• 沒有找到結果。

Lipschitz continuity of the gradient of a one-parametric class of SOC merit functions

N/A
N/A
Protected

Academic year: 2022

Share "Lipschitz continuity of the gradient of a one-parametric class of SOC merit functions"

Copied!
16
0
0

加載中.... (立即查看全文)

全文

(1)

Vol. 59, No. 5, July 2010, 661–676

Lipschitz continuity of the gradient of a one-parametric class of SOC merit functions

Jein-Shan Chena* and Shaohua Panb

aDepartment of Mathematics, National Taiwan Normal University, Taipei, Taiwan;bSchool of Mathematical Sciences, South China

University of Technology, Guangzhou, China

(Received 27 March 2007; final version received 11 March 2008)

In this article, we show that a one-parametric class of SOC merit functions has a Lipschitz continuous gradient; and moreover, the Lipschitz constant is related to the parameter in this class of SOC merit functions. This fact will lay a building block when the merit function approach as well as the Newton-type method are employed for solving the second-order cone complementarity problem with this class of merit functions.

Keywords: second-order cone; merit function; spectral factorization; Lipschitz continuity

AMS Subject Classifications: 26B05; 26B35; 90C33; 65K05

1. Introduction

A well-known approach to solving the non-linear complementarity problem (NCP) is to reformulate it as the global minimization via a certain merit function over IRn. For the approach to be effective, the choice of the merit function is crucial. A popular choice is the squared norm of the Fischer–Burmeister (FB) function FB: IRnIRn!IRþdefined by

FBða, bÞ :¼1 2

Xn

i¼1

FBðai, biÞ

½ 2 ð1Þ

for all a ¼ (a1, . . . , an)T2IRn and b ¼ (b1, . . . , bn)T2IRn, where FB: IR  IR ! IR is the Fischer–Burmeister NCP function given as

FBðai, biÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a2i þb2i q

aibi: ð2Þ

It has been shown that FB enjoys many desirable properties [8,9], for example, smoothness (continuous differentiability). This merit function and its analysis were subsequently extended by Tseng [18] to the semidefinite complementarity problem (SDCP)

*Corresponding author. Email: jschen@math.ntnu.edu.tw

ISSN 0233–1934 print/ISSN 1029–4945 online

 2010 Taylor & Francis DOI: 10.1080/02331930802180319 http://www.informaworld.com

(2)

although only differentiability, not continuous differentiability, was established. In fact, the FB function for the SDCP is the matrix-valued function FB: Sn Sn! Sndefined by

FBðX, YÞ :¼ ðX2þY2Þ1=2 ðX þ YÞ,

while the squared norm of the FB function for the SDCP is the function FB: Sn Sn! IRþgiven by

FBðX, YÞ :¼1

2kðX, YÞk2,

where Sn denotes the set of real n  n symmetric matrices. The function FB has been proved to be strongly semismooth [17]. More recently, the squared norm of the matrix- valued FB function FB was reported in [16] to be smooth and its gradient is Lipschitz continuous.

The second-order cone (SOC), also called the Lorentz cone, in IRnis defined as Kn:¼ ðx1, x2Þ 2 R  Rn1j kx2k x1

 

, ð3Þ

where k  k denotes the Euclidean norm. By definition, K1 is the set of non-negative reals IRþ. The second-order cone complementarity problem (SOCCP) is to find x, y 2 IRn satisfying

x ¼ FðÞ, y ¼ GðÞ, hx, yi ¼ 0, x 2 Kn, y 2 Kn, ð4Þ where h, i is the Euclidean inner product and F, G : IRn!IRnare continuous (possibly non-linear) mappings. The merit function approach based on reformulating the NCP as an equivalent unconstrained minimization can be extended to the SOCCP case [6].

This approach aims to find a smooth function : IRnIRn!IRþsuch that

ðx, yÞ ¼ 0 () x 2 Kn, y 2 Kn, hx, yi ¼ 0: ð5Þ We call such a SOC merit function. Then the SOCCP can be expressed as an unconstrained smooth (global) minimization problem:

2IRminn f ðÞ:¼ ðFðÞ, GðÞÞ: ð6Þ Analogously, the squared norm of FB function can be considered in the SOCCP setting.

We define FB: IRnIRn!IRþassociated with the second-order cone Knas

FBðx, yÞ :¼ 1

2kFBðx, yÞk2, ð7Þ

where FB: IRnIRn!IRnis the FB function defined by

FBðx, yÞ :¼ ðx2þy2Þ1=2x  y: ð8Þ More specifically, for any x ¼ (x1, x2), y ¼ ( y1, y2) 2 IR  IRn1, we define their Jordan productassociated with Knas

x  y:¼ ðhx, yi, y1x2þx1y2Þ: ð9Þ The Jordan product , unlike scalar or matrix multiplication, is not associative, which is a main source of complication in the analysis of SOCCP. The identity element under this

(3)

product is e :¼ (1, 0, . . . , 0)T2IRn. We write x2to mean x  x and write x þ y to mean the usual componentwise addition of vectors. It is known that x22 Kn for all x 2 IRn. Moreover, if x 2 Kn, then there exists a unique vector in Kn, denoted by x1/2, such that (x1/2)2¼x1/2x1/2¼x. Thus, FBdefined as in (8) is well-defined for all (x, y) 2 IRnIRn and maps IRnIRnto IRn. It was shown in [10] that FBsatisfies the relation (5). Hence,

FBas defined in (7) is a merit function for the SOCCP. In the recent manuscript [5], this SOC merit function was shown to be an LC1function (a smooth function with its gradient being locally Lipschitz continuous).

