• 沒有找到結果。

Antioxidative activity and cell assay of coleus blumei extracts 莊鼎彬、.瑞澤

N/A
N/A
Protected

Academic year: 2022

Share "Antioxidative activity and cell assay of coleus blumei extracts 莊鼎彬、.瑞澤"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

Antioxidative activity and cell assay of coleus blumei extracts 莊鼎彬、.瑞澤

E-mail: 343845@mail.dyu.edu.tw

ABSTRACT

Fresh leaves of Coleus blumei were first dried under various temperatures (40, 60, 80 and 100℃) and then were extracted using a hot water reflux. Also some fresh leaves of Coleus blumei were first sun-dried and then extracted by using a hot reflux with one solvent (water, methanol, ethanol, ethyl acetate or n-hexane). The purpose of this study is to examine the effect of extraction method on antioxidative activities of extracts. The assays of antioxidative activities included DPPH (α,α-diphenyl- β-picrylhydrazyl) radical scavenging ability, Fe2+ chelating ability, relative reducing power, superoxide anion scavenging ability, the inhibition of Fe/ascorbate-induced lipid peroxidation, and ABTS cation scavenging ability. These antioxidative activities of Coleus blumei extracts were measured and compared with those of butylated hydroxyanisole (BHA), ethylene diamine tetracetic acid (EDTA) or gallic acid. The component analysis and cell assay were also carried out for Coleus blumei extracts with the highest antioxidative activities. The results have showed that both of the extraction yield and the content of total phenols reached the highest when fresh leaves of Coleus blumei were extracted by hot water. The fresh leaves of Coleus blumei extracted by ethyl acetate had the highest content of total flavonoids, and however, most of total phenols and total flavonoids lost during drying. For the antioxidative activities, the extracts obtained by water and ethyl acetate had a higher DPPH radical scavenging ability (IC50<0.01 mg/mL); the aqueous extract had the highest relative reducing power (IC50=0.7 ± 0.00 mg/mL), the highest Fe2+ chelating ability (IC50=0.13 ± 0.02 mg/mL), and the highest superoxide anion scavenging ability (IC50=0.35 ± 0.00 mg/mL); the extract by ethyl acetate had the highest ABTS cation scavenging ability (IC50<0.01 mg/mL); the extract by n-hexane had the highest inhibition ability of lipid peroxidation (IC50=3.89 ± 0.14 mg/mL). In addition, the components of the extracts by water and ethyl acetate were analyzed by using an HPLC. The result showed that rosmarinic acid was the major component, and its content in the aqueous extract (232.09 mg/g) is higher than that in the ethyl acetate extract. In cell assays, the results show that the aqueous extract affected the HepG2 cell viability but didn’t affect the PC-12 cell viability. The aqueous extract showed the ability to protect PC-12 cells against hypoxia and H2O2-induced oxidative stress. In summary, the contents of total phenols and total flavonoids, and the antioxidant activities were highest for the extract from fresh leaves of Coleus blumei obtained by a hot water reflux. The extract could inhibit the growth of HepG2 cells and protect nerve cells against oxidative stress. The results obtained in this study are useful for future research and development of functional foods.

Keywords : Coleus blumei、antioxidative、rosmarinic acid、HepG2 cell、PC-12 cell、cell viability Table of Contents

目錄 封面內頁 簽名頁 中文摘要iii 英文摘要v 誌謝vii 目錄viii 圖目錄xi 表目錄xiv 1. 緒論1 2. 文獻回顧2 2.1 彩葉草簡介2 2.2 彩葉草之種類2 2.3 自由基之介紹4 2.3.1 自由基的定義4 2.3.2 自由基在生物上的作用5 2.3.3 自由基的產生和清除6 2.4 抗氧 化劑介?及其分類6 2.5 迷迭香酸9 2.5.1 簡介9 2.5.2 迷迭香酸生合成12 2.5.3 迷迭香酸的生物活性12 3. 材料與方法15 3.1 植物 材料15 3.2 藥品15 3.3 儀器16 3.4 實驗方法17 3.4.1 實驗架構17 3.4.2 植物萃取之製備20 3.4.3 抗氧化分析23 3.4.4 迷迭香酸分 析26 3.4.5 細胞株27 3.4.6 培養基與試劑配製27 3.4.7 細胞分析31 4. 結果與討論37 4.1 新鮮彩葉草之不同溶劑熱迴流萃取37 4.1.1 萃取率37 4.1.2 抗氧化成分含量分析34 4.1.3 抗氧化能力分析40 4.2 不同乾燥處理彩葉草之熱迴流萃取50 4.2.1 萃取 率50 4.2.2 抗氧化成分含量分析52 4.2.3 抗氧化能力分析54 4.3 日曬乾燥處理彩葉草之不同溶劑熱迴流萃取64 4.3.1 萃取率64 4.3.2 抗氧化成分含量分析64 4.3.3 抗氧化能力分析67 4.4 彩葉草之成分分析78 4.4.1 新鮮彩葉草水與乙酸乙酯萃取物 之HPLC分析78 4.4.2 貯存期間之迷迭香酸含量變化83 4.5 細胞試驗86 4.5.1 細胞存活率分析86 4.5.2 細胞保護能力試驗85 5.

