• 沒有找到結果。

Non-perturbative Effects in ABJM Theory from Fermi Gas Approach

N/A
N/A
Protected

Academic year: 2022

Share "Non-perturbative Effects in ABJM Theory from Fermi Gas Approach"

Copied!
50
0
0

加載中.... (立即查看全文)

全文

(1)

Non-perturbative Effects in ABJM Theory from Fermi Gas Approach

Sanefumi Moriyama (Nagoya/KMI)

[arXiv:1106.4631]

with H.Fuji and S.Hirano

[arXiv:1207.4283, 1211.1251, 1301.5184]

with Y.Hatsuda and K.Okuyama

(2)

Previously in Fuji-Hirano-M

Perturbative Terms of ABJM Matrix Model

in 't Hooft Expansion Sum Up To ・・・

Z(N) =

N1=N2=N

(3)

Previously in Fuji-Hirano-M

(Up To Constant Maps & Instanton Effects) cf: [Marino-Putrov, Honda et al]

• Airy Function

• Renormalization of 't Hooft coupling

Z(N) =

(4)

Previous Method

(Analytic Continuation N2 → - N2)

• Chern-Simons Theory on Lens Space S3/Z2 (String Completion)

• Open Top A-model on T*(S3/Z2) (Large N Duality)

• Closed Top A on Hirzebruch Surface F0 = P1 x P1 (Mirror Symmetry)

• Closed Top B on Spectral Curve u v = H( x , y ) Holomorphic Anomaly Equation!!

(5)

Today: Non-Perturbative Effects

• Not Just Worldsheet Instanton Or Membrane Instanton, But Also Their Bound States

• Not Qualitative Arguments, But Quantitative Analysis

(6)

Contents

1. Motivation 2. Fermi Gas

3. Exact Results

4. NonPerturbative Effects 5. Further Direction

(7)

Motivation① M2-brane

Special Case

No Fractional Branes: N1=N2=N Flat Space: k=1

IIA (C4/Zk ⇒ CP3 x R x S1): k=∞ with N/k Fixed N=6 Chern-Simons Theory (N1,N2,k)

(N1+N2)/2 M2 with (N1-N2) Fractional M2 on C4/Zk ABJ(M)

(8)

Motivation① M2-brane

Partition Function of M2 WorldVolume Theory

Z = Airy(N) ≈ Exp[-N3/2] DOF N3/2 Reproduced

[Drukker-Marino-Putrov]

N x M2

Also Non-Perturbative Corrections

(9)

Non-Perturbative Corrections

• 't Hooft Expansion in Matrix Model Exp[-2π√2N/k]

Identified as String Wrapping CP1 in CP3

• Borel Sum-like Analysis

Exp[-π√2Nk]

Identified as D2-brane Wrapping RP3 in CP3

[Drukker-Marino-Putrov]

(10)

Motivation② From Gaussian To ABJM

ABJM

CS Super

Gauss

CS q-deform Superalg

(11)

Message from Airy① Hidden Structure?

• String Theory (Dual Resonance Model)

Veneziano Amplitude

⇒ String Conformal Symmetry [Virasoro, Nambu]

• Membrane Theory

Free Energy as Airy Function

⇒ Hidden Structure for Membrane?

(12)

Message from Airy② Trinity?

Chern-Simons Theory

M-

Theory

Airy Function

Wave Function of The Universe [Ooguri-Verlinde-Vafa]

Membrane WorldVolume Theory [Aharony-Bergman-Jafferis-Maldacena]

All Genus Partition Function [Fuji-Hirano-M]

(13)

Message from Airy③

Ai(N) = (2πi)-1

dμ Exp[μ3/3 - μN]

Chern-Simons Partition Function ?

ZCS(N) =

DA Exp

A dA- AAA

Grand Potential in Statistical Mechanics?

eJ(μ) = 1 + ∑N=1Z(N) e-μN

Z(N) = (2πi)-1

dμ Exp[J(μ) - μN]

What is the Statistical Mechanical System?

