測系統來量測新研發之反射面天線...64 圖5.9 新研發反射面天線之H-plane場型..........65 圖6.1 X-Y平面掃描器來調校縮距反射面量測場....

...72 圖6.2 水平切面的相位,脈衝時域量測系統(實線),頻域量測系統 (點狀線).................

....72 圖6.3 垂直切面的相位,脈衝時域量測系統(實線),頻域量測系統 (點狀線)................

.....73 圖6.4 水平切面的大小,脈衝時域量測系統(實線),頻域量測系統 (點狀線)...............

......73 圖6.5 垂直切面的大小,脈衝時域量測系統(實線),頻域量測系統 (點狀線)..............

.......74 圖6.6 水平切面,同極化(實線),交叉極化(點狀線).....74 圖6.7 垂直切面,同極化(實線),交叉極化(

點狀線).....75 圖6.8 水平切面不同深度的電場強度之大小分佈.......75 圖6.9 垂直切面不同深度的電場強 度之大小分佈.......76 圖6.10 水平切面不同深度的電場強度之相位分佈......76 圖6.11 垂直切面不同深 度的電場強度之相位分佈......77 圖6.12 寬頻喇叭天線在近場量測場型...........77 圖6.13 新技術 量測寬頻喇叭天線場型...........78 圖6.14 傳統遠場距離量測寬頻喇叭天線場型........78 圖6.15 量測寬頻喇叭天線E-plane場型和不同測試場之比較.79 圖6.16 量測寬頻喇叭天線H-plane場型和不同測試場之比較.79 圖6.17 DBS(60cm)在近場量測場型.............80 圖6.18 新技術量測DBS(60cm)場型.........

...80 圖6.19 室外遠場量測DBS(60cm)場型...........81 圖6.20 量測DBS天線H-plane場型和不同之量測 場之比較..81 圖6.21 Cassegrain天線(25cm)在近場量測場型.......82 圖6.22 新技術量測Ka頻段Cassegrain LMDS天線場型....82 圖6.23 量測Cassegrain天線E-plane場型和不同量測場之比較 ...............

.........83 圖6.24 量測Cassegrain天線H-plane場型和不同量測場之比較 .................

.......83 表目錄 表2.1 形變前之反射面天線增益..............31 表2.2 形變後之反射面天線增 益..............31 表2.3 多波束天線之分析及實際量測之比較.........31 表2.4 多波束天線 之分析及實際量測之比較.........32 表4.1 VSAT設計規格與實際量測歸納...........56

(3)

REFERENCES

[1] D.C. Chang, “ANTENNA ENGINEERING” Da Yeh University. September 2002.

[2] M. Fujimoto; D.M. Harrison; A. Louzir; C. Howson; C. Guo; J.P. Grimm; G. Tabor; G.M. Maier; “A DBS antenna-receiver system for simultaneous multi-satellite reception” Consumer Electronics, IEEE Transaction on, Volume: 38 Issue: 3, Aug 1992 pp.394~397.

[3] F. Kira; N. Honma; K. Cho; H. Mizuno; ”Modified multi-focal paraboloid design for high aperture efficiency multibeam reflector antenna”, Antennas and Propagation Society International Symposium, 2002. IEEE, Volume: 1, 2002 pp.662~665 vol.1 [4] B. Saka; E. Yazgan; “Pattern optimization of a reflector antenna With planar-array feeds and cluster feeds”, Antennas and Propagation, IEEE Transactions on, Volume: 45 Issue: 1, Jan 1997 pp.93~97 [5] M. Lisi; “Antenna technologies for multimedia mobile satellite communications”, Antennas and Propagation, 2001. Eleventh International Conference on (IEE Conf. Publ. No. 480), Volume: 1, 2001 pp.241~245 vol.1 [6] H.H. Viskum; K. Tjonneland; “A study on the isolation capability of multi-beam reflector antennas”, Antennas and Propagation Society International Symposium, 1995. AP-S.