結論94 5.1 結論94 5.2 未來展望95 參考文獻96 附錄101 圖目錄 圖2.1 彩葉草(a)葉子、(b)花3 圖2.2 細胞中含氧和含氮自由基 之生成7 圖2.3 細胞中含氧和含氮自由基之去除8 圖2.4 迷迭香酸的結構式10 圖2.5 迷迭香酸生合成路徑13 圖3.1 實驗流程 圖18 圖3.2 抗氧化活性分析19 圖3.3 萃取流程21 圖3.4 熱迴流萃取裝置22 圖3.5 細胞實驗流程33 圖3.6 細胞存活率分析34 圖4.1 不同溶劑萃取彩葉草對清除DPPH自由基能力之影響41 圖4.2 不同溶劑萃取彩葉草之相對還原力之影響43 圖4.3 不同 溶劑萃取彩葉草對螯合亞鐵離子能力之影響45 圖4.4 不同溶劑萃取彩葉草對清除ABTS陽離子能力之影響46 圖4.5 不同溶劑 萃取彩葉草對清除超氧陰離子能力之影響48 圖4.6 不同溶劑萃取彩葉草對抑制微脂粒氧化作用之影響49 圖4.7 不同乾燥處 理之彩葉草萃取物對清除DPPH自由基能力之影響55 圖4.8 不同乾燥處理之彩葉草萃取物之相對還原力之影響57 圖4.9 不同 乾燥處理之彩葉草萃取物對螯合亞鐵離子能力之影響59 圖4.10不同乾燥處理之彩葉草萃取物對清除ABTS陽離子能力之影

(2)

響60 圖4.11不同乾燥處理之彩葉草萃取物對清除超氧陰離子能力之影響62 圖4.12不同乾燥處理之彩葉草萃取物對抑制微脂 粒氧化作用之影響63 圖4.13日曬乾燥彩葉草不同溶劑萃取之萃取物對清除DPPH自由基能力之影響68 圖4.14日曬乾燥彩葉 草不同溶劑萃取之萃取物對相對還原力之影響70 圖4.15日曬乾燥彩葉草不同溶劑萃取之萃取物對螯合亞鐵離子能力之影 響72 圖4.16日曬乾燥彩葉草不同溶劑萃取之萃取物對清除ABTS陽離子能力之影響73 圖4.17日曬乾燥彩葉草不同溶劑萃取 之萃取物對清除超氧陰離子能力之影響75 圖4.18日曬乾燥彩葉草不同溶劑萃取之萃取物對抑制微脂粒氧化作用之影響76 圖4.19新鮮彩葉草水熱迴流萃取萃取物之HPLC分析圖79 圖4.20迷迭香酸之HPLC層析圖80 圖4.21新鮮彩葉草水熱迴流萃取 萃取物之HPLC分析圖82 圖4.22貯存期間新鮮彩葉草水萃取物對清除DPPH自由基能力之影響85 圖4.23新鮮彩葉草水萃取 物之存活率分析87 圖4.24標準品迷迭香酸之存活率分析88 圖4.25缺血再灌流模式下新鮮彩葉草萃取物對PC-12之保護效 果90 圖4.26H2O2對PC-12細胞之存活率分析91 圖4.27新鮮彩葉草萃取物對H2O2誘導PC-12細胞凋亡之保護效果93 表目錄 表2.1 植物界中含迷迭香酸之分布11 表3.1 HepG2細胞之培養基28 表3.2 PC-12細胞之培養基29 表3.3 磷酸鹽緩衝液溶液配 方30 表4.1 不同溶劑萃取彩葉草之萃取率38 表4.2 不同溶劑萃取之彩葉草總酚及總類黃酮含量39 表4.3 不同溶劑萃取彩葉草 之半數效應濃度(IC50)42 表4.4 不同乾燥處理之彩葉草萃取率51 表4.5 不同乾燥處理之彩葉草總酚與總類黃酮含量53 表4.6 不同乾燥處理彩葉草之半數清除濃度(IC50)56 表4.7 日曬乾燥彩葉草不同溶劑萃取之萃取率65 表4.8 日曬乾燥彩葉草不同溶 劑萃取之總酚及總類黃酮含量66 表4.9 日曬乾燥彩葉草不同溶劑萃取之半數清除濃度(IC50)69 表4.10新鮮彩葉草萃取物之 迷迭香酸含量81 表4.11貯存期間之迷迭香酸含量變化84

