• 沒有找到結果。

For any x = (x 1, x 2) ∈ int(K n ), ln(x) is well defined and

N/A
N/A
Protected

Academic year: 2021

Share "For any x = (x 1, x 2) ∈ int(K n ), ln(x) is well defined and"

Copied!
7
0
0

加載中.... (立即查看全文)

全文

(1)

4 Ongoing work

In this section, we discuss the SOC-monotonicity for the function ln(x) proposed in [7].

For any x = (x 1 , x 2 ) ∈ int(K n ), ln(x) is well defined and

ln(x) =

 

 

 

1 2

Ã

ln ³ x 2 1 − kx 2 k 2 ´ , ln

à x 1 + kx 2 k x 1 − kx 2 k

! x 2 kx 2 k

!

if x 2 6= 0,

ln(x 1 )(1, 0) if x 2 = 0.

Proposition 4.1 For f : (0, ∞) → R be f (t) = ln(t) , then f is SOC-monotone on (0, ∞) .

Proof. For any x = (x 1 , x 2 ) Â

Kn

0 and y = (y 1 , y 2 ) Â

Kn

0 , we have the following

inequalities :

 

 

 

 

 

 

x 1 + kx 2 k ≥ x 1 − kx 2 k > 0 y 1 + ky 2 k ≥ y 1 − ky 2 k > 0

|hx 2 , y 2 i| ≤ kx 2 k · ky 2 k ≤ x 1 y 1 . Suppose x º

Kn

y which implies x − y º

Kn

0, we also know

x 1 − y 1 ≥ kx 2 − y 2 k ≥ 0 .

According to the condition of SOC-monotone (12), it suffices to show ln(x) º

Kn

ln(y) . We shall consider the following three cases : (i) x 2 = 0, y 2 = 0 (ii) x 2 6= 0, y 2 = 0 (iii) x 2 6= 0, y 2 6= 0.

Case(i) : x 2 = 0, y 2 = 0

Since ln x = (ln x 1 , 0) and ln y = (ln y 1 , 0), then ln x − ln y = (ln x 1 − ln y 1 , 0) ln x 1 − ln y 1 = ln x 1

y 1 > ln y 1

y 1 = ln 1 = 0.

Therefore ,

ln x − ln y º

Kn

0 ⇒ ln x º

Kn

ln y.

Case(ii) : x 2 6= 0, y 2 = 0 Since ln x = 1

2

Ã

ln ³ x 2 1 − kx 2 k 2 ´ , ln

à x 1 + kx 2 k x 1 − kx 2 k

! x 2

kx 2 k

!

and ln y = (ln y 1 , 0),

(2)

then ln x − ln y = 1 2

Ã

ln ³ x 2 1 − kx 2 k 2 ´ − 2 ln y 1 , ln

à x 1 + kx 2 k x 1 − kx 2 k

! x 2 kx 2 k

!

. We denote ln x − ln y := 1

2 ( Ξ 1 , Ξ 2 ) ,where

 

 

 

Ξ 1 = ln (x 2 1 − kx 2 k 2 ) − 2 ln y 1 Ξ 2 = ln

à x 1 + kx 2 k x 1 − kx 2 k

! x 2 kx 2 k .

To prove f is SOC-monotone, it suffices to verify two thing : Ξ 1 ≥ 0 and kΞ 2 k ≤ Ξ 1 . (1) First, we verify that Ξ 1 ≥ 0.

Ξ 1 = ln ³ x 2 1 − kx 2 k 2 ´ − 2 ln y 1 = ln det(x) − ln det(y) = ln det(x) det(y) .

Based on the Property 2.4(a), if x º

Kn

y, then det(x) ≥ det(y). Hence, we get Ξ 1 ≥ 0.

