• 沒有找到結果。

Home Work Solutions 11

N/A
N/A
Protected

Academic year: 2022

Share "Home Work Solutions 11"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

Home Work Solutions 11

11-1 Using the loop rule, derive the differential equation for an LC circuit:

2 2

1 0

Ld q q

dtC

Sol: The loop rule, for just two devices in the loop, reduces to the statement that the magnitude of the voltage across one of them must equal the magnitude of the voltage across the other. Consider that the capacitor has charge q and a voltage (which we’ll consider positive in this discussion) V = q/C. Consider at this moment that the current in the inductor at this moment is directed in such a way that the capacitor charge is increasing (so i = +dq/dt). Equation 30-35 then produces a positive result equal to the V across the capacitor: V = L(di/dt), and we interpret the fact that di/dt > 0 in this discussion to mean that d(dq/dt)/dt = d2q/dt2 < 0 represents a “deceleration” of the charge-buildup process on the capacitor (since it is approaching its maximum value of charge). In this way we can “check” the signs in Eq. 31-11 (which states q/C =  L d2q/dt2) to make sure we have implemented the loop rule correctly.

11-2 A series circuit containing inductance L1 and capacitance C1 oscillates at angular frequency ω. A second series circuit, containing inductance L2 and capacitance C2, oscillates at the same angular frequency. In terms of ω, what is the angular frequency of oscillation of a series circuit containing all four of these elements? Neglect

resistance. (Hint: Use the formulas for equivalent capacitance and equivalent inductance; see Section 25-4 and Problem 47 in Chapter 30.)

Sol: For the first circuit  = (L1C1)–1/2, and for the second one  = (L2C2)–1/2. When the two circuits are connected in series, the new frequency is

       

   

eq eq 1 2 1 2 1 2 1 1 2 2 2 1 1 2

1 1 1 2 1 2

1 1 1

/ /

1 1

, /

L C L L C C C C L C C L C C C C

L C C C C C

   

   

 

 

where we use 1L C1 1L C .2 2

(2)

11-3 An alternating source with a variable frequency, a capacitor with capacitance C, and a resistor with resistance R are connected in series. The following figure gives the impedance Z of the circuit versus the driving angular frequency ωd; the curve reaches an asymptote of 500 Ω, and the horizontal scale is set by ωds = 300 rad/s. The figure also gives the reactance XC for the capacitor versus ωd. What are (a) R and (b) C?

Sol: (a) The circuit has a resistor and a capacitor (but no inductor). Since the capacitive reactance decreases with frequency, then the asymptotic value of Z must be the resistance: R = 500 .

(b) We describe three methods here (each using information from different points on the graph):

method 1: At d = 50 rad/s, we have Z  700 , which gives C = (d Z2 - R2 )1

= 41 F.

method 2: At d = 50 rad/s, we have XC  500 , which gives C = (d XC)1 = 40 F.

method 3: At d = 250 rad/s, we have XC  100 , which gives C = (d XC)1

= 40 F.

11-4 An alternating source with a variable frequency, an inductor with inductance L, and a resistor with resistance R are connected in series. The following figure gives the impedance Z of the circuit versus the driving angular frequency ωd, with the

horizontal axis scale set by ωds = 1600 rad/s. The figure also gives the reactance XL for the inductor versus ωd. What are (a) R and (b) L?

Sol: (a) Since Z = R2 + XL

2 and XL = d L, then as d  0 we find Z  R = 40 .

(3)

(b) L = XL /d = slope = 60 mH.

11-5 A typical light dimmer used to dim the stage lights in a theater consists of a variable inductor L (whose inductance is adjustable between zero and Lmax) connected in series with a lightbulb B, as shown in the following figure. The electrical supply is 120 V (rms) at 60.0 Hz; the light-bulb is rated at 120 V, 1000 W. (a) What Lmax is required if the rate of energy dissipation in the lightbulb is to be varied by a factor of 5 from its upper limit of 1000 W? Assume that the resistance of the lightbulb is independent of its temperature. (b) Could one use a variable resistor (adjustable between zero and Rmax) instead of an inductor? (c) If so, what Rmax is required? (d) Why isn't this done?

Sol:

(a) The power consumed by the light bulb is P = I2R/2. So we must let Pmax/Pmin = (I/Imin)2 = 4, or

I Imin





2

m / Zmin

m / Zmax





2

Zmax Zmin





2

R2

 

Lmax

2

R





2

4.

We solve for Lmax:

L

max

3R

3 120 V  

2

/ 1000 W

2  60.0 Hz  6.62 10

2

H.

(b) Yes, one could use a variable resistor.

(c) Now we must let

RmaxRbulb Rbulb





2

4, or

R

max

   4  1 R

bulb

  1 1000 W 120 V

2

14.4 .

(d) This is not done because the resistors would consume, rather than temporarily store, electromagnetic energy.

(4)

11-6 The following figure shows an “autotransformer.” It consists of a single coil (with an iron core). Three taps Ti are provided. Between taps T1 and T2 there are 50 turns, and between taps T2 and T3 there are 800 turns. Any two taps can be chosen as the primary terminals, and any two taps can be chosen as the secondary terminals. For choices producing a step-up transformer, what are the (a) smallest, (b) second smallest, and (c) largest values of the ratio Vs/Vp? For a step-down transformer, what are the (d) smallest, (e) second smallest, and (f) largest values of Vs/Vp?

Sol:

For step-up transformer:

(a) The smallest value of the ratio V Vs/ pis achieved by using T2T3 as primary and T1T3 as secondary coil: V13/V23 = (800 + 50)/800 = 1.07.

(b) The second smallest value of the ratio V Vs/ pis achieved by using T1T2 as primary and T2T3 as secondary coil: V23/V13 = 800/200 = 4.00.

(c) The largest value of the ratio V Vs/ pis achieved by using T1T2 as primary and T1T3 as secondary coil: V13/V12 = (800 + 50)/50 = 17.0.

For the step-down transformer, we simply exchange the primary and secondary coils in each of the three cases above.

(d) The smallest value of the ratio V Vs/ pis 1/17.0 = 0.0588.

(e) The second smallest value of the ratio V Vs/ pis 1/4.00 = 0.250.

(f) The largest value of the ratio V Vs/ pis 1/1.07 = 0.935.

參考文獻

相關文件

[r]

In previous works [21] and [22], special complex geometrical optics (CGO) solutions for certain isotropic systems in the plane were con- structed and their applications to the

The analytical solution of vertical, pitching, yawing, lower rolling, and higher rolling frequency expressions for linear guideway type (LGT) recirculating rollers with

39) The osmotic pressure of a solution containing 22.7 mg of an unknown protein in 50.0 mL of solution is 2.88 mmHg at 25 °C. Determine the molar mass of the protein.. Use 100°C as

The molal-freezing-point-depression constant (Kf) for ethanol is 1.99 °C/m. The density of the resulting solution is 0.974 g/mL.. 21) Which one of the following graphs shows the

The difference in heights of the liquid in the two sides of the manometer is 43.4 cm when the atmospheric pressure is 755 mm Hg.. 11) Based on molecular mass and dipole moment of

Dublin born Oscar Wilde (1854-1900) established himself as one of the leading lights of the London stage at the end of the nineteenth century?. A poet and prose writer as well, it

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =&gt;