Another popular SOC merit function is the natural residual merit function

NRðx, yÞ :¼ kNRðx, yÞk2, ð10Þ

which is induced by the natural residual function NR: IRnIRn!IRn

NRðx, yÞ :¼ x  ½x  yþ, ð11Þ

where [  ]þmeans the projection onto Kn. The natural residual function NRwas studied in [10,11] which is involved in smoothing methods for the SOCCP. A drawback of NRis its non-differentiability compared to FB. Some other classes of SOC merit functions for the SOCCP are also recently studied in [1,2].

In this article, we consider the following one-parametric class of SOC merit functions which was originally proposed in [12] for the NCP case:

ðx, yÞ :¼1

2kðx, yÞk2 ð12Þ

where  : IRnIRn!IRnis a family of functions associated with the SOC, defined by

ðx, yÞ :¼ ðx  yÞ 2þðx  yÞ1=2

ðx þ yÞ, ð13Þ

and  is a fixed parameter such that  2 (0, 4). It can be verified that for any x, y 2 IRn ðx  yÞ2þðx  yÞ ¼ x þ 2

2 y

 2

þð4  Þ 4 y2

¼ y þ 2 2 x

 2

þð4  Þ 4 x2

Kn 0, ð14Þ

where the inequality holds because  2 (0, 4). Therefore,  in (13) is well-defined. Notice that  reduces to the FB function FBwhen  ¼ 2, whereas it becomes a multiple of the natural residual function NR when  ! 0. Thus, this class of SOC complementarity functions covers the current two most important SOC complementarity functions so that a closer look and study for this new class of functions is worthwhile.

In fact, as mentioned in [5], when solving the equivalent unconstrained minimization via SOC merit functions, it is very important to show that the gradient of the employed SOC merit function is sufficiently smooth so as to warrant the convergence of appropriate computational methods. Here, we are particularly concerned with the conjugate gradient method. The method generally requires the Lipschitz continuity of the gradient ( f 2 LC1by our notation). The main purpose of this article is to show that the function as defined in (12) has a globally Lipschitz continuous gradient. Thus, this article can be regarded as

(4)

a follow-up of [5] since it extends the LC1property of FBto the class of SOC merit functions

. Nonetheless, the technique used here is a bit different and the analysis is more tedious and subtle. In particular, from the extension work, we see that the Lipschitz continuity of the gradient of becomes worse when  ! 0. This fact will provide an instructional help for the design of algorithms with this class of SOC merit functions.

Throughout this article, IRndenotes the space of n-dimensional real column vectors and the supscript ‘T’ represents the transpose. For any differentiable function f : IRn!IR, rf(x) denotes the gradient of f at x. For any differentiable mapping F ¼(F1, . . . , Fm)T: IRn!IRm, rF(x) ¼ [rF1(x)    rFm(x)] is a n  m matrix denoting the transposed Jacobian of F at x. For non-negative scalars  and , we write  ¼ O() to mean   C, with C independent of  and .

2. Preliminaries

It is known that Knis a closed convex self-dual cone with non-empty interior given as Kn:¼ ðx1, x2Þ 2 R  Rn1j kx2k x1

 

:

For any x ¼ (x1, x2) 2 IR  IRn1, we define the determinant and the trace of x as follows:

detðxÞ :¼ x21 kx2k2, trðxÞ ¼ 2x1:

In general, det(x  y) 6¼ det(x)det( y) unless x and y are collinear, i.e. x ¼ y for some  2 IR.

A vector x ¼ (x1, x2) 2 IR  IRn1is said to be invertible if det(x) 6¼ 0. If x is invertible, then there exists a unique y ¼ ( y1, y2) 2 IR  IRn1satisfying x  y ¼ y  x ¼ e. We call this y the inverse of x and denote it by x1. In fact, we have

x1¼ 1

x21 kx2k2ðx1, x2Þ ¼ 1 detðxÞ

trðxÞe  x

:

It is not difficult to see that x 2 int(Kn) if and only if x12int(Kn). For any x ¼(x1, x2) 2 IR  IRn1, we define the matrix Lxby

Lx:¼ x1 xT2 x2 x1I

:

It is easily verified that Lxþy¼LxþLyand x  y ¼ Lxyfor any x, y 2 IRn, and Lxis positive definite (and hence invertible) if and only if x 2 int(Kn). However, L1x y 6¼ x1y, for some x 2int(Kn) and y 2 IRn, i.e. L1x 6¼Lx1.

We next recall from [10] that each x ¼ (x1, x2) 2 IR  IRn1 admits a spectral factorization, associated with Kn, of the form

x ¼ 1ðxÞuð1Þx þ2ðxÞuð2Þx , ð15Þ where 1(x), 2(x) and uð1Þx , uð2Þx are the spectral values and the associated spectral vectors of x, with respect to Kn, given by

iðxÞ ¼ x1þ ð1Þikx2k, ð16Þ

uðiÞx ¼ 1 2

1, ð1Þi x2

kx2k

, if x26¼0, 1

2 1, ð1Þiw2



, if x2¼0, 8>

><

>>

:

ð17Þ

(5)

for i ¼ 1, 2, with w2 being any vector in IRn1 satisfying k w2k ¼1. The spectral factorization of x, x2and x1/2as well as the matrix Lxhave various interesting properties (cf. [10]). We list some properties that we will use later.