(2) Second, we remains to show that Ξ 2 1 − kΞ 2 k 2 ≥ 0 . Ξ 2 1 − kΞ 2 k 2

=

·

ln ³ x 2 1 − kx 2 k 2 ´ − 2 ln y 1

¸ 2

° °

° °

° ln

à x 1 + kx 2 k x 1 − kx 2 k

! x 2 kx 2 k

° °

° °

°

2

=

·

ln ³ x 2 1 − kx 2 k 2 ´ − 2 ln y 1

¸ 2

"

ln

à x 1 + kx 2 k x 1 − kx 2 k

! # 2

=

"

ln ³ x 2 1 − kx 2 k 2 ´ − 2 ln y 1 + ln

à x 1 + kx 2 k x 1 − kx 2 k

!#

·

"

ln ³ x 2 1 − kx 2 k 2 ´ − 2 ln y 1 − ln

à x 1 + kx 2 k x 1 − kx 2 k

!#

=

"

ln

à x 2 1 − kx 2 k 2

(ln y 1 ) 2 · x 1 + kx 2 k x 1 − kx 2 k

! #

·

"

ln

à x 2 1 − kx 2 k 2

(ln y 1 ) 2 · x 1 − kx 2 k x 1 + kx 2 k

! #

= 4

"

ln

à x 1 + kx 2 k y 1

! ¸

·

·

ln

à x 1 − kx 2 k y 1

! #

≥ 0.

Based on Property 2.4(b), since x º

Kn

y and y 2 = 0 which imply x 1 + kx 2 k ≥ y 1 and x 1 − kx 2 k ≥ y 1 , then

ln

à x 1 + kx 2 k y 1

!

≥ 1 and ln

à x 1 − kx 2 k y 1

!

≥ 1.

Hence, the last equality is greater than zero. We get Ξ 1 ≥ kΞ 2 k . Therefore,

ln x − ln y º

Kn

0 ⇒ ln x º

Kn

ln y.

(3)

Case(iii) : x 2 6= 0, y 2 6= 0 Since ln x = 1

2

Ã

ln ³ x 2 1 − kx 2 k 2 ´ , ln

à x 1 + kx 2 k x 1 − kx 2 k

! x 2 kx 2 k

!

and ln y = 1 2

Ã

ln ³ y 2 1 − ky 2 k 2 ´ , ln

à y 1 + ky 2 k y 1 − ky 2 k

! y 2 ky 2 k

!

then ln x − ln y

= 1 2

Ã

ln ³ x 2 1 − kx 2 k 2 ´ − ln ³ y 1 2 − ky 2 k 2 ´ , ln

à x 1 + kx 2 k x 1 − kx 2 k

! x 2

kx 2 k − ln

à y 1 + ky 2 k y 1 − ky 2 k

! y 2

ky 2 k

!

.

We denote ln x − ln y := 1

2 ( Ξ 1 , Ξ 2 ) ,where

 

 

 

Ξ 1 = ln (x 2 1 − kx 2 k 2 ) − ln (y 1 2 − ky 2 k 2 ) Ξ 2 = ln

à x 1 + kx 2 k x 1 − kx 2 k

! x 2 kx 2 k − ln

à y 1 + ky 2 k y 1 − ky 2 k

! y 2 ky 2 k .

To prove f is SOC-monotone, it suffices to verify two thing : Ξ 1 ≥ 0 and kΞ 2 k ≤ Ξ 1 . (1) First, we verify that Ξ 1 ≥ 0 .

Ξ 1 = ln det(x) − ln det(y) = ln det(x) det(y) .

Based on the Property 2.4(a), if x º

Kn

y, then det(x) ≥ det(y) . Hence , we get Ξ 1 ≥ 0.

(2) Second, we remains to show that Ξ 2 1 − kΞ 2 k 2 ≥ 0.