(14)

Contents

1. Motivation 2. Fermi Gas

3. Exact Results

4. NonPerturbative Effects 5. Further Directions

(15)

ABJM Matrix Model

N1=N2=N Z(N) =

(16)

ABJM Matrix Model

[ ∏ sinh ∏ sinh / ∏ cosh ]2

N1=N2=N Z(N) =

(17)

Hidden Structure as Fermi Gas

1. Cauchy Determinant

∏sinh ∏sinh / ∏cosh = Det cosh-1

= ∑σ (-1)σi [2 cosh (μiσ(i))/2]-1

2. Trivialization of One Permutation

σ,τ (-1)σ+τi [2 cosh(μiσ(i))/2]-1 [2 cosh(μiτ(i))/2]-1

= N! ∑σ (-1)σi [2 cosh(μii)/2]-1 [2 cosh(μiσ(i))/2]-1

3. Fourier Transform

(μ,ν) ⇒ (p,q)

4. (μ,ν) Gaussian Integration

(18)

Hidden Structure as Fermi Gas

After Some Calculation, ... [Marino-Putrov]

• Non-Interacting Fermi Gas

Z(N) = (N!)-1σ (-1)σ i dqi 〈qi| ρ |qσ(i)

Density Matrix ρ = e-H

ρ = [2 cosh q/2]-1/2 [2 cosh p/2]-1 [2 cosh q/2]-1/2

• Statistical Mechanics Approach

N3/2 & Airy Easily(!) Reproduced

(19)

Statistical Mechanics

• Canonical Ensemble: Sum in Conjugacy Class

⇒ Grand Canonical Ensemble

• Grand Potential

eJ(μ) = 1 + ∑N=1Z(N) e-μN

• Inversely

Z(N) = (2πi)-1

dμ eJ(μ) - μN

(20)

WKB Analysis

ℏ(=2πk)-Perturbation

• Systematic Expansion in e-2μ ~ Exp[-π√2Nk] J(μ) = Jpert(μ) + Jnp(μ)

Jpert(μ) = Ck μ3/3 + Bk μ + Ak

Jnp(μ) = ∑l=1( α(l) μ2 + β(l) μ + γ(l) ) e-2lμ

• (At Most) Quadratic Prefactor

(cf. Linearity in "log[2coshq/2] ~ q")

• (α(l), β(l), γ(l)) Determined in ℏ-Perturbation

(21)

Contents

1. Motivation 2. Fermi Gas

3. Exact Results

4. NonPerturbative Effects 5. Further Direction

(22)

World Records of Exact Values

• [Hatsuda-M-Okuyama 2012/07]

Nmax= 9 for k=1

• [Putrov-Yamazaki 2012/07]

Nmax= 19 for k=1

• [Hatsuda-M-Okuyama 2012/11]

Nmax= 44 for k=1 Nmax= 20 for k=2 Nmax= 18 for k=3 Nmax= 16 for k=4 Nmax= 14 for k=6

(23)

Sample

(For k=1)

Z(1) = 1/4 Z(2) = 1/16π Z(3) = (π-3)/26π

Z(4) = (-π2+10)/210π2 Z(5) = (-9π2+20π+26)/212π2

Z(6) = (36π3-121π2+78)/21432π3

Z(7) = (-75π3+193π2+174π-126)/2163

Z(8) = (1053π4-2016π3-4148π2+876)/22132π4

Z(9) = (5517π4-13480π3-15348π2+8880π+4140)/22332π4

(24)

Method: Factorization

ρ(q1,q2) = E(q1) E(q2) [M (q1) + M(q2)]-1 ρn(q1,q2) = Σm (-1)m [ρ⇓ mE](q1) n-1-mE](q2)

x [M(q1) - (-1)n M(q2)]-1

[Tracy-Widom]

(25)

Method: Hankel Matrix

• Density Matrix ρ: Isospectral to Hankel Matrix

ρ ≈ =

• A Magic Formula For Hankel Matrix

ρ0 0 ρ1 0 ρ2 0 ・ 0 ρ1 0 ρ2 0 ρ3 ρ1 0 ρ2 0 ρ3 0 ・ 0 ρ2 0 ρ3 0 ρ4 ρ2 0 ρ3 0 ρ4 0 ・ 0 ρ3 0 ρ4 0 ρ5

・ ・ ・ ・ ・ ・ ・

ρ+ 0 0 ρ-

det (1+zρ-) / det (1-zρ+) = [(1-zρ+)-1E+]0 / [E+]0

[Hatsuda-M-Okuyama]

(26)

Contents

1. Motivation 2. Fermi Gas

3. Exact Results

4. NonPerturbative Effects 5. Further Direction

(27)

Fitting Grand Potential

J(μ) = log[ 1 + ∑N=1 Nmax Z(N) eμN ] Strategy: Plot & Fit

J(μ) vs Jpert(μ)