Property 2.1 For any x ¼(x1, x2) 2 IR  IRn1with spectral values 1(x), 2(x) and spectral vectors uð1Þx , uð2Þx , the following results hold.

(a) x2¼21ðxÞuð1Þx þ22ðxÞuð2Þx 2 Kn.

(b) If x 2 Kn, then 0  1(x)  2(x) and x1=2 ¼ ffiffiffiffiffiffiffiffiffiffiffi

1ðxÞ

p uð1Þx þ ffiffiffiffiffiffiffiffiffiffiffi

2ðxÞ p uð2Þx . (c) If x 2 int(Kn, then 0 5 1(x)  2(x), and Lxis invertible with

L1x ¼ 1 detðxÞ

x1 xT2

x2

detðxÞ x1

I þ 1 x1

x2xT2 2

4

3 5:

(d) The determinant, the trace and the Euclidean norm of x can be denoted by 1(x),

2(x):

detðxÞ ¼ 1ðxÞ2ðxÞ, trðxÞ ¼ 1ðxÞ þ 2ðxÞ, kxk2¼21ðxÞ þ 22ðxÞ

2 :

Before giving out several technical lemmas that will be applied in the next section, we introduce some notations that will be frequently used in the subsequent analysis.

Unless otherwise stated, in this article, we always write

w ¼ wðx, yÞ :¼ ðx  yÞ2þðx  yÞ and z ¼ zðx, yÞ :¼ ½ðx  yÞ2þðx  yÞ1=2: ð18Þ Since (x  y)2þ(x  y) ¼ x2þy2þ(  2) (x  y) 2 Knfor any x, y 2 IRn, we have

w:¼ w1

w2

 

¼ kxk2þ kyk2þ ð 2ÞxTy 2ðx1x2þy1y2Þ þ ð 2Þðx1y2þy1x2Þ

!

2 Kn: ð19Þ

From this, it follows that the spectral values of w are given by

1ðwÞ:¼ kxk2þ kyk2þ ð 2ÞxTy  k2ðx1x2þy1y2Þ þ ð 2Þðx1y2þy1x2Þk,

2ðwÞ:¼ kxk2þ kyk2þ ð 2ÞxTy þ k2ðx1x2þy1y2Þ þ ð 2Þðx1y2þy1x2Þk: ð20Þ By Property 2.1(b), the vector z has the spectral values ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ

p , ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ

p and

z:¼ ðz1, z2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ

p þ ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ p

2 ,

ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ

p  ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ p

2 w2

!

, ð21Þ

where w2 :¼ ðw2=kw2kÞ if w26¼0 and otherwise w2 is any vector in IRn1 satisfying kw2k ¼1.

The following four technical lemmas are crucial in proving our main results.

Lemma 2.1 measures how close w comes to the boundary of Kn, and Lemma 2.2 describes the behaviour of (x, y) when w lies on the boundary of Kn. Lemma 2.3 talks about the differential rule for the Jordan product function. Lemma 2.4 gives the gradient of the function z(x, y).

(6)

LEMMA 2.1 [4, Lemma 3.4] For any x ¼(x1, x2), y ¼ ( y1, y2) 2 IR  IRn1and  2(0, 4), if w2¼2(x1x2þy1y2) þ (  2)(x1y2þy1x2) 6¼ 0, then we have

x1þ 2 2 y1

þ ð1Þi

x2þ 2

2 y2T w2

kw2k

2



x2þ 2 2 y2

þ ð1Þi

x1þ 2 2 y1

w2 kw2k









2

 kxk2þ kyk2þ ð 2Þhx, yi þ ð1Þikw2k

iðwÞ

for i ¼1, 2, and furthermore these relations also hold when interchanging x and y.

LEMMA 2.2 [5, Lemma 3.2] For any x ¼(x1, x2), y ¼ ( y1, y2) 2 IR  IRn1and  2(0, 4), if w ¼(x  y)2þ(x  y) =2int(Kn), then there always holds that

x21¼ kx2k2, y21¼ ky2k2, x1y1¼xT2y2, x1y2 ¼y1x2; x21þy21þ ð 2Þx1y1¼ kx1x2þy1y2þ ð 2Þx1y2k

¼ kx2k2þ ky2k2þ ð 2ÞxT2y2:

If, in addition, (x, y) 6¼ (0, 0), then w2¼2(x1x2þy1y2þ(  2)x1y2) 6¼ 0, and furthermore, xT2 w2

kw2k¼x1, x1

w2

kw2k¼x2, yT2 w2

kw2k¼y1, y1

w2

kw2k¼y2:

LEMMA 2.3 [6, Lemma 3.1] Let !: IRnIRn!IRmbe given by !(x, y) :¼ u(x, y)  v(x, y), where u, v : IRnIRn!IRmare differentiable mappings. Then, ! is differentiable and

rx!ðx, yÞ ¼ rxuðx, yÞLvðx,yÞþ rxvðx, yÞLuðx,yÞ, ry!ðx, yÞ ¼ ryuðx, yÞLvðx,yÞþ ryvðx, yÞLuðx,yÞ: In particular, when !(x, y) ¼ x  y, there holds

rx!ðx, yÞ ¼ Ly, ry!ðx, yÞ ¼ Lx; and when !(x, y) ¼ x2y2, there holds

rx!ðx, yÞ ¼ 2LxLy2, ry!ðx, yÞ ¼ 2LyLx2:

LEMMA 2.4 For any x, y 2 IRn and  2(0, 4), let z(x, y) be defined as in (18). Then the function z(x, y) is continuously differentiable at a point (x, y) satisfying (x  y)2þ(x  y) 2 int(Kn). Moreover, we have that

rxzðx, yÞ ¼ Lxþ 2 2 Ly

 

L1zðx,yÞ, ryzðx, yÞ ¼ Lyþ 2

2 Lx

 

L1zðx,yÞ:

Proof The differentiability of z(x, y) is an immediate consequence of [13], see also [3, Prop. 4]. Since z2(x, y) ¼ (x  y)2þ(x  y), applying Lemma 2.3 yields

2rxzðx, yÞLzðx,yÞ¼2LxyþLy ¼2Lxþ ð 2ÞLy:

(7)

Hence, rxzðx, yÞ ¼ ðLxþ ð 2=2ÞLyÞL1zðx,yÞ. In view of the symmetry of x and y in the z(x, y), there also holds that ryzðx, yÞ ¼ ðLyþ ð 2=2ÞLxÞL1zðx,yÞ. œ

3. Main results

In this section, we present the proof showing that the gradient function of is Lipschitz continuous. By the notation in Section 2, the function can be rewritten as

ðx, yÞ ¼1

2½ðx  yÞ2þðx  yÞ1=2 ðx þ yÞ2

¼1

2zðx, yÞ2ðx þ yÞT½ðx  yÞ2þðx  yÞ1=2þ1

2kx þ yk2

¼1 2

2ðwÞ þ 1ðwÞ

2 þ kx þ yk2

 ðx þ yÞT½ðx  yÞ2þðx  yÞ1=2

¼1

22kxk2þ2kyk2þðx  yÞ

 ðx þ yÞT½ðx  yÞ2þðx  yÞ1=2

¼ kxk2þ kyk2þ

2ðx  yÞ  ðx þ yÞT½ðx  yÞ2þðx  yÞ1=2, ð22Þ where the third equality is due to Property 2.1(d). Clearly, the gradient of the function kxk2þ kyk2þ ð=2Þðx  yÞ is globally Lipschitz continuous. Therefore, to show that the gradient of  is globally Lipschitz continuous, we only need to show that following function

Fðx, yÞ :¼ ðx þ yÞT½ðx  yÞ2þðx  yÞ1=2 ð23Þ has a Lipschitz continuous gradient. The following lemma states the gradient of F(x, y).

LEMMA 3.1 For any x, y 2 IRnand  2(0, 4), let F : IRnIRn!IR be defined as in (23).

Then, the function F(x, y) is continuously differentiable everywhere. Moreover, rxF(0, 0) ¼ ryF(0, 0) ¼ 0. If (x, y) 6¼ (0, 0) and (x  y)2þ(x  y) 2 int(Kn), then

rxFðx, yÞ ¼ zðx, yÞ þ Lxþ 2 2 Ly

 

L1zðx,yÞðx þ yÞ ryFðx, yÞ ¼ zðx, yÞ þ Lyþ 2

2 Lx

 

L1zðx,yÞðx þ yÞ: ð24Þ

If(x, y) 6¼ (0, 0) and (x  y)2þ(x  y) =2int(Kn), then rxFðx, yÞ ¼ zðx, yÞ þ x1þ22 y1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x21þy21þ ð 2Þx1y1

q ðx þ yÞ

ryFðx, yÞ ¼ zðx, yÞ þ y1þ22 x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x21þy21þ ð 2Þx1y1

q ðx þ yÞ: ð25Þ

Proof Case 1 x ¼ y ¼0. For any h, k 2 IRn, let 12be the spectral values and v(1)and v(2)be the corresponding vectors of (h  k)2þ(h  k). Then, by Property 2.1(b),

k½ðh  kÞ2þðh  kÞ1=2k ¼ k ffiffiffiffiffiffi

1

p vð1Þþ ffiffiffiffiffiffi

2

p vð2Þk  ð ffiffiffiffiffiffi

1

p þ ffiffiffiffiffiffi

2

p Þ= ffiffiffi 2 p

 ffiffiffiffiffiffiffiffi 22

p :

(8)

Therefore,

Fðh, kÞ  Fð0, 0Þ ¼ ðh þ kÞT½ðh  kÞ2þðh  kÞ1=2

 k½ðh  kÞ2þðh  kÞ1=2kkh þ kk

 ffiffiffiffiffiffiffiffi 22

p  ðkhk þ kkkÞ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ðkhk2þ kkk2þ ð 2ÞhTkÞ q

 ðkhk þ kkkÞ

¼Oðkhk2þ kkk2Þ:

This shows that F(x, y) is differentiable at (0, 0) with rxF(0, 0) ¼ ryF(0, 0) ¼ 0.

Case 2 (x, y) 6¼ (0, 0) and (x  y)2þ(x  y) 2 int(Kn). Using Lemma 2.4, we readily obtain the formula in (24). Clearly, in this case, rxF(x, y) and ryF(x, y) are continuous, and consequently, F(x, y) is continuously differentiable at such points.

Case 3 (x, y) 6¼ (0, 0) and (x  y)2þ(x  y) =2int(Kn). Since 1(w) ¼ 0, now it follows from (18) and (21) that

zðx, yÞ ¼ ½ðx  yÞ2þðx  yÞ1=2¼1 2

ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ

p , ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ p w2

T

, Moreover, by Lemma 2.2, we can compute that

w2¼2ðx1x2þy1y2þ ð 2Þx1y2Þ, 2ðwÞ ¼4ðx21þy21þ ð 2Þx1y1Þ ¼2kw2k:

Therefore, under this case, we have that

zðx, yÞ ¼ ½ðx  yÞ2þðx  yÞ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x21þy21þ ð 2Þx1y1 q

x1x2þy1y2þ ð 2Þx1y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x21þy21þ ð 2Þx1y1

q 2 66 64

3 77 75:

By this, it is easy to verify that the formula (25) holds.