Ξ 2 1 − kΞ 2 k 2

=

·

ln ³ x 2 1 − kx 2 k 2 ´ − ln ³ y 1 2 − ky 2 k 2 ´ ¸ 2

° °

° °

° ln

à x 1 + kx 2 k x 1 − kx 2 k

! x 2

kx 2 k − ln

à y 1 + ky 2 k y 1 − ky 2 k

! y 2

ky 2 k

° °

° °

°

2

=

·

ln ³ x 2 1 − kx 2 k 2 ´ − ln ³ y 1 2 − ky 2 k 2 ´ ¸ 2

" Ã

ln x 1 + kx 2 k x 1 − kx 2 k

! 2

− 2 ln x 1 + kx 2 k

x 1 − kx 2 k · ln y 1 + ky 2 k

y 1 − ky 2 k · hx 2 , y 2 i kx 2 kky 2 k +

Ã

ln y 1 + ky 2 k y 1 − ky 2 k

! 2 #

·

ln ³ x 2 1 − kx 2 k 2 ´ − ln ³ y 1 2 − ky 2 k 2 ´ ¸ 2

" Ã

ln x 1 + kx 2 k x 1 − kx 2 k

! 2

− 2 ln x 1 + kx 2 k

x 1 − kx 2 k · ln y 1 + ky 2 k

y 1 − ky 2 k · (−1) +

Ã

ln y 1 + ky 2 k y 1 − ky 2 k

! 2 #

=

·

ln ³ x 2 1 − kx 2 k 2 ´ − ln ³ y 1 2 − ky 2 k 2 ´ ¸ 2

"

ln λ 2 (x)

λ 1 (x) + ln λ 2 (y) λ 1 (y)

# 2

(4)

=

"

ln λ 1 (x)λ 2 (x)

λ 1 (y)λ 2 (y) − ln λ 2 (x)λ 2 (y) λ 1 (x)λ 1 (y)

#

·

"

ln λ 1 (x)λ 2 (x)

λ 1 (y)λ 2 (y) + ln λ 2 (x)λ 2 (y) λ 1 (x)λ 1 (y)

#

=

Ã

2 ln λ 1 (x) λ 2 (y)

!

·

Ã

2 ln λ 2 (x) λ 1 (y)

!

.

Here we meet some diffculties as below such that we can’t proceed further. We know two things :

(1) λ 2 (x) ≥ λ 1 (x), λ 2 (y) ≥ λ 1 (y),

(2) λ 2 (x) ≥ λ 2 (y), λ 1 (x) ≥ λ 1 (y) if x º

Kn

y.

But we can’t get whether λ 1 (x) > λ 2 (y) or λ 1 (x) < λ 2 (y). We need other skill to complete the proof.

2

Lemma 4.1 For any x = (x 1 , x 2 ) Â

Kn

0 and y = (y 1 , y 2 ) Â

Kn

0 , we have ln (det(αx + (α)y)) ≥ ln (det(x)) α · ln (det(y)) 1−α ∀ 0 < α < 1 .

Proof. The proof has already verified in Proposition 2.4 in [4]. 2

Lemma 4.2 For any x = (x 1 , x 2 ), y = (y 1 , y 2 ) ∈ K n , we have (a) (x 1 + y 1 ) 2 − ky 2 k 2 ≥ 4x 1

q

y 1 2 − ky 2 k 2 ,

(b) ³ x 1 + y 1 − ky 2 k ´ 2 ≥ 4x 1 ³ y 1 − ky 2 k ´ , (c) ³ x 1 + y 1 + ky 2 k ´ 2 ≥ 4x 1 ³ y 1 + ky 2 k ´ ,

(d) x 1 y 1 − hx 2 , y 2 i ≥ q x 2 1 − kx 2 k 2 · q y 1 2 − ky 2 k 2 ,

(e) (x 1 + y 1 ) 2 − kx 2 + y 2 k 2 ≥ 4 q x 2 1 − kx 2 k 2 · q y 1 2 − ky 2 k 2 .

Proof. The proof has already verified in Lemma 3.2 in [4].