REFERENCES

1.王春萍。2007。彩葉草再生體系的建立及其遺傳轉化的初步研究。西南大學碩士論文。重慶。 2.林宥彤。2010。蜂王乳之免疫調節活 性及對人類白血病細胞(U937)之抑制效果。大葉大學生物產業科技學系碩士論文。彰化。 3.林佩伶、王正新、賴麗旭。2006。不同乾燥 處理對小麥苗粉水萃取物抗氧化性之影響。台灣農業化學與食品科學 44(1):7-15。 4.洪熒璟。2003。不同加工處理對小麥草抗氧化性質 之影響。靜宜大學食品營養學系碩士論文。台中。 5.夏文茹。2010。彩葉草之葉片性狀遺傳及遮光對商業品種及雜交後代生長之影響。

國立台灣大學生物資源暨農學院園藝學系碩士論文。台灣。 6.張慧英、季衛忠。2006。彩葉草新品。中國花卉園藝 半月刊 24:46-47。

7.莊培梃、王鐘毅、吳思敬、曾慶瀛。2006。明日葉之一般組成及抗氧化性質。臺灣農業化學與食品科學 44(3):181-191。 8.曾鈺珊

。2008。奈米幾丁聚醣粒子於口腔黏膜細胞穿透之研究。大葉大學生物產業科技學系碩士論文。彰化。 9.黃龍江。2002。迷迭香酸衍生 物的合成及其抗菌性質研究。青島大學碩士論文。青島。 10.翟婷。2008。迷迭香中迷迭香酸的提取純化及提取物活性測定 的研究。廣 西大學碩士論文。廣西。 11.劉立偉。2008。咸豐草與楓香之抗氧化性及成分分析。大葉大學生物產業科技學系碩士論文。彰化。 12.劉 易修。2008。康復力與夜交藤之抗氧化活性研究。大葉大學生物產業科技學系碩士論文。彰化。 13.蔡瑞齡。2009。蔡葉草之抗氧化活 性及成分分析。大葉大學生物產業科技學系碩士論文。彰化。 14.鞠倩。2007。生長調節劑及蔗糖濃度對彩葉草組織培養物迷迭香酸含 量的影響。山東農業大學碩士論文。山東。 15.蘇苑菱。2007。八種藥用植物之抗氧化性研究。大葉大學生物產業科技學系碩士論文。

彰化。 16.Almeida F. C.G. and I. P. Lemonica, 2000, The toxic effects of Coleus barbatus B. on the different periods of pregnancy in rats, Journal of Ethnopharmacology, 73: 53-60. 17.Arnao, M. B., A. Cano and M. Acosta, 2001, The hydrophilic and lipophilic contribution to total antioxidant activity, Food Chemistry, 73: 239-244. 18.Benzie, I. F. and J. J. Strain, 1996, The ferric reducing ability of plasma (FRAP) as a measure of ‘

‘antioxidant power’’: the FRAP assay, Analytical Biochemistry, 239: 70-76. 19.Bonoli, M., V. Verardo, E. Marconi, and M. F. Caboni, 2004, Antioxidantphenols in barley (Hordeum vulgare L.) flour: comparative spectrophotometricstudy among extraction methods of free and bound phenolic compounds, Journal of Agricultural and Food Chemistry, 52: 5195-5200. 20.Christel, Q. D., G. Bernard, V. Jacques, D. Thierry, B.