Note that z(x, y) is a continuous function. This together with the proof of Case (i) and Case (iii) of [4, Proposition 3.3] means that the gradient functions rxF(x, y) and ryF(x, y) are continuous at every (x, y) 2 IRnIRn. Hence, F(x, y) is continuously differentiable

everywhere. Thus, we complete the proof. œ

For the symmetry of x and y in rxF(x, y) and ryF(x, y), in the rest of this section, we concentrate on the proof of globally Lipschitz continuity of rxF(x, y). We first define a smooth approximation of rxF(x, y). For any 4 0, we let

^

w ¼ ^wðx, y, Þ :¼ ðx  yÞ2þðx  yÞ þ e,

^z ¼ ^zðx, y, Þ :¼ ½ðx  yÞ2þðx  yÞ þ e1=2, ð26Þ where e is the identity element under the Jordan product. It is not hard to see that

^

w1¼w1þ , w^2¼w2, 1ðwÞ ¼ ^ 1ðwÞ þ , 2ðwÞ ¼ ^ 2ðwÞ þ , ð27Þ and furthermore,

^z ¼ ð ^z1, ^z2Þ ¼1 2

ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p þ ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p , ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p  ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p

w2

ð28Þ

(9)

where w2 :¼ ðw2=kw2kÞ if w26¼0 and otherwise w2 is any vector in IRn1 satisfying kw2k ¼1. We define the mapping G(, , ) : IRnIRn!IRnby

Gðx, y, Þ ¼ ^zðx, y, Þ þ Lxþ 2 2 Ly

 

L1^zðx,y, Þðx þ yÞ: ð29Þ

By Lemmas 3.2 and 3.4 below, G(x, y, ) is actually a smooth approximation of rxF(x, y).

Based on the relation, in the sequel, we will prove the Lipschitz continuity of rxF(x, y) through arguing that G(x, y, ) is globally Lipschitz continuous.

LEMMA 3.2 For any x, y 2 IRnand 4 0, let G(x, y, ) be defined as in (29). Then,

!0limþGðx, y, Þ ¼ rxFðx, yÞ:

Proof If (x, y) ¼ (0, 0), then G(x, y, ) ¼ ( e)1/2for any 4 0. Therefore,

!0limþGð0, 0, Þ ¼ rxFð0, 0Þ ¼ 0:

If (x, y) 6¼ (0, 0) and (x  y)2þ(x  y) 2 int(Kn), then by (27), (28) and Property 2.1(c), it is easy to verify that lim !0þL1^zðx,y, Þ¼L1zðx,yÞ. This together with lim !0þL^zðx,y, Þ¼Lzðx,yÞ

implies that the conclusion holds.

Next, we consider (x, y) 6¼ (0, 0) and (x  y)2þ(x  y) =2int(Kn). For convenience, let

g:¼ x þ 2

2 y, h :¼ y þ 2

2 x, uðx, y, Þ :¼ L1^zðx,y, Þg, vðx, y, Þ :¼ L1^zðx,y, Þh: ð30Þ By Property 2.1(c), it is easy to compute that

u ¼ uðx, y, Þ ¼ 1 detð ^zÞ

^z1 ^z2

^z2

detð ^zÞ

^z1 I þ1

^z1^z2^z2 2

4

3 5 g½ 1g2

¼ 1

detð ^zÞ

g1^z1g2^z2

g1^z2þdetð ^zÞ

^z1 g2þg2^z2

^z1 ^z2

2 4

3 5

:¼ u1

u2

, ð31Þ

v ¼ vðx, y, Þ ¼ 1 detð ^zÞ

^z1 ^zT2

^z2 detð ^zÞ

^z1 I þ1

^z1 ^z2^zT2 2

4

3 5 h1

h2

¼ 1

detð ^zÞ

h1^z1hT2^z2

h1^z2þdetð ^zÞ

^z1 h2þhT2^z2

^z1 ^z2

2 4

3 5

:¼ v1

v2

: ð32Þ

(10)

Using (28) and Lemma 2.2, we have that

u1¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^ 2ðwÞ^ p

ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p þ ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^ p

2 g1þ

ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p  ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^ p

2 gT2w2

" #

¼ 1

2 ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p

g1þgT2w2

þ 1

2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p

g1gT2w2

¼ g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ þ

p , ðsince gT2w2 ¼g1Þ ð33Þ

u2¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^ 2ðwÞ^ p

ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p  ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^ p

2 g1w2þ 2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^ p ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^ p ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p þ ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p g2

2 64

þ

ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p  ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p 2

2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p þ ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p gT2w2w2 3 75

¼ðg1þgT2w2Þw2 2 ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p ðg1gT2w2Þw2 2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p þ 2g22gT2w2w2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p þ ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^ p

¼ g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ þ

p : ðsince g1w2¼g2, gT2w2¼g1Þ ð34Þ

Similarly, we can also obtain that v1¼ h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ þ

p , v2¼ h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ þ

p :

