• 沒有找到結果。

5-2 拉摩定理和外光電流

N/A
N/A
Protected

Academic year: 2022

Share "5-2 拉摩定理和外光電流"

Copied!
79
0
0

加載中.... (立即查看全文)

全文

(1)

223

第五章

光 檢 測 器

(2)

目錄

‡

5-1 pN接面光二極體的原理

‡

5-2 拉摩定理和外光電流

‡

5-3 吸收係數和光二極體材料

‡

5-4 量子效率和響應率

‡

5-5 pin光二極體

‡

5-6 累崩光二極體 (APD)

‡

5-7 累質接面光二極體

‡

5-8 光電晶體

‡

5-9 光電導檢測器和光電導增益

(3)

225

5-1 pN接面光二極體的原理

(4)

p+ SiO2 Electrode

ρnet

–eNa eNd

x

x E(x)

R

Emax

e h+

Iph

hυ > Eg

W E

n

Depletion region (a)

(b)

(c) Antireflection coating

Vr

(a) A schematic diagram of a reverse biased pn junction photodiode. (b) Net space charge across the diode in the depletion region. N and N are the donor and acceptor

Electrode Vout

(5)

227

5-2 拉摩定理和外光電流

(6)

‡ 一個載子的躍遷時間 (transit time) 是從它的產 生點漂移到收集電極所需的時間;電子和電洞 的躍遷時間 t

e

、 t

h

被標示在圖5.2(b) 的 t 對 x 圖,這裡

和 (1)

e e

l t L

v

= −

h h

t l

= v

(7)

229

e h+

iph(t)

Semiconductor

(a)

V

x (b)

(a) An EHP is photogenerated at x = l. The electron and the hole drift in opposite

directions with drift velocities vh and ve. (b) The electron arrives at time te = (L − l)/ve and the hole arrives at time th = l/vh. (c) As the electron and hole drift, each generates an external photocurrent shown as ie(t) and ih(t). (d) The total photocurrent is the sum of hole and electron photocurrents each lasting a duration th and te respectively.

E

l L − l

t

ve vh

vh

0 l L

t e

h+

th

te

t 0

th te

iph(t)

i(t) t

0

th te

evh/L + eve/L evh/L

ie(t) ih(t)

(c) (d) Charge = e

evh/L eve/L

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(8)
(9)

231

(10)
(11)

233

5-3 吸收係數和光二極體材料

(12)
(13)

235

(14)
(15)

237

0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

Wavelength (µm)

In0.53Ga0.47As Ge

Si

In0.7Ga0.3As0.64P0.36

InP GaAs

a-Si:H

2 1 3

5 4 0.9 0.8 0.7

1×103 1×104 1×105 1×106 1×107 1×108

Photon energy (eV)

Absorption coefficient (α) vs. wavelength (λ) for various semiconductors (Data selectively collected and combined from various sources.)

α (m-1)

1.0

Figure 5.3

圖5.3 對於不同的半導體材料,吸收係數與波長的關係。

(16)

E

CB

VB

–k k

Direct Bandgap Eg

Photon Ec

Ev

(a) GaAs (Direct bandgap)

E

–k k

(b) Si (Indirect bandgap)

VB

CB

Ec Ev

Indirect Bandgap, E

g

Photon

Phonon

(a) Photon absorption in a direct bandgap semiconductor. (b) Photon absorption in an indirect bandgap semiconductor (VB, valence band; CB, conduction band)

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(17)

239

5-4 量子效率和響應率

(18)
(19)

241

(20)

‡ 光二極體的響應率 (responsivity)R,定義為在 某特定波長,每入射光功率 P

o

產生的光電流 I

ph

(1)

o ph

P

= I

= ( W )

)

A

(

入射光功率

R 光電流

(21)

243

(22)

Responsivity (R) vs. wavelength (λ) for an ideal photodiode with QE = 100% (η = 1) and for a typica commercial Si photodiode.