2

(5)

Proposition 4.2 For f : (0, ∞) → R be f (t) = ln(t) , then f is SOC-concave on (0, ∞) . Proof. Since f (t) = ln(t) is continuous , then the condition (13) of concave can be replaced by the condition (14). It is clear that we need to show that

f

µ x + y 2

º

Kn

1 2

µ

f (x) + f (y)

.

Let us consider the following three cases : (i) x 2 = 0, y 2 = 0 (ii) x 2 6= 0, y 2 = 0 (iii) x 2 6= 0, y 2 6= 0.

Case(i) : x 2 = 0, y 2 = 0

Since ln x = (ln x 1 , 0) and ln y = (ln y 1 , 0) , then ln

µ x + y 2

=

µ

ln

µ x 1 + y 1 2

, 0

. Thus ,

f

µ x + y 2

1 2

µ

f (x) + f (y)

=

µ

ln

µ x 1 + y 1

2

, 0

1 2

µ

ln x 1 + ln y 1 , 0

=

µ

ln

µ x 1 + y 1 2

1

2 ln x 1 y 1 , 0

=

Ã

ln

à x

1

+y

1

2

x 1 y 1

!

, 0

!

.

As we know x 1 + y 1

2

x 1 y 1 , it implies ln

à x

1

+y

1

2

x 1 y 1

!

≥ 0 . Therefore,

f

µ x + y 2

º

Kn

1 2

µ

f (x) + f (y)

.

Case(ii) : x 2 6= 0, y 2 = 0 Since

ln x = 1 2

Ã

ln ³ x 2 1 − kx 2 k 2 ´ , ln

à x 1 + kx 2 k x 1 − kx 2 k

! x 2 kx 2 k

!

= 1 2

Ã

ln det(x) , ln λ 2 (x) λ 1 (x)

x 2 kx 2 k

!

ln y = ( ln y 1 , 0) = 1 2

³ det(y) , 0 ´

ln x + y

2 = 1

2

 ln det

µ x + y 2

, ln

à λ 2 ( x+y 2 ) λ 1 ( x+y 2 )

! x

2

2 kx

2

k

2

,

(6)

then f

µ x + y 2

1 2

µ

f (x) + f (y)

= 1 2

 ln det

µ x + y 2

, ln

à λ 2 ( x+y 2 )

x+y 2

! x

2

2 kx

2

k

2

1 2

"

1 2

Ã

ln det(x) + ln det(y) , ln λ 2 (x) λ 1 (x)

x 2 kx 2 k

!#

= 1 2

Ã

ln det

µ x + y 2

1

2 ( ln det(x) + ln det(y) ) ,

Ã

ln λ 2 ( x+y 2 ) λ 1 ( x+y 2 ) 1

2 ln λ 2 (x) λ 1 (x)

!

· x 2 kx 2 k

!

= 1

2 (Ξ 1 , Ξ 2 ),

where

 

 

 

 

Ξ 1 = ln det

µ x + y 2

1

2 ( ln det(x) + ln det(y) ) Ξ 2 =

Ã

ln λ 2 ( x+y 2 ) λ 1 ( x+y 2 ) 1

2 ln λ 2 (x) λ 1 (x)

!

· x 2 kx 2 k .

To prove f is SOC-concave , it suffices to verify two thing : Ξ 1 ≥ 0 and kΞ 2 k ≤ Ξ 1 . (1) First , we verify that Ξ 1 ≥ 0 .

Ξ 1 = ln det

µ x + y 2

³ ln det(x) 1/2 + ln det(y) 1/2 ´ .

Based on Lemma 4.1 , ln det

µ x + y 2

³ ln det(x) 1/2 + ln det(y) 1/2 ´ . Hence , we get Ξ 1 ≥ 0 .

(2) Second , we remains to show that Ξ 2 1 − kΞ 2 k 2 ≥ 0 .