From the above expressions of u and v, it then follows that

!0limþL1^zðx,y, Þðx þ yÞ ¼2

 lim

!0þL1^zðx,y, Þ

x þ 2

2 y þ y þ 2 2 x

¼2

 lim

!0þ

uðx, y, Þ þ vðx, y, Þ

¼ 1

ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ

p

x1þy1, x2þy2

T

:

This together with Lemma 2.2 yields that

!0limþGðx, y, Þ ¼ lim

!0þ^zðx, y, Þ þ

Lxþ 2 2 Ly

!0limþL1^zðx,y, Þðx þ yÞ

¼zðx, yÞ þ

x1þ 2

2 y1 xT2 þ 2 2 yT2 x2þ 2

2 y2

x1þ 2 2 y1

I 2

64

3 75

x1þy1 ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ p x2þy2

ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ p 0 BB B@

1 CC CA

¼zðx, yÞ þ 1 ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ p

2

x1þ 2 2 y1

ðx1þy1Þ 2

x2þ 2 2 y2

ðx1þy1Þ 0

B@

1 CA

(11)

¼zðx, yÞ þ 1 ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ p

2

x1þ 2 2 y1

ðx1þy1Þ 2

x1þ 2 2 y1

ðx2þy2Þ 0

B@

1 CA

¼zðx, yÞ þ x1þ22 y1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x21þy21þðx1y1Þ

q ðx þ yÞ:

Thus, we complete the proof. œ

In what follows, we argue that the gradient function of G(x, y, ) is uniformly bounded, and then, by applying the mean-value theorem for vector-valued functions, we conclude that G(x, y, ) is globally Lipschitz continuous. The following two lemmas are crucial in proving our main result.

LEMMA 3.3 For any x, y 2 IRnand 4 0, let ^z : Rn Rn! Rnbe given as in (26). Then, the function ^zðx, y, Þ is continuously differentiable everywhere. Moreover, there exists a constant C independent of x, y and ,  such that

krx^zðx, y, Þk ¼

Lxþ 2 2 Ly

L1^zðx,y, Þ







  C, kry^zðx, y, Þk ¼

Lyþ 2 2 Lx

L1^zðx,y, Þ

 

  C:

Proof The first part of the conclusion follows directly from [10, Proposition 5.2].

The second part is implied by the proof of [15, Proposition 3.1]. œ LEMMA 3.4 For any x, y 2 IRn and 4 0, let G : IRnIRn!IRn be defined as in (29).

Then, the function G(x, y, ) is continuously differentiable everywhere. Moreover, there exists a constant C such that krxG(x, y, )k  C(1 þ 1) and kryG(x, y, )k  C(1 þ 1).

Proof The first part of the conclusion is due to [10, Proposition 5.2]. For the second part, by Lemma 3.3, it suffices to prove that the gradient of the following function:

Hðx, y, Þ :¼ Lxþ 2 2 Ly

 

L1^zðx,y, Þðx þ yÞ is uniformly bounded. From the definition of H(x, y, ), we notice that

Hðx, y, Þ ¼2

 Lxþ 2 2 Ly

 

L1^zðx,y, Þ x þ 2

2 y þ y þ 2 2 x

 

¼2

 x  ðu þ vÞ þ 2

2 y  ðu þ vÞ

where u and v are defined as in (30). Therefore, applying Lemma 2.3 yields that rxHðx, y, Þ ¼2

 Luþvþ

rxuðx, y, Þ þ rxvðx, y, Þ

Lxþ 2 2 Ly

 

,

ryHðx, y, Þ ¼2



 2 2 Luþvþ

ryuðx, y, Þ þ ryvðx, y, Þ

Lxþ 2 2 Ly

 

:

ð35Þ

(12)

To show that krxH(x, y, )k is uniformly bounded, we shall verify that both kLuþvk and kðrxuðx, y, Þ þ rxvðx, y, ÞÞðLxþ ð 2=2ÞLyÞk are uniformly bounded.

(i) To prove that kLuþvkis uniformly bounded, it is sufficient to argue that ju1j, ku2k and jv1j, ku2k are both uniformly bounded. First, we argue that ju1jand jv1jare uniformly bounded. From (33), we have that

u1¼ 1 2 ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p

g1þgT2w2

þ 1

2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p

g1gT2w2

,

v1¼ 1 2 ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p

h1þhT2w2

þ 1

2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p

h1hT2w2 :

Note that g1¼x1þ ð 2=2Þy1, g2¼x2þ ð 2=2Þy2and h1¼y1þ ð 2=2Þx1, h2¼y2þ ð 2=2Þx2, and w2¼ ðw2=kw2kÞ. Therefore, applying Lemma 2.1 yields that

g1gT2w2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ

p  ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p , jg1þgT2w2j  ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ

p  ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p ð36Þ

and

h1hT2w2

  ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ

p  ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p , jh1þhT2w2j  ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ

p  ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p : ð37Þ

Combing with the expressions of u1and v1 given as above, we get ju1j 1 and jv1j 1.