Digest, Volume: 1, 18-23 Jun 1995 pp.136~139 vol.1 [7] W.R Dong; Jing Yang; X.F. Lu; “Analysis and improvement of performances of a multibeam antenna with large displaced feed”, Microwave Conference Proceedings, 1997. APMC '97, 1997 Asia-Pacific, 2-5 Dec 1997 pp.

633~636 vol.2 [8] C. A. Balanis; “Antenna Theory Analysis and Design Second Edition”, 1997”.

[9] M.G.C. Branco; E. Abud Filho; L.C. da Silva; ”Wide flare angle Ku band axially corrugated horn for offset VSAT antennas”, Microwave and Optoelectronics Conference, 1995. Proceedings, SBMO/IEEE MTT-S international, Volume: 2, 24-27 July 1995 Pages: 15 - 619 vol.2 [10]

E.S. Gillespie, D.W. Hess, and C.F. Stubenrauch, “Antenna measurements: a comparison of far-field, compact range and near-field techniques,”

Proceeding of 1994 Conference in Precision Electromagnetic Measurements, pp.375, June 1994.

[11] M.S.A. Sanda and L. Shafal,”Dual parabolic cylindrical reflectors employed as a compact range,” IEEE Trans. On Antenna and Propagation, Vol. 38, No. 8, pp.812~814, August 1996.

[12] D.C. Chang, C.C. Yang, and S.Y. Yang, “Dual-reflector system with a spherical main reflector and shaped subreflector for compact range,

” IEE Proceedings - Microwave, Antennas, and Propagation, Vol. 144, No. 2, pp.97~102, April 1997.

[13] J.P. McKay and Y. Rahmat-Samii, “Quiet zone evaluation of serrated compact range reflectors,” Proceedings of 1990 IEEE International Symposium on APS/URSI, Vol. 4, pp. 232~235, May 1990.

[14] T.H. Lee and W.D. Burnside,” Performance trade-off between serrated edge and blended rolled edge compact range reflectors, ” IEEE Trans. on Antenna and Propagation, pp.87~96, January 1996.

[15] I.J. Gupta, K.P. Erickson, and W.D. Burnside,”A method to design blended rolled edges for compact range reflectors,” IEEE Trans. on Antenna and Propagation, pp.853~861, January 1990.

[16] M.S.A. Mahmoud, T.H Lee, and W.D. Burnside,”Enhanced compact range reflector concept using an R-card fence: two-dimensional case,

” IEEE Trans. on Antenna and Propagation, pp.419~428, March 2001.

[17] R. V. De Jongh, M. Hajian, and L. P. Ligthart, “Antenna time domain measurement techniques,” IEEE Trans. on Antenna and Propagation, pp.7~11, October 1997.

[18] J. Marti-Canales, “Time domain antenna measurements in compact ranges and small anechoic chambers,” Ph.D. dissertation, Tech. Univ.

Delft, the Netherlands, 2000.

[19] J. Marti-Canales, L.P. Ligthart, and A.G. Roederer, “Performance analysis of a compact range in the time domain,” IEEE Trans. on Antenna and Propagation, pp.511~516, April 2002.

參考文獻

相關文件

 develop a better understanding of the design and the features of the English Language curriculum with an emphasis on the senior secondary level;..  gain an insight into the

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =>

We explicitly saw the dimensional reason for the occurrence of the magnetic catalysis on the basis of the scaling argument. However, the precise form of gap depends

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix

incapable to extract any quantities from QCD, nor to tackle the most interesting physics, namely, the spontaneously chiral symmetry breaking and the color confinement.. 

• Formation of massive primordial stars as origin of objects in the early universe. • Supernova explosions might be visible to the most

(Another example of close harmony is the four-bar unaccompanied vocal introduction to “Paperback Writer”, a somewhat later Beatles song.) Overall, Lennon’s and McCartney’s