Claude, L. Michel, C. Micheline, C. Jean-Cluade, B. Francois and T. Francis, 2000, Phenolic compounds and antioxidant activities of buckwheat (Fagopyrim esculentum Moench) hulls and four, Journal of Ethnopharmacology, 72: 35-42. 21.Crispo, J. A. G., M. Piche, D. R. Ansell, J. K. Eibl, I. T. Tai, A. Kumard, G. M. Ross, T. C. Tai, 2010, Protective effects of methyl gallate on H2O2-induced apoptosis in PC12 cells, Biochemical and Biophysical Research Communications, 393: 773-778. 22.Fang, Y. Z., S. Yang and G. Wu, 2002, Free Radicals, antioxidants, and nutrition, Nutrition, 18:872– 879. 23.Gao, L. P., H. L. Wei, H. S. Zhao, S. Y. Xiao, R. L. Zheng, 2005, Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes, Pharmazie, 60:62-65. 24.Kumaran, A. and R. Joel karunakaran, 2006, Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus, Food Chemistry, 97: 109-114. 25.Lai, L. S., S. T. Chou and W. W. Chao, 2001, Studies on the

antioxidativeactivities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum, Journal of Agricultural and Food Chemistry, 49(2): 963-968. 26.Liao, K. L. and M. C. Yin, 2000, Individual and combined antioxidant effects of seven phenolic agents in human erythrocyte membrane ghosts and phosphatidylcholine liposome systems:importance of the partition coefficient, Journal of Agricultural and Food Chemistry, 48: 2266-2270. 27.Lima, C. F., M. Fernandes-Ferreira, C. Pereira-Wilson, 2006, Phenolic compounds protect HepG2 cells from oxidative damage: Relevance of glutathione levels, Life Sciences, 79:2056-2068. 28.Lin, C. S., C. L. Kuo, J. P. Wang, J. S. Cheng, Z. W. Huang and C. F. Chen, 2007, Growth inhibitory and apoptosis inducing effect of Perilla frutescens extract on human hepatoma HepG2 cells, Journal of Ethnopharmacology, 112:557-567. 29.Makris, D. P., E. Psarra, S. Kallithraka and P. Kefalas, 2003, The effect of polyphenolic composition as related to antioxidant capacity in white wines, Food Research International, 36: 805-814. 30.Marete, E. N., J. C. Jacquier, D. O’Riordan, 2009, Effects of extraction temperature on the phenolic and parthenolide contents, and colour of aqueous feverfew (Tanacetum parthenium) extracts, Food Chemistry, 117: 226-231. 31.Narayanan, K. B. and N. Sakthivel, 2010, Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour, Materials Characterization, 61(11):

(3)

1232-1238. 32.Peltzer, D., E. Dreyer and A. Polle, 2002, Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei, Plant Physiology and Biochemistry, 40:141-150. 33.Petersen, M. and M. S. J. Simmonds, 2003, Rosmarinic acid, Phytochemistry, 62: 121-125. 34.Petersen, M., 1997, Cytochrome P450-dependent hydroxyjation in the biosynthesis of rosmarinic acid in coleus, Phymchemrsrry, 45:1165-1172. 35.Petersen, M., Y. Abdullah, J. Benner, D. Eberle, K. Gehlen, S. Hucherig, V. Janiak, K. H. Kim, M. Sander, C. Weitzel and S. Wolters, 2009, Evolution of rosmarinic acid biosynthesis, Phytochemistry, 70:1663-1679. 36.Phuong N.

and D. C. Valeriano, 2009, The role of light on foliage colour development in coleus (Solenostemon scutellarioides (L.) Codd), Plant Physiology and Biochemistry, 47:934-943. 37.Silva, J. P., A. C. Gomes, O. P. Coutinho, 2008, Oxidative DNA damage protection and repair by polyphenolic compounds in PC12 cells, European Journal of Pharmacology, 601:50-60. 38.Wang, C. J. and G. C. Yen, 2011, Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives, Cancer Treatment Reviews, 37: 1-12. 39.Yildirim, A., A. Mavi and A. A. Kara, 2001, Determination of antioxidant andantimicrobial activities of Rumex crispus L. extracts, Journal of Agricultural and Food Chemistry, 49: 4083-4089.

參考文獻

相關文件

Milk and cream, in powder, granule or other solid form, of a fat content, by weight, exceeding 1.5%, not containing added sugar or other sweetening matter.

Later, though, people learned that Copernicus was in fact telling the

The e xfoliated oral buccal cells and blood samples were collected for the assay of micronucleus frequency (MNF) and comet assay.. We find that there are higher MNF

Estimated resident population by age and sex in statistical local areas, New South Wales, June 1990 (No. Canberra, Australian Capital

Consistent with the negative price of systematic volatility risk found by the option pricing studies, we see lower average raw returns, CAPM alphas, and FF-3 alphas with higher

• The  ArrayList class is an example of a  collection class. • Starting with version 5.0, Java has added a  new kind of for loop called a for each

In the case where the care recipient was dead, and the original employer had applied for transfer of the foreigner or the Ministry of Labor had revoked the

We do it by reducing the first order system to a vectorial Schr¨ odinger type equation containing conductivity coefficient in matrix potential coefficient as in [3], [13] and use