Second, we argue that ku2kand kv2k are also uniformly bounded. By (34),

u2¼

g1þgT2w2

 w2 2 ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p 

g1gT2w2

 w2 2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p þ 2g22gT2w2w2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p þ ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p ,

v2¼

h1þhT2w2

 w2 2 ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p 

h1hT2w2

 w2 2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p þ 2h22hT2w2w2

ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p þ ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p :

Using (36) and (37) and the fact that k w2k ¼1, we obtain that g1þgT2w2

 w2 2 ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p 

g1gT2w2

 w2 2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

 p





1

2kw2k þ1

2kw2k ¼1, h1þhT2w2

w2

2 ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p 

h1hT2w2

w2

2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

 p





1

2kw2k þ1

2kw2k ¼1, and

2g22gT2w2wT2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p þ ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^ p







  4kg2k ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p  4kg2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi kxk2þ kyk2þ ð 2ÞxTy þ

p 4,

2h22hT2w2wT2 ffiffiffiffiffiffiffiffiffiffiffi

1ðwÞ^

p þ ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

 p





 4kh2k ffiffiffiffiffiffiffiffiffiffiffi

2ðwÞ^

p  4kh2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi kxk2þ kyk2þ ð 2ÞxTy þ

p 4:

(13)

The above inequalities imply that ku2k and kv2k are uniformly bounded. This together with the uniform boundedness of ju1jand jv1j implies that

kLuþvk ¼ u1þv1 ðu2þv2ÞT u2þv2 ðu1þv1ÞI







 is also uniformly bounded.

(ii) Now, it comes to show that kðrxuðx, y, Þ þ rxvðx, y, ÞÞðLxþ ð 2=2ÞLyÞk is uniformly bounded. From the definition of u(x, y, ) and v(x, y, ) as given in (30), we have

^zðx, y, Þ  ðuðx, y, Þ þ vðx, y, ÞÞ ¼ðx þ yÞ

2 :

Applying Lemma 2.3 then gives that

rx^zðx, y, ÞLuþvþ ðrxuðx, y, Þ þ rxvðx, y, ÞÞL^zðx,y, Þ¼ ð=2ÞI:

This is equivalent to saying that

ðrxuðx, y, Þ þ rxvðx, yÞÞL^zðx,y, Þ ¼ ð=2ÞI  rx^zðx, y, ÞLuþv

¼

2I  Lxþ 2 2 Ly

 

L1^zðx,y, ÞLuþv, where the second equality is due to Lemma 2.4. Therefore,

rxuðx, y, Þ þ rxvðx, y, Þ

Lxþ 2 2 Ly

 

¼ 

2I  Lxþ 2 2 Ly

 

L1^zðx,y, ÞLuþv

L1^zðx,y, Þ Lxþ 2 2 Ly

 

¼

2L1^zðx,y, Þ Lxþ 2 2 Ly

 

 Lxþ 2 2 Ly

 

L1^zðx,y, ÞLuþvL1^zðx,y, Þ Lxþ 2 2 Ly

 

¼

2 Lxþ 2 2 Ly

 

L1^zðx,y, Þ

T

 Lxþ 2 2 Ly

 

L1^zðx,y, Þ

Luþv Lxþ 2 2 Ly

 

L1^zðx,y, Þ

T

: Now we have that

rxuðx, y, Þ þ rxvðx, y, Þ

Lxþ 2 2 Ly

 

 





2 Lxþ 2 2 Ly

 

L1^zðx,y, Þ

T







 þ Lxþ 2

2 Ly

 

L1^zðx,y, Þ

 

  kLuþvk  Lxþ 2 2 Ly

 

L1^zðx,y, Þ

T







:

From Lemma 3.3, k½ðLxþ ð 2=2ÞLyÞL1^zðx,y, ÞTk is uniformly bounded.

This together with the uniform boundedness of kLuþvk yields that kðrxuðx, y, Þ þ rxvðx, y, ÞÞðLxþ ð 2=2ÞLyÞkis uniformly bounded.

(14)

From (i), (ii) and (35), we conclude that krxH(x, y, )k is uniformly bounded with the bound related to 1. Using similar arguments, we can prove that kryH(x, y, )k is uniformly bounded with the bound related to 1. Combining with Lemma 3.3, we then show that there exists a constant C such that krxG(x, y, )k  C(1 þ 1) and

kryG(x, y, )k  C(1 þ 1). œ

THEOREM 3.1 For any x, y 2 IRnand  2(0, 4), let F(x, y) be given as in (23). Then, their gradient functions rxF(x, y) and ryF(x, y) are globally Lipschitz continuous, i.e. there exists a constant C such that

krxFðx, yÞ  rxFða, bÞk  Cð1 þ 1Þkðx, yÞ  ða, bÞk,

kryFðx, yÞ  ryFða, bÞk  Cð1 þ 1Þkðx, yÞ  ða, bÞk ð38Þ for all(x, y), (a, b) 2 IRnIRn.

Proof We first prove that the function G(x, y, ) defined by (29) is globally Lipschitz continuous for any 4 0. For any (x, y) 2 IRnIRnand (a, b) 2 IRnIRn, we have that

Gðx, y, Þ  Gða, b, Þ ¼ Gðx, y, Þ  Gða, y, Þ þ Gða, y, Þ  Gða, b, Þ:

From Lemma 3.4, we know that G(x, y, ) is continuously differentiable everywhere.