Ξ 2 1 − kΞ 2 k 2

=

"

ln det

µ x + y 2

1

2 ( ln det(x) + ln det(y) )

# 2

° °

° °

° Ã

ln λ 2 ( x+y 2 ) λ 1 ( x+y 2 ) 1

2 ln λ 2 (x) λ 1 (x)

!

· x 2

kx 2 k

° °

° °

°

2

=

"

ln det

µ x + y 2

1

2 ( ln det(x) + ln det(y) )

# 2

"

ln λ 2 ( x+y 2 ) λ 1 ( x+y 2 ) 1

2 ln λ 2 (x) λ 1 (x)

# 2

=

"

ln det

µ x + y 2

1

2 ( ln det(x) + ln det(y) ) +

µ

ln λ 2 ( x+y 2 ) λ 1 ( x+y 2 ) 1

2 ln λ 2 (x) λ 1 (x)

¶#

·

"

ln det

µ x + y 2

1

2 ( ln det(x) + ln det(y) ) −

µ

ln λ 2 ( x+y 2 ) λ 1 ( x+y 2 ) 1

2 ln λ 2 (x) λ 1 (x)

¶#

(7)

=

"

ln

µ

λ 2

µ x + y 2

¶¶ 2

1 2

³ ln (λ 2 (x)) 2 + ln y 1 2 ´

#

·

"

ln

µ

λ 1

µ x + y 2

¶¶ 2

+ 1 2

³ ln (λ 1 (x)) 2 + ln y 2 1 ´

#

=

"

ln

µ x 1 + y 1

2 + ° ° ° x 2

2

° °

°

2

(x 1 + kx 2 k) · y 1

#

·

"

ln

µ x 1 + y 1

2 ° ° ° x 2

2

° °

°

2

(x 1 − kx 2 k) · y 1

#

=

"

ln (x 1 + y 1 + kx 2 k) 2 4y 1 (x 1 + kx 2 k)

#

·

"

ln (x 1 + y 1 − kx 2 k) 2 4y 1 (x 1 − kx 2 k)

#

≥ 0.

Based on Lemma 4.2 (b),(c) , we have

³ x 1 + y 1 − kx 2 k ´ 2 ≥ 4y 1

³ x 1 − kx 2 k ´ and ³ x 1 + y 1 + kx 2 k ´ 2 ≥ 4y 1

³ x 1 + kx 2 k ´ .

Thus ,

ln (x 1 + y 1 − kx 2 k) 2

4y 1 (x 1 − kx 2 k) ≥ 1 and ln (x 1 + y 1 + kx 2 k) 2 4y 1 (x 1 + kx 2 k) ≥ 1.

Hence , the last equality is greater than zero . We get Ξ 1 ≥ kΞ 2 k . Therefore,

f

µ x + y 2

º

Kn

1 2

µ

f (x) + f (y)

.

Case(iii) : x 2 6= 0, y 2 6= 0

Here we meet the same diffculties as ln(x)-SOC monotone such that we can’t proceed further . We need other skill to complete the proof.

2

參考文獻

相關文件

For 5 to be the precise limit of f(x) as x approaches 3, we must not only be able to bring the difference between f(x) and 5 below each of these three numbers; we must be able

In words, this says that the values of f(x) can be made arbitrarily close to L (within a distance ε, where ε is any positive number) by requiring x to be sufficiently large

If we sketch the graph of the function f(x) = sin x and use the interpretation of f ′(x) as the slope of the tangent to the sine curve in order to sketch the graph of f ′, then

The following theorem states that (1 + x) k is equal to the sum of its Maclaurin

The third step is to express the proper rational function R(x)/Q(x) (from Equation 1) as a sum of partial fractions of the

4 上午 9 時起至 100.1.11 下午 5 時止。. *請使用 IE 5.0

The best way to picture a vector field is to draw the arrow representing the vector F(x, y) starting at the point (x, y).. Of course, it’s impossible to do this for all points (x,

Estimate the sufficient statistics of the complete data X given the observed data Y and current parameter values,. Maximize the X-likelihood associated