• 沒有找到結果。

幾何證明分段作業的學習效率分析研究

N/A
N/A
Protected

Academic year: 2021

Share "幾何證明分段作業的學習效率分析研究"

Copied!
34
0
0

加載中.... (立即查看全文)

全文

(1)61. 國立政治大學「教育與心理研究」 2014 年 3 月,37 卷 1 期,頁 61-94 DOI. 10.3966/102498852014033701003. 幾何證明分段作業的學習效率分析研究 左台益*. 摘. 呂鳳琳**. 要. 本研究引進認知負荷理論並以「平行線截比例線段」的證明為例,探討專家 和生手理解幾何證明與認知負荷感受的關係,並進一步分析其學習效率。依據數學 結構與Duval(1998)的幾何推理訊息組織三層次之構念進行切割分段,形成分段 與未分段兩種學習版本。根據49位專家和66位生手在不同學習版本的理解表現與認 知負荷感受,以Paas與van Merriënboer(1993)所提出的學習效率公式分析專家和 生手在不同學習版本下的學習效率。研究結果顯示:一、專家的理解表現與認知負 荷感受無關,但生手的理解表現與閱讀意願及信心指數呈正相關;二、信心指數可 做為學生理解幾何證明的一個參考指標;三、降低作業複雜度能提升專家在各理解 層次的學習效率與生手在局部層次的學習效率。. 關鍵詞: 幾何證明、學習效率、認知負荷理論. *. 左台益:國立臺灣師範大學數學系副教授 呂鳳琳(通訊作者):國立臺灣師範大學數學系博士班學生 誌謝: 本研究承蒙行政院國家科學委員會專題研究計畫(計畫編號:NSC 101-2511-S-003012-MY3)之經費補助,並由衷感謝兩位審查委員對本研究所提供之寶貴建議與指 教,由於您的協助,方使本研究內容更臻精緻與完整,特此致謝。 電子郵件:fenglin.lu@gmail.com. **. 收件日期:2013.01.15;修改日期:2013.09.13;接受日期:2013.10.01.

(2) 62. Journal of Education & Psychology March, 2014, Vol. 37 No. 1, pp. 61-94. Analysis of Learning Efficiency on Geometry Proof by Using Segmentation Tai-Yih Tso*. Feng-Lin Lu**. Abstract. In this study, we adopt cognitive load theory and take Thales’ theorem as an example to investigate how expert and novice’s understanding on geometric proof interacts with perception of cognitive load and further investigate their learning efficiency. We follow mathematics structure and the construct of reasoning with three levels of organization (Duval, 1998) to process segmentation, which forms two learning versions, the segmented version and the non-segmented one. According to 79 experts’ and 66 novices’ performance of comprehension and perception of cognitive load, we utilize measurement of learning efficiency provided Paas and van Merriënboer (1993) to analyze experts’ and novices’ learning efficiency under different learning versions. The results are as follows: Firstly, experts’ performance of comprehension is irrelevant with their perception of cognitive load. However, novices’ performance of comprehension is positively correlates with their willingness to read and confidentiality. Secondly, confidence can be considered to be a reference to examine students’ comprehension on geometric proof. Thirdly, lowering the complexity of tasks will promote experts’ learning *. Tai-Yih Tso: Associate Professor, Department of Mathematics, National Taiwan Normal University ** Feng-Lin Lu (Corresponding Author): PhD Student, Department of Mathematics, National Taiwan Normal University E-mail: fenglin.lu@gmail.com Manuscript received: 2013.01.15; Revised: 2013.09.13; Accepted: 2013.10.01.

(3) 63. efficiency under each level and novices’ learning efficiency under local level.. Keywords: geometry proof, learning efficiency, cognitive load theory.