Hence, from the mean-value theorem, it follows that Gðx, y, Þ  Gða, y, Þ ¼

Z1 0

rxGða þ tðx  aÞ, y, Þðx  aÞdt, Gða, y, Þ  Gða, b, Þ ¼

Z1 0

ryGða, b þ tð y  bÞ, Þð y  bÞdt Combining the last two equations and using Lemma 3.4, we then obtain that

kGðx, y, Þ  Gða, b, Þk  Z1

0

rxGða þ tðx  aÞ, y, Þðx  aÞdt

 



þ Z1

0

ryGða, b þ tð y  bÞ, Þð y  bÞdt

 



 Z1

0

krxGða þ tðx  aÞ, y, Þkkx  akdt

þ Z1

0

krxGða þ tðx  aÞ, y, Þkkðx  aÞkdt

Cð1 þ 1Þkðx, yÞ  ða, bÞk, ð39Þ where C is a constant independent of x, y and , . From Lemma 3.2, we know that

!0limþGðx, y, Þ ¼ rxFðx, yÞ

for any x, y 2 IRnIRn. This together with (39) immediately yields that krxFðx, yÞ  rxFða, bÞk ¼ k lim

!0þGðx, y, Þ  lim

!0þGða, b, Þk

¼ lim

!0þkGðx, y, Þ  Gða, b, Þk

Cð1 þ 1Þkðx, yÞ  ða, bÞk:

(15)

Thus, we prove that rxF(x, y) is globally Lipschitz continuous. Similarly, we may prove

that ryF(x, y) is also globally Lipchitz continuous. œ

From the above theorem, we immediately obtain the following corollary.

COROLLARY 3.1 Let with  2(0, 4) be defined as in (12). Then is an LC1function, i.e.

the gradient functions rx (x, y) and ry (x, y) are globally Liptchitz continuous with the Lipschitz constant being O(1 þ 1).

Note

1. Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office.

The author’s work is partially supported by National Science Council of Taiwan. E-mail:

jschen@math.ntnu.edu.tw.

References

[1] J.-S. Chen, A new merit function and its related properties for the second-order cone complementarity problem, Pacific J. Optim. 2 (2006), pp. 167–179.

[2] ———, Two classes of merit functions for the second-order cone complementarity problem, Math. Methods Oper. Res. 64 (2006), pp. 495–519.

[3] J.-S. Chen, X. Chen, and P. Tseng, Analysis of nonsmooth vector-valued functions associated with second-order cones, Math. Progr. 101 (2004), pp. 95–117.

[4] J.-S. Chen and S.-H. Pan, A one-parametric class of merit functions for the second-order cone complementarity problem, Comput. Optimi. Appl. (2008), doi: 10.1007/s10589-008-9182-9.

[5] J.-S. Chen, D. Sun, and J. Sun, The SC1 property of the squared norm of the SOC Fischer- Burmeister function, Oper. Res. Lett 36 (2008), pp. 385–392.

[6] J.-S. Chen and P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Progr. 104 (2005), pp. 293–327.

[7] U. Faraut and A. Kora´nyi, Analysis on Symmetric Cones. Oxford Mathematical Monographs, Oxford University Press, New York, 1994.

[8] A. Fischer, A special Newton-type optimization methods, Optimization 24 (1992), pp. 269–284.

[9] ———, An NCP-function and its use for the solution of complementarity problem, in Recent Advances in Nonsmooth Optimization, D.-Z. Du, L.-Q. Qi, and R. Womersley, eds., World Scientific, Singapore, 1995, pp. 88–105.

[10] M. Fukushima, Z.-Q. Luo, and P. Tseng, Smoothing functions for second-order cone complementarity problems, SIAM J. Optim. 12 (2002), pp. 436–460.

[11] S. Hayashi, N. Yamashita, and M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems, SIAM J. Optim. 15 (2005), pp. 593–615.

[12] H. Kleinmichel and C. Kanzow, A new class of semismooth Newton-type methods for nonlinear complementarity problems, Comput. Optim. Appl. 11 (1998), pp. 227–251.

[13] A. Kora´nyi, Monotone functions on formally real Jordan algebras, Math. Ann. 269 (1984), pp. 73–76.

[14] J. Ortega and W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables.

SIAM Classics Appl. Math., Society for Industrial and Applied Mathematics, Philadelphia, PA, 2000.

[15] S.-H. Pan and J.-S. Chen, A semismooth Newton method for SOCCPs based on one-parametric class of SOC complementarity functions. Comput. Optimi. Appl. (2008), doi: 10.1007/s10589- 008-9166-9.

(16)

[16] C.-K. Sim, J. Sun, and D. Ralph, A note on the Lipschitz continuity of the gradient of the squared norm of the matrix-valued Fischer-Burmeister function, Math. Progr. 107 (2006), pp. 547–553.

[17] D. Sun and J. Sun, Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions, Math. Progr. 103 (2005), pp. 575–581.

[18] P. Tseng, Merit function for semidefinite complementarity problems, Math. Progr. 83 (1998), pp. 159–185.

參考文獻

相關文件

11 (1998) 227–251] for the nonnegative orthant complementarity problem to the general symmet- ric cone complementarity problem (SCCP). We show that the class of merit functions

On the other hand, we provide an alternative proof, which uses the new properties of the merit function, for the convergence result of the descent method considered in [Chen, J.-S.:

These merit functions were shown to enjoy some favorable properties, to provide error bounds under the condition of strong monotonicity, and to have bounded level sets under

In this paper, we extend this class of merit functions to the second-order cone complementarity problem (SOCCP) and show analogous properties as in NCP and SDCP cases.. In addition,

Abstract In this paper, we consider the smoothing Newton method for solving a type of absolute value equations associated with second order cone (SOCAVE for short), which.. 1

We consider the Tikhonov regularization method for the second-order cone complementarity problem (SOCCP) with the Cartesian P 0 -property. We show that many results of

Chen, A one-parametric class of merit functions for the symmetric cone complementarity problem, Journal of Mathematical Analysis and Applications 355 (2009), 195–215..

The second algorithm is based on the Fischer-Burmeister merit function for the second-order cone complementarity problem and transforms the KKT system of the second-order