(J(μ)-Jpert(μ))/e-4μ/k vs α1μ21μ+γ1

(J(μ)-Jpert(μ)-Jnp(1)(μ))/e-8μ/k vs α2μ22μ+γ2

(J(μ)-Jpert(μ)-Jnp(1)(μ)-Jnp(2)(μ))/e-12μ/k vs α3μ23μ+γ3

・・・

(28)

Example: k=1

(J(μ)-Jpert(μ))/e-4μ

(J(μ)-Jpert(μ)-Jnp(1)(μ))/e-8μ J(μ)

(J(μ)-Jpert(μ)-Jnp(1)(μ)-Jnp(2)(μ))/e-12μ

(29)

Oscillatory Behavior!!

• Grand Potential

• Original Definition

eJ(μ) = 1 + ∑N=1Z(N) e-μN Periodic in μ = μ + 2πi

• No More in Jpert(μ) etc.

(30)

To Remedy the 2πi-Periodicity

• 2πi-Periodic Grand Potential

Exp[J(μ)] = ∑N=-∞Exp[Jnaive(μ+2πiN)] Jnaive(μ) = Jpert(μ) + Jnp(μ)

J(μ) = Jnaive(μ) + Josc(μ)

• Results:

Josc(μ) = 2 Cos[Ck μ2 + Bk - 8/3k] e-8μ/k + ...

• Hereafter, Josc(μ) Abbreviated

(31)

Results from Fitting

Jk=1(μ) = [(4μ2+μ+1/4)/π2]e-4μ + [-(52μ2+μ/2+9/16)/(2π2)+2]e-8μ + [(736μ2-152μ/3+77/18)/(3π2)-32]e-12μ + ...

Jk=2(μ) = [(4μ2+2μ+1)/π2]e-2μ + [-(52μ2+μ+9/4)/(2π2)+2]e-4μ + [(736μ2-304μ/3+154/9)/(3π2)-32]e-6μ + ...

Jk=3(μ) = [4/3]e-4μ/3 + [-2]e-8μ/3 + [(4μ2+μ+1/4)/(3π2)+20/9]e-4μ + ...

Jk=4(μ) = [1]e + [-(4μ2+2μ+1)/(2π2)]e-2μ + [16/3]e-3μ + ...

Jk=6(μ) = [4/3]e-2μ/3 + [-2]e-4μ/3 + [(4μ2+2μ+1)/(3π2)+20/9]e-2μ + ...

up to 7-instanton

(32)

Schematically

Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ...

Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ...

Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]e-4μ + ...

Jk=4(μ) = [#]e + [#μ2+#μ+#]e-2μ + [#]e-3μ + ...

...

Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ...

WS(1) WS(2) WS(3)

(33)

Worldsheet Instanton From Top String

Implication from Topological Strings JkWS(μ) = ∑m=1dk(m) e-4mμ/k Multi-Covering Structure

dk(m) = ∑gn|m (-1)m/n Ngn/n (2 Sin[2πn/k])2g-2 Gopakumar-Vafa Invariant on F0=P1xP1

Ngn

(34)

Match with Topological String?

Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ...

Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ...

Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]e-4μ + ...

Jk=4(μ) = [#]e + [#μ2+#μ+#]e-2μ + [#]e-3μ + ...

...

Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ...

WS(1) WS(2) WS(3)

(35)

Match with Topological String?

Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ...

Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ...

Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]e-4μ + ...

Jk=4(μ) = [#]e + [#μ2+#μ+#]e-2μ + [#]e-3μ + ...

...

Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ...

WS(1) WS(2) WS(3)

: Match : Divergent : Not-Match

(36)

First Guess

Membrane Instanton & Worldsheet Instanton, Same Origin in M-theory

dk(m) e-4mμ/k = (divergence) + [#μ2+#μ+#] e-2lμ Around k = 2m/l

Correctly Speaking, ...

(37)

Cancellation of Divergences?

Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ...

Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ...

Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]e-4μ + ...

Jk=4(μ) = [#]e + [#μ2+#μ+#]e-2μ + [#]e-3μ + ...

...

Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ...