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28) 88 教育與心理研究 37 卷 1 期. 明之學習成效. (三) 降低作業複雜度能提升專家 在各理解層次的學習效率與 生手在局部層次的學習效率 從專家和生手在不同版本下的學 習效率分析顯示,專家在分段版本下的 學習效率顯著高於在未分段版本下的學 習效率,說明降低作業複雜度對專家來 說,他們不論是在微觀、局部或是整體 的理解層次,學習效率都會比在未分段 版本下來得好。而生手在分段版本下, 其局部層次的學習效率會顯著高於未分 段版本的學習效率,由此可知,透過分 段方式能夠提高生手在局部層次的學習 效率,但對微觀與整體層次的學習效率 並無顯著效果,表示或許還需要輔以其 他教學策略來幫助生手對微觀與整體層 次的學習。. 二、建議 根據研究結果,由於學生的信心 與理解表現具有很高的相關性,因此, 本研究認為幾何證明的分段呈現能讓學 生較有信心看懂,可以做為教學設計上 的一個基本指標。同時,可以透過詢問 學生對於是否理解一個幾何證明的信心 程度(例如你有多少把握看懂這個證 明?)來做為學生在幾何證明學習成效 上的參考訊息。此外,學生在閱讀幾何 證明時,如何輔助學生,激發他們對看 懂證明的信心有待做進一步的研究分. 析。. 參考文獻 左台益、呂鳳琳、曾世綺、吳慧敏、陳明 璋、譚寧君(2011)。以分段方式降低 任務複雜度對專家與生手閱讀幾何證 明的影響。教育心理學報,43(閱讀 專刊),291-314。 【Tso, T. Y., Lu, F. L., Tzeng, S. C., Wu, H. M., Chen, M. J., & Tan, N. C. (2011). Impact of reducing task complexity by segmentation on experts’ and novices’ reading comprehension of geometric proof problems. Bulletin of Educational Psychology, 43(Special Issue on Reading), 291-314.】. 張俊彥(2008)。TIMSS 2007國際數學與 科學教育成就趨勢調查國家報告。取 自http://www.dorise.info/DER/download _T2007/resault/TIMSS-2007-full_ver.pdf 【 Chang, C. Y. (2008). National report of Trends in International Mathematics and Science Study in 2007. Retrieved from http://www.dorise.info/DER/download_T2 007/resault/TIMSS-2007-full_ver.pdf】. 葉明達、柳賢(2007)。建立判讀理解層 級:高中生進行數學論證判讀活動困 難 之 探 討 。 教 育 與 心 理 研 究 , 30 (3),79-109。 【Ye, M. D., & Leou, S. (2007). To establish validating comprehension level: Discuss the difficulties that senior high students faced in argumentation validation activity. Journal of Education and Psychology, 30(3), 79-109.】. Ayres, P. L. (2001). Systematic mathematical errors and cognitive load. Contemporary Educational Psychology, 26, 227-248. Ayres, P. L. (2006). Impact of reducing intrinsic cognitive load on learning in a mathematical domain. Applied Cognitive Psychology, 20, 287-298..

(29) 幾何證明分段作業的學習效率分析研究 89. Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293-332. Chen, S. Y., Fan, J., & Macredie, R. D. (2006). Navigation in hypermedia learning systems: Experts vs novices. Computers in Human Behavior, 22(2), 251-266. Cuevas, H. M., Fiore, S. M., & Oser, R. L. (2002). Scaffolding cognitive and metacognitive processes in low verbal ability learners: Use of diagrams in computer-based training environments. Instructional Science, 30, 433-464. Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processing. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 142-157). New York, NY: Springer. Duval, R. (1998). Geometry from a cognitive point a view. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century (pp. 37-52). Dordrecht, Holland: Kluwer Academic. Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162. Hanna, G. (2000). Proof, explanation, and exploration: An overview. Educational Studies in Mathematics, 44, 5-23. Hanna, G., & Jahnke, H. N. (1996). Proof and proving. In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education (pp. 877-908). Dordrecht, Holland: Kluwer. Hanna, G., & de Villiers, M. (2012). Proof. and proving in mathematics education. New York, NY: Springer. Hummel, H. G. K., Paas, F., & Koper, E. J. R. (2004). Cueing for transfer in multimedia programmes: Process worksheets vs. worked-out examples. Journal of Computer Assisted Learning, 20, 387-397. Inglis, M., & Alcock, L. (2012). Expert and novice approaches to reading mathematical proofs. Journal for Research in Mathematics Education, 43, 358-390. Kalyuga, S., Chandler, P., & Sweller, J. (2004). When redundant on-screen text in multimedia technical instruction can interfere with learning. Human Factors, 46, 567-581. Keller, J. M., & Suzuki, K. (1988). Use of the ARCS motivation model in courseware design. In D. H. Jonassen (Ed.), Instructional designs for microcomputer courseware (pp. 401-434). Hillsdale, NJ: Lawrence Erlbaum Associates. Kester, L., Kirschner, P. A., & van Merriënboer, J. J. G. (2005). The management of cognitive load during complex cognitive skill acquisition by means of computer-simulated problem solving. The British Journal of Educational Psychology, 75, 71-85. Küchemann, D., & Hoyles, C. (2006). Influences on students’ mathematical reasoning and patterns in its development: Insights from a longitudinal study with particular reference to geometry. International Journal of Science and Mathematics Education, 4(4), 581-608..