0 200 400 600 800 1000 1200 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Wavelength (nm)

Si Photodiode

λg Responsivity (A/W)

Ideal Photodiode QE = 100% (η = 1)

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(23)

245

5-5 pin光二極體

(24)

p+

i-Si n+ SiO2

Electrode

ρnet

-eNa eNd

x

x E(x)

R Eo

E

e- h+

Iph > Eg

W (a)

(b)

(c)

(d)

Vr

The schematic structure of an idealized pin photodiode (b) The net Vout

Electrode

(25)

247

‡ 如同平行板電容器,兩層非常薄的正、負電荷 被寬度 W 的 i-Si 所分離, Pin 二極體的接面 或空乏層電容 (junction or depletion layer

capacitance) 可表示為

W (1)

C

dep

= ε

o

ε

r

A

(26)
(27)

249

(28)
(29)

251

Drift velocity vs. electric field for holes and electrons in Si.

10

2

10

3

10

4

10

5

10

7

10

6

10

5

10

4

Electric field (V m

-1

) Electron

Hole Drift velocity (m s

-1

)

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖5.7 在矽中,電洞與電子的漂移速度和電場的關係。

(30)
(31)

253

hυ > Eg

p+ i-Si

e E

h+

A W

Drift Diffusion

A reverse biased pin photodiode is illuminated with a short wavelength photon that is absorbed very near the surface.

The photogenerated electron has to diffuse to the depletion region where it is swept into the i-layer and drifted across.

Vr

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖5.8 一個逆向偏壓的 Pin 光二極體被一個短波長的光照

射,且在非常靠近表面被吸收。光產生的電子必須擴散到空乏 區才會被電場加速通過 I - 層。

(32)
(33)

255

5-6 累崩光二極體 (APD)

(34)

š p+ SiO2

Electrode

ρn et

x

x E(x)

R

E hυ > Eg

p

Ip h

e h+

Absorption region Avalanche region

(a)

(b)

(c)

(a) A schematic illustration of the structure of an avalanche photodiode (APD) biased for avalanche gain. (b) The net space charge density across the photodiode. (c) The field across the diode and the identification of absorption and multiplication regions.

Electrode

?1999 S.O. Kasap, Optoelectronics (Prentice Hall) n+

圖5.9 (a) 一個照光且偏壓下的累崩光二極體 (APD),(b) 整個光二

(35)

257 h+

E

n+ p š

e

Avalanche region

e

h+

Ec Ev

(a) (b)

E

(a) A pictorial view of impact ionization processes releasing EHPs and the resulting avalanche multiplication. (b) Impact of an energetic

conduction electron with crystal vibrations transfers the electron's kinetic energy to a valence electron and thereby excites it to the conduction band.

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖5.10 (a) 一種圖示的累崩撞擊電離過程和電子–電洞對的釋放,

(b) 一個具有晶格振動的高能傳導電子的撞擊,並將電子動能轉移 給價電子而將它激發到傳導帶。

(36)
(37)

259

(38)

SiO2 Guard ring

Electrode Antireflection coating

n n+ n

p+ š p

Substrate Electrode n+

p+ š

p

Substrate Electrode

Avalanche breakdown

(a) (b)

(a) A Si APD structure without a guard ring. (b) A schematic illustration of the structure of a more practical Si APD

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖5.11 (a) 一個沒有護環的矽製APD結構,(b) 更實際的APD結

(39)

261

(40)
(41)

263

(42)

5-7 累質接面光二極體

(43)

265

E

N n

Electrode

x E(x)

R

hυ

Ip h

Absorption region Avalanche

region

InP InGaAs

h+ e E InP

P+ n+

Simplified schematic diagram of a separate absorption and multiplication (SAM) APD using a heterostructure based on InGaAs-InP. P and N refer to p and n -type wider-bandgap semiconductor.

Vr

Vout

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(44)

InP

InGaAs h+

e E

Ec

Ev Ec

Ev

InP

InGaAs Ev Ev InGaAsP grading layer

h+

∆Ev

(a) Energy band diagra SAM heterojunction A there is a valence band ∆Ev from InGaAs to InP tha hole entry into the InP

(b) An interposing grad (InGaAsP) with an inte bandgap breaks ∆Ev and mak easier for the hole to pa layer

(a)

(b)

(45)

267

P+ךְnP Substrate

P+ךְnP (2-3 µm) Buffer epitaxial layer NךְnP (2-3 µm) Multiplication layer.