WS(1) WS(2) WS(3)

MB(1) MB(2)

(38)

Cancellation of Divergence

WS3

WS4 WS2

WS1

MB1 MB2 MB3 MB4

• Worldsheet m-Instanton [Sin 2πm/k]-1

• Membrane l-Instanton [Sin πlk/2]-1

k=1

k=6 k=2

k=5 k=3 k=4

(39)

More Dynamical Figure

WS3

WS4 WS2

WS1

MB1 MB2 MB3 MB4

• Worldsheet m-Instanton [Sin 2πm/k]-1

• Membrane l-Instanton [Sin πlk/2]-1

k=1

k=6 k=2

k=5 k=3 k=4

(40)

1-Membrane Instanton

• Vanishing in k=odd

• Canceling Divergence

• Matching the WKB data

ak(1) = -4(π2k)-1 Cos[πk/2]

bk(1) = 2π -1 Cot[πk/2] Cos[πk/2]

ck(1) = ...

(41)

How About ?

• (l, m) Bound State ?

e- l x 2μ - m x 4μ/k

Ex: e-3μ Effects in k=4 Sector From Both (0,3) & (1,1)

But No Information on Bound States Yet.

(42)

2-Membrane Instanton

Cancellation of Divergence in (2,0)+(0,2m+1)

[Calvo-Marino]

ak(2) = ... bk(2) = ... ck(2) = ...

m

l k=1

k=3

(43)

Bound States (1,m)?

Cancellation of Divergence in (2,0)+(1,m)+(0,2m) m

l k=2

k=4

(44)

(1,m) Bound States

Cancellation of Divergence in (2,0)+(1,m)+(0,2m) Match with (1,1)+(0,3) in k=4 Sector, ...

• (1,m) Bound States

Jk(1,m)(μ) = ... = ak(1) dk(m) e-2μ-4mμ/k

(45)

More Bound States

Similarly,

• (2,m) Bound States

Jk(2,m)(μ) = (ak(2)+(ak(1))2/2) dk(m) e-4μ-4mμ/k Match with (2,2)+(0,5) in k=3, ...

• (3,m) Bound States

Jk(3,m)(μ) = (ak(3)+ak(2)ak(1)+(ak(1))3/6) dk(m) e-6μ-4mμ/k

(46)

All Bound States

• Finally

Jk(l,m)(μ) = ∑ (ak(l1))n1/(n1)! ... (ak(lL))nL /(nL)!

x dk(m) e-2lμ-4mμ/k

• Sum Over

n1 l1 + ... + nL lL = l

• ∑(a)n/(n)! ⇒ Exp[a] ??

(47)

To Summarize

Originally

J(μ) = Jpert(μ) + JMB(μ) + JWS(μ) + Jbnd(μ)

Jpert(μ) = #μ3 + #μ + #

JMB(μ) = ∑l>0 JMB(l)(μ) = ∑l>0 (#μ2 + #μ + #) e-2lμ JWS(μ) = ∑m>0 JWS(m)(μ) = ∑m>0 # e-4mμ/k

Jbnd(μ) = ∑l>0,m>0 J(l,m)(μ)

(48)

Effective Chemical Potential

μeff = μ + # ∑l ak(l) e-2lμ

• Grand Potential

J(μ) = Jperteff) + J'MBeff) + JWSeff) J'MBeff) = ∑l>0 (#μeff + #) e-2lμeff

• Bound States in Effective WS Instanton

• Membrane Instanton in Linear Functions

(49)

Contents

1. Motivation 2. Fermi Gas

3. Exact Results

4. NonPerturbative Effects 5. Further Direction

(50)

Further Direction

[Work in Progress]

• Wilson Loops?

• ABJ Extensions?

• Understand Generality of Cancellation

• Understand Membrane Instantons from Matrix Model Terminology

Thank You For Your Attention.

參考文獻

相關文件

introduction to continuum and matrix model formulation of non-critical string theory.. They typically describe strings in 1+0 or 1+1 dimensions with a

Summing up all genus free energy of ABJM matrix model.. Seminar @ National

Fully quantum many-body systems Quantum Field Theory Interactions are controllable Non-perturbative regime..

Normalizable moduli (sets of on‐shell vacua in string theory) Scale

[CIY4], Analytic Study for the String Theory Landscapes via Matrix Models, Phys.Rev... THEME:

• LQCD calculation of the neutron EDM for 2+1 flavors ,→ simulation at various pion masses & lattice volumes. ,→ working with an imaginary θ [th’y assumed to be analytic at θ

III Raman Imaging of Raft Model Membrane.. Sphingomyelin and Cholesterol

▸ Construct an simple example of odd-loop amplitudes in ABJM