(30) 90 教育與心理研究 37 卷 1 期. Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208, 1335-1342. Lin, F. L., Cheng, Y. H., & linfl team (2003). The competence of geometric argument in Taiwan adolescents. International Conference on Science and Mathematics Learning, 12, 16-18. Longo, G. (2012). Theorems as constructive visions. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education (Vol. 15, pp. 5166). New York, NY: Springer. Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52. Moreno, R. (2004). Decreasing cognitive load for novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. Instructional Science, 32, 99-113. Niss, M. (2002). Mathematical competencies and the learning of mathematics: The Danish KOM project. Retrieved from http://www7.nationalacademies.org/mse b/mathematical_competencies_and_the_l earning_of_mathematics.pdf Paas, F., & van Merriënboer, J. (1993). The efficiency of instructional conditions: An approach to combine mental effort and performance measures. Human Factors, 35(4), 737-743. Paas, F., & van Merriënboer, J. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology,. 86(1), 122-133. Raman, M. (2003). Key ideas: What are they and how can they help us understand how people view proof? Educational Studies in Mathematics, 52, 319-325. Reigeluth, C. M. (1983). Instructional design theories and models: An overview of their current states. Hillsdale, NJ: Lawrence Erlbaum. Selden, A. (2012). Transitions and proof and proving at tertiary level. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education (Vol. 15, pp. 391-420). New York, NY: Springer. Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem? Journal for research in mathematics education, 34(1), 4-36. Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22(2), 123-138. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York, NY: Springer. Sweller, J., van Merriënboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-296. Van Gerven, P. W. M., Paas, F., van Merriënboer, J., Hendriks, M., & Schmidt, H. G. (2003). The efficiency of multimedia learning into old age. The British Journal of Educational Psychology, 73(4), 489-505. van Merriënboer, J., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and.

(31) 幾何證明分段作業的學習效率分析研究 91. future directions. Educational Psychology Review, 17, 147-177. Weber, K. (2001). Student difficulty in constructing proof: The need for strategic knowledge. Educational Studies in Mathematics, 48, 101-119. Weber, K., & Mejia-Ramos, J. (2011). Why and how mathematicians read proofs: An exploratory study. Educational Studies in Mathematics, 76(3), 329-344. Yang, K. L., & Lin, F. L. (2008). A model of reading comprehension of geometry. proof. Educational Studies in Mathematics, 67(1), 59-76. Zaslavsky, O., Nickerson, S. D., Stylianides, A. J., Kidron, I., & Winicki-Landman, G. (2012). The need for proof and proving: Mathematical and pedagogical perspectives. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education (Vol. 15, pp. 215-229). New York, NY: Springer..

(32) 92 教育與心理研究 37 卷 1 期. 附錄. 幾何證明閱讀理解測驗. 1.請依據下列敘述「作 EF ⊥ AB 且F在 AB 上」,在圖一中畫出 EF 。. 圖一. HJJG. 2.如圖二, BH ⊥ DE ,請用一個算式表示 + EDB 的面積。. 圖二. 3.請依據圖三回答下列問題: (1) 請說明「因為 DE // BC ,所以 BH = CK 。」 這個敘述成立的理由。 理由:. (2) 若 BH = 3 ,則 CK =__________。. 圖三.

(33) 幾何證明分段作業的學習效率分析研究 93. 4.如圖四,在 + ACD 中,E在 AC 上, 試證. + EAD面積 AE 。 = + ECD面積 EC. 證明:. 圖四. 5.如圖五, DE // BC ,. HJJG. HJJG. HJJG. H、K在 DE 上且 BH ⊥ DE , CK ⊥ DE , 試證 + EDB面積 =+ ECD面積 。 證明:. 圖五.

(34) 94 教育與心理研究 37 卷 1 期. 6.如圖六,已知 DE // BC ,請證明. AD AE = 。 DB EC. (下面附有參考敘述,可供參考作答。) 證明過程:. 圖六. 註: 下面14個敘述都是正確的敘述,不需要再證明(參考圖六)。你可以選取一些 適當的敘述(或代號)來結構出. AD AE = 的證明過程。 DB EC.

(35)

參考文獻

相關文件

The ontology induction and knowledge graph construction enable systems to automatically acquire open domain knowledge. The MF technique for SLU modeling provides a principle model

• To enhance teachers’ knowledge and understanding about the learning and teaching of grammar in context through the use of various e-learning resources in the primary

Teachers may encourage students to approach the poem as an unseen text to practise the steps of analysis and annotation, instead of relying on secondary

Xianggang zaji (miscellaneous notes on Hong Kong) was written by an English and translated into Chinese by a local Chinese literati.. Doubts can therefore be cast as to whether

vs Functional grammar (i.e. organising grammar items according to the communicative functions) at the discourse level2. “…a bridge between

(b) reviewing the positioning of VPET in the higher education system in Hong Kong, exploring the merits of developing professional vocational qualifications at the degree

220V 50 Hz single phase A.C., variable stroke control, electrical components and cabling conformed to the latest B.S.S., earthing through 3 core supply cable.. and 2,300 r.p.m.,

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17