Photon

nךְn 0 . 5 3Ga0 . 4 7As (5-10µm) Absorption lay

Graded nךְnGaAsP (<1 µm) Electrode

Electrode

Simplified schematic diagram of a more practical mesa-etched SAGM layered APD.

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖5.14 更實際的斜塔–蝕刻SAGM APD0

(46)

hυ

h+ e

n+ Ec

Ev

10?0 nm

p+

E

Eg 1

Eg 2

∆Ec

Energy band diagram of a staircase superlattice APD (a) No bias. (b) With an applied bias.

(a) (b)

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(47)

269

5-8 光電晶體

(48)

n hυ

Base Collector

h+ e Emitter

n+ p

E e

SCL SCL Iph

VBE VBC

VCC

The principle of operation of the photodiode. SCL is the space charge layer or the depletion region. The primary photocurrent acts as a base current and gives rise to a large

photocurrent in the emitter-collector circuit.

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(49)

271

5-9 光電導檢測器和光電導增益

(50)

Light

w d

A

V Iphoto

A semiconductor slab of length A, width w and depth d is illuminated with light of wavelength λ.

n = no + ∆n p = po + ∆p

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(51)

273 Iph

Photoconductor e

h+

Iph Iph Iph Iph

A photoconductor with ohmic contacts (contacts not limiting carrier entry) can exhibit gain. As the slow hole drifts through the photoconductors, many fast electrons enter and drift through the photoconductor because, at any instant, the photoconductor must be neutral. Electrons drift faster which means as one leaves, another must enter.

(a) (b) (c) (d) (e)

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(52)
(53)

275

(54)
(55)

277

(56)
(57)

279

(58)

5-10 光檢測器中的雜訊

(59)

281

(60)

Vou Current

Time Id

Vr

In pn junction and pin devices the main source of noise is shot noise due to the dark current and photocurrent.

n p

Po

Dark

Illuminated Id + Ip h

Id + Ip h + in

R A

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(61)

283

(62)
(63)

285

(64)
(65)

287

(66)
(67)

289

(68)
(69)

291

(70)
(71)

293

(72)
(73)

295

(74)
(75)

297

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5 1 1.5 2

Wavelength(痠)

The responsivity of a commercial Ge pn junction photodiode

Responsivity(A/W)

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(76)

0 0.1 0.2 0.3 0.4 0.5 0.6

200 400 600 800 1000 1200 Wavelength(nm)

A B

The responsivity of two commercial Si pin photodiodes

Responsivity(A/W)

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(77)

299

0 0.2 0.4 0.6 0.8 1

800 1000 1200 1400 1600 1800 Wavelength(nm)

The responsivity of an InGaAs pin photodiode

Responsivity(A/W)

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(78)

x

R E

e h+

iph hυ > Eg

W

Vr

An infinitesimally short light pulse is absorbed throughou depletion layer and creates an EHP concentration that dec exponentially

Photogenerated electron concentration exp(αx) at time t = 0

A B

vde

(79)

301

參考文獻

相關文件

Using this formalism we derive an exact differential equation for the partition function of two-dimensional gravity as a function of the string coupling constant that governs the

Schematic phase diagram of high-Tc superconductors showing hole doping right side and electron doping left side.. The common Features in

• QCSE and band-bending are induced by polarization field in C-plane InGaN/GaN and create triangular energy barrier in active region, which favors electron overflow. •

of the spin polarisation L. Bocher et al. submitted (2011).. Mapping plasmons and EM fields Mapping plasmons and EM fields.. New possibilities for studying the low

• The particles of the atom are the negative electron, the positive proton, and the uncharged neutron.. • Protons and neutrons make up the tiny dense nucleus

This kind of algorithm has also been a powerful tool for solving many other optimization problems, including symmetric cone complementarity problems [15, 16, 20–22], symmetric

[r]

In order to investigate the bone conduction phenomena of hearing, the finite element model of mastoid, temporal bone and skull of the patient is created.. The 